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1. Implementation Details of The Global and Local Branches 
The global branch consists of a series of convolutional layers and 
Convolutional Block Attention Modules (CBAMs) [1], while the 
local branch only consists of a series of convolutional layers. 
Concretely, the global module expands the dimension of the 
features from 128 to 1024 after the shared encoder; the local 
module crops the features from the shared encoder into four regions, 
and expands the dimensions of these regions from 128 to 256, 
finally merging them. The final·model·codes and·algorithm codes 
will be released publicly once the paper is accepted. 

2. Impact of Selections of Reliability Threshold 𝝐𝝐 
In our inter-domain alignment, we select only those samples with 
probabilities exceeding the reliability threshold 𝜖𝜖 which balances 
the positive knowledge transfer and the number of aligned samples. 
We conduct the threshold selection experiments on the ‘→CK+’ 
and ‘→FER-2013’ tasks and the results are tabulated in Tab.S.1. 
As seen, our LA-CMFER achieves a relatively robust performance 
under different reliability thresholds and when 𝜖𝜖 is set as 0.4, the 
best accuracies on the two tasks are obtained. Therefore, we set 𝜖𝜖 
as 0.4 in all our experiments. 

3. Impact of the Number of Source Domains 
We also study how the number of source domains impacts the 
performance. Here, we progressively add the number of source 
domains on the ‘→CK+’ and ‘→RAF-DB’ tasks, and the 
classification accuracies are displayed in Tab. S.2. As observed, as 
the number of source domains increases, the domain shifts become 
increasingly complex. Even under such challenging circumstances, 
our proposed LA-CMFER can effectively align the data 

distributions among several sources and deeply mine their 
beneficial expression features, thus finally gaining gradually 
enhanced accuracies on both ‘→CK+’ and ‘→RAF-DB’ tasks. 

4. Quantitative Analysis of Different Cross-view Consistency 
Constraints 

To intuitively evaluate the effectiveness of different cross-view 
consistency Constraints, we give the quantitative results of 
different cross-view consistency constraints in Table.S.3. As 
depicted in Table.S.3, the model’s performance declines to varying 
degrees when using these alternative strategies instead of our ℒ𝑚𝑚𝑐𝑐𝑐𝑐. 
Concretely, while KL and L1 exhibit comparable performance in 
simple ‘→ C’ and ‘→R’ tasks, they show significant performance 
deterioration in more complex tasks like ‘→A’ and ‘→F’ tasks. 
This underscores the unreliability of solely considering absolute 
prediction distances or differences in relative entropy to address 
intra-domain shifts across FER domains. Additionally, due to 
substantial intra-domain shifts, the global and local branches may 
exhibit significant prediction biases for challenging samples near 
decision boundaries, leading to notable performance fluctuations 
with the MSE loss which is more sensitive to outliers. In summary, 
with our multi-view clustering technique, our model can better 
foster consistency between two branches, thus decreasing the 
prediction uncertainty and promoting intra-domain alignments. 

5. Analysis of Hyper-parameter Sensitivity Tests 
We conduct further analysis for hyperparameters sensitivity tests of 
𝛼𝛼 , 𝛽𝛽 , and 𝛾𝛾 . Concretely, the three hyperparameters control the 
importance of the dual-level inter-domain alignment, the cross-
view consistency constraint, and the multi-view voting loss, 
respectively. We select candidate values for 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 from the set 
{0.1, 0.2, 0.4, 0.5, 0.8, 1} and conduct hyperparameters sensitivity 
tests on the relatively simple ‘ → CK+’ task and the more 
challenging ‘→FER-2013’ task. Based on the observations from 
Fig. 6 in the manuscript, we summarize our findings as follows: (1) 
The model exhibits robustness to all hyperparameters in the ‘→
CK+’ task, while performance shows a decreasing trend with larger 
values of 𝛼𝛼 and 𝛾𝛾 in the more complex ‘→FER-2013’ task; (2) In 

Table S.1: Experimental results about different selections of 
reliability threshold 𝝐𝝐 on the ‘→CK+’ and ‘→FER-2013’ tasks. 

 Threshold 𝜖𝜖 
 0.0 0.2 0.4 0.6 

Accuracy (%) on ‘→CK+’ 89.71 90.19 90.48 90.29 
Accuracy (%) on ‘→FER-2013’ 56.78 57.26 57.40 56.84 
 

Table. S.2: Analytical experiment of impacts on different 
number of source domains. 

Tasks Accuracy (%) Tasks Accuracy (%) 
A→C 81.71 A→R 70.27 

A, R→C 86.10 A, J→R 71.00 
A, R, J→C 86.48 A, J, F→R 74.86 

A, R, J, F→C 88.00 A, J, F, O→R 75.72 
A, R, J, F, O→C 90.48 A, J, F, O, C→R 77.86 

 
 

Table S.3: Quantitative results (%) of different cross-view 
consistency constraints. 

Variants →J →R →C →O →A →F Avg 
(A) KL 69.95 77.30 89.33 62.15 47.76 48.82 65.89 
(B) L1 69.01 76.67 86.95 64.96 45.91 45.70 64.87 

(C) MSE 51.64 61.04 77.62 55.22 31.50 33.44 51.74 
(D) ℒ𝑚𝑚𝑐𝑐𝑐𝑐 (Ours) 70.42 77.86 90.48 66.50 53.26 57.40 69.32 

 



  
 

 
 

complex ‘→FER-2013’ task which exits more severe inter-domain 
shifts, excessively large inter-domain alignment hyperparameter 
settings may lead the model to over-align on erroneous source-
target domain features and learn misleading ‘discriminative’ 
features inevitably that may damage the model’s discriminative 
ability; (3) For the challenging ‘→FER-2013’ task, excessive 
reliance on supervision for unlabeled target samples may lead to 
learning from noisy labels, thus degrading performance; (4) Finally, 
to optimize performance, we set 𝛼𝛼 as 0.4 for the hard dataset FER-
2013 and AffectNet while 0.1 for the rest. Meanwhile, we set 𝛽𝛽 and 
𝛾𝛾 as 0.5 and 0.1, respectively. 
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