
Supplementary Material to Linear Convergence of Gradient
Methods for Estimating Structured Transition Matrices in

High-dimensional Vector Autoregressive Models
We use C, C ′, C ′′, C ′′′ and c to denote positive constants which might change from line to line
throughout this part.

A Proof of main theorems

A.1 Proof of Theorem 1

First we provide several expression used in our analysis.

fn(Γ) =
1

2n
||Y −XΓ||2F, (33)

f(Γ) =
1

2
tr
{

(Γ− Γ?)
TΣx(Γ− Γ?) + I

}
, (34)

∇fn(Γ) =
1

n
XTX(Γ− Γ?)−

1

n
XTE, (35)

∇f(Γ) = Σx(Γ− Γ?). (36)

Lemma 2. Suppose x̄ = PK(y), where K = {x | R(x) ≤ R(x?)} andR(·) is a convex function.
Then we could bound ||x̄− x?||2 as

||x̄− x?||2 ≤ sup
v∈C∩S2

〈v,y − x?〉, (37)

where C = cone(D) is the decent cone, D = K − {x?} is the descent set and S2 is the sphere with
unit Euclidean norm.

In this way, we could bound the difference between Γk+1 and Γ? as

||Γk+1 − Γ?||F
= ||PK(Γk − µ∇fn(Γk))− Γ?||F
≤ sup

V ∈C∩SF
〈V ,Γk − Γ? − µ∇fn(Γk)〉

= sup
V ∈C∩SF

〈V ,Γk − Γ? − µ
1

n
XTX(Γk − Γ?) + µ

1

n
XTE〉

= sup
V ∈C∩SF

〈V ,Γk − Γ? − µΣx(Γk − Γ?) + µ(Σx −
1

n
XTX)(Γk − Γ?) + µ

1

n
XTE〉

≤ sup
V ∈C∩SF

〈V , (I − µΣx)(Γk − Γ?)〉︸ ︷︷ ︸
I

+ sup
V ∈C∩SF

〈V , µ(Σx −
1

n
XTX)(Γk − Γ?)〉︸ ︷︷ ︸

II

+ sup
V ∈C∩SF

〈V , µ 1

n
XTE〉︸ ︷︷ ︸

III

, (38)

where the first inequality refers to Lemma 2 and C = cone(K − {Γ?}) is the descent cone generated
from K = {Γ | R(Γ) ≤ R(Γ?)}.
The first term I of (38) only relates to the population loss function f(Γk), which could be bounded
according to the following lemma.

Lemma 3. Under Assumption 2, the term Γ− Γ? − µ∇f(Γ) about the gradient of the population
loss function (34) with the step size µ = 1/κmax satisfies

||Γ− Γ? − µ∇f(Γ)||F ≤ (1− κmin

κmax
)||Γ− Γ?||F. (39)
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Then we could bound the first term I of (38) as

sup
V ∈C∩SF

〈V , (I − µΣx)(Γk − Γ?)〉 ≤ ||(I − µΣx)(Γk − Γ?)||F

= ||Γk − Γ? − µ∇f(Γk)||F
≤ (1− κmin

κmax
)||Γk − Γ?||F, (40)

where the first inequality is from the Cauchy-Schwarz inequality and the last inequality is based on
Lemma 3.

The second part II of (38) is about the deviation inequality of the sample Gram matrixXTX/n. The
following lemma would help us deal with the supremum of the quadratic form.
Lemma 4. Suppose vec(XT ) follows the distribution N (0,Υx) where λmax(Υx) ≤ κmax and the
rows of X follow the distribution N (0,Σx). Under the condition of n ≥ (ω(C1 ∩ SF ) + ω(C2 ∩
SF ) + u)2, we have1

P
(

sup
U∈C1∩SF
V ∈C2∩SF

|〈V , (Σx −
XTX

n
)U〉| > Cκmax

ω(C1 ∩ SF ) + ω(C2 ∩ SF ) + u√
n

)
≤ 2 exp(−u2),

(41)
where C is a constant, C1 and C2 are two convex cones.

The condition λmax(Υx) ≤ κmax is satisfied according to Assumption 2 and Lemma 1. By setting
C1 = C2 = C, we could bound the second part II of (38) with Lemma 4 under the condition of
n ≥ (2ω(C ∩ SF ) + u)2 as

sup
V ∈C∩SF

〈V , µ(Σx −
1

n
XTX)(Γk − Γ?)〉 ≤ sup

U ,V ∈C∩SF
〈V , µ(Σx −

1

n
XTX)U〉||Γk − Γ?||F

≤ µCκmax
2ω(C ∩ SF ) + u√

n
||Γk − Γ?||F

≤ C ′ω(C ∩ SF ) + u√
n

||Γk − Γ?||F, (42)

with probability at least 1− 2 exp(−u2), where the first inequality is from the factR(Γk) ≤ R(Γ?),
which indicates (Γk − Γ?)/||Γk − Γ?||F ∈ C ∩ SF , the second inequality uses Lemma 4 and the
third inequality holds by noting µ = 1/κmax.

The third part III of (38) is the summation of a martingale difference sequence. The difficulty to
bound the summation is the coupling between {et} and {xt}. Our analysis to decouple these two
sequences is based on the following lemma, which is inspired by [41].
Lemma 5. Under the condition of Theorem 1, if n ≥ (ω(C ∩ SF ) + u)2, we could derive2

P
(

sup
V ∈C∩SF

| 1
n
〈V ,XTE〉| > C

√
κmax||Σe||

1
2
ω(C ∩ SF ) + u√

n

)
≤ 2 exp(−u2). (43)

Then we could bound the third part III of (38) with Lemma 5 under the condition of n ≥ (ω(C ∩
SF ) + u)2 as

sup
V ∈C∩SF

|µ 1

n
〈V ,XTE〉| ≤ µC

√
κmax||Σe||

1
2
ω(C ∩ SF ) + u√

n

≤ C 1
√
κmax

||Σe||
1
2
ω(C ∩ SF ) + u√

n
, (44)

with probability at least 1− 2 exp(−u2), where we use µ = 1/κmax.

1Note this lemma does not only adapt to the random process indexed by two matrices. In fact, from the proof
it is explicit that we could derive the deviation bound of the process indexed by any number of matrices if we
could handle the increment reformulated by the index matrices. This is why our analysis framework could also
be utilized to estimate the regression matrix and the precision matrix simultaneously in [28].

2Note this lemma also adapts to the process indexed by more matrices.
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Substituting (40), (42) and (44) into (38) yields

||Γk+1 − Γ?||F

≤ (1− κmin

κmax
)||Γk − Γ?||F + C

ω(C ∩ SF ) + u√
n

||Γk − Γ?||F + C ′
1

√
κmax

||Σe||
1
2
ω(C ∩ SF ) + u√

n

= (1− κmin

κmax
+ C

ω(C ∩ SF ) + u√
n

)︸ ︷︷ ︸
ρ

||Γk − Γ?||F + C ′
1

√
κmax

||Σe||
1
2
ω(C ∩ SF ) + u√

n︸ ︷︷ ︸
ξ

= ρ||Γk − Γ?||F + ξ, (45)

with probability at least 1− 4 exp(−u2), under the condition of n ≥ (2ω(C ∩ SF ) + u)2.

To guarantee the convergence, that is, ρ < 1, we require the number of measurements satisfying

√
n > C

κmax

κmin
(ω(C ∩ SF ) + u). (46)

In this way, we could get the event

||Γk+1 − Γ?||F ≤ ρ||Γk − Γ?||F + ξ ≤ ρk+1||Γ0 − Γ?||F +
ξ

1− ρ
(47)

holds with probability at least 1− c exp(−u2), where the second inequality is due to taking union
bound and the fact ρ < 1.

Further, if the number of measurements satisfies

√
n > 2C

κmax

κmin
(ω(C ∩ SF ) + u), (48)

we could derive a simpler expression

ρ = 1− κmin

κmax
+ C

ω(C ∩ SF ) + u√
n

< 1− κmin

2κmax
. (49)

A.2 Proof of Theorem 2

First we provide several expression used in our analysis.

fn(S,L) =
1

2n
||Y −X(S +L)||2F, (50)

f(S,L) =
1

2
tr
{

(S +L− S? −L?)TΣx(S +L− S? −L?) + I
}
, (51)

∇Sfn(S,L) =
1

n
XTX(S − S?) +

1

n
XTX(L−L?)−

1

n
XTE, (52)

∇Lfn(S,L) =
1

n
XTX(S − S?) +

1

n
XTX(L−L?)−

1

n
XTE, (53)

∇Sf(S,L) = Σx(S − S?) +Σx(L−L?), (54)
∇Lf(S,L) = Σx(S − S?) +Σx(L−L?). (55)
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In this way, we could bound the difference between Sk+1 and S? as

||Sk+1 − S?||F
= ||PKS

(Sk − µ∇Sfn(Sk,Lk))− S?||F
≤ sup

V ∈CS∩SF
〈V ,Sk − S? − µ∇Sfn(Sk,Lk)〉

= sup
V ∈CS∩SF

〈V ,Sk − S? − µ
1

n
XTX(Sk − S?)− µ

1

n
XTX(Lk −L?) + µ

1

n
XTE〉

= sup
V ∈CS∩SF

〈V , (I − µΣx)(Sk − S?)− µΣx(Lk −L?)

+ µ(Σx −
1

n
XTX)(Sk − S?) + µ(Σx −

1

n
XTX)(Lk −L?) + µ

1

n
XTE〉

≤ sup
V ∈CS∩SF

〈V , (I − µΣx)(Sk − S?)− µΣx(Lk −L?)〉︸ ︷︷ ︸
I

+ sup
V ∈CS∩SF

〈V , µ(Σx −
1

n
XTX)(Sk − S?) + µ(Σx −

1

n
XTX)(Lk −L?)〉︸ ︷︷ ︸

II

+ sup
V ∈CS∩SF

〈V , µ 1

n
XTE〉︸ ︷︷ ︸

III

, (56)

where the first inequality refers to Lemma 2 and CS = cone(KS−{S?}) is the descent cone generated
from KS = {S | RS(S) ≤ RS(S?)}.
The first term I of (56) only relates to the population loss function f(Sk,Lk) and could be further
rearranged as

sup
V ∈CS∩SF

〈V , (I − µΣx)(Sk − S?)− µΣx(Lk −L?)〉

≤ sup
V ∈CS∩SF

〈V , (I − µΣx)(Sk − S?)〉+ sup
V ∈CS∩SF

〈V ,−µΣx(Lk −L?)〉. (57)

The first term of (57) could be bounded as

sup
V ∈CS∩SF

〈V , (I − µΣx)(Sk − S?)〉 ≤ ||(I − µΣx)(Sk − S?)||F

≤ λmax(I − µΣx)||Sk − S?||F
≤ (1− κmin

κmax
)||Sk − S?||F, (58)

where the first inequality is due to the Cauchy-Schwartz inequality, the second inequality is from the
fact ||AB||F ≤ ||A||||B||F for two matrices A and B, and the third inequality holds by noting the
matrix I − µΣx is positive semi-definite with the largest eigenvalue no more than 1− κmin

κmax
under

Assumption 2 and the choice of the step size µ = 1/κmax.

17



The second term of (57) could be bounded as

sup
V ∈CS∩SF

〈V ,−µΣx(Lk −L?)〉

≤ sup
V ∈CS∩SF ,U∈CL∩SF

〈V ,−µΣxU〉||Lk −L?||F

= sup
V ∈CS∩SF ,U∈CL∩SF

〈PMS
(V ) + PM⊥

S
(V ),−µΣx

(
PML

(U) + PM⊥
L

(U)
)
〉||Lk −L?||F

≤ µ
(
σ̄max(PMS

ΣxPML
)||PMS

(V )||F||PML
(U)||F

+ σ̄max(PMS
ΣxPM⊥

L
)||PMS

(V )||F||PM⊥
L

(U)||F
+ σ̄max(PM⊥

S
ΣxPML

)||PM⊥
S

(V )||F||PML
(U)||F

+ σ̄max(PM⊥
S
ΣxPM⊥

L
)||PM⊥

S
(V )||F||PM⊥

L
(U)||F

)
||Lk −L?||F

≤ µκmin

8

(
||PMS

(V )||F||PML
(U)||F + ||PMS

(V )||F||PM⊥
L

(U)||F

+ ||PM⊥
S

(V )||F||PML
(U)||F + ||PM⊥

S
(V )||F||PM⊥

L
(U)||F

)
||Lk −L?||F

= µ
κmin

8

(
||PMS

(V )||F + ||PM⊥
S

(V )||F
)(
||PML

(U)||F + ||PM⊥
L

(U)||F
)
||Lk −L?||F

≤ µκmin

4

√
||PMS

(V )||2F + ||PM⊥
S

(V )||2F
√
||PML

(U)||2F + ||PM⊥
L

(U)||2F||Lk −L?||F

≤ 1

4

κmin

κmax
||Lk −L?||F, (59)

where the first inequality is from the factsRL(Lk) ≤ RL(L?) and (Lk−L?)/||Lk−L?||F ∈ CL∩SF ,
the second inequality holds by noting the definition of σ̄max(·) and the properties P2 = P , PT = P
for an orthogonal projection operator P , the third inequality is due to Assumption 3, the second
equality is based on ac+ad+bc+bd = (a+b)(c+d) for constant a, b, c, d, and the last two inequalities
follow from the facts a + b ≤

√
2
√
a2 + b2 for constants a, b, ||PMS

(V )||2F + ||PM⊥
S

(V )||2F =

||V ||2F = 1 and ||PML
(U)||2F + ||PM⊥

L
(U)||2F = ||U ||2F = 1.

Substituting (58) and (59) into (57), we could bound the first term I of (56) as

sup
V ∈CS∩SF

〈V , (I − µΣx)(Sk − S?)− µΣx(Lk −L?)〉

≤ (1− κmin

κmax
)||Sk − S?||F +

1

4

κmin

κmax
||Lk −L?||F. (60)

The second part II of (56) contains two terms about the deviation inequality of the sample Gram
matrixXTX/n

sup
V ∈CS∩SF

〈V , µ(Σx −
1

n
XTX)(Sk − S?) + µ(Σx −

1

n
XTX)(Lk −L?)〉

≤ sup
V ∈CS∩SF

〈V , µ(Σx −
1

n
XTX)(Sk − S?)〉+ sup

V ∈CS∩SF
〈V , µ(Σx −

1

n
XTX)(Lk −L?)〉.

(61)

By setting C1 = C2 = CS , we could bound the first term of (61) with Lemma 4 under the condition of
n ≥ (2ω(CS ∩ SF ) + u)2 as

sup
V ∈CS∩SF

〈V , µ(Σx −
1

n
XTX)(Sk − S?)〉 ≤ sup

U ,V ∈CS∩SF
〈V , µ(Σx −

1

n
XTX)U〉||Sk − S?||F

≤ µCκmax
2ω(CS ∩ SF ) + u√

n
||Sk − S?||F

≤ C 2ω(CS ∩ SF ) + u√
n

||Sk − S?||F, (62)
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with probability at least 1−2 exp(−u2), where the first inequality is from the factRS(Sk) ≤ RS(S?),
which indicates (Sk − S?)/||Sk − S?||F ∈ CS ∩ SF , the second inequality uses Lemma 4 and the
third inequality holds by noting µ = 1/κmax.

By setting C1 = CL and C2 = CS , we could bound the second term of (61) with Lemma 4 under the
condition of n ≥ (ω(CS ∩ SF ) + ω(CL ∩ SF ) + u)2 as

sup
V ∈CS∩SF

〈V , µ(Σx −
1

n
XTX)(Lk −L?)〉

≤ sup
V ∈CS∩SF
U∈CL∩SF

〈V , µ(Σx −
1

n
XTX)U〉||Lk −L?||F

≤ µCκmax
ω(CS ∩ SF ) + ω(CL ∩ SF ) + u√

n
||Lk −L?||F

≤ Cω(CS ∩ SF ) + ω(CL ∩ SF ) + u√
n

||Lk −L?||F, (63)

with probability at least 1 − 2 exp(−u2), where the first inequality is from the fact RL(Lk) ≤
RL(L?), which indicates (Lk −L?)/||Lk −L?||F ∈ CL ∩ SF , the second inequality uses Lemma 4
and the third inequality holds by noting µ = 1/κmax.

Substituting (62) and (63) into (61), we could bound the second term II of (56) as

sup
V ∈CS∩SF

〈V , µ(Σx −
1

n
XTX)(Sk − S?) + µ(Σx −

1

n
XTX)(Lk −L?)〉

≤ C 2ω(CS ∩ SF ) + u√
n

||Sk − S?||F + C
ω(CS ∩ SF ) + ω(CL ∩ SF ) + u√

n
||Lk −L?||F, (64)

with probability at least 1− 4 exp(−u2), under the condition of
√
n ≥ C ′′′(ω(CS ∩ SF ) + ω(CL ∩

SF ) + u).

The third part III of (56) is the summation of a martingale difference sequence, which could be
bounded by Lemma 5 under the condition of n ≥ (ω(CS ∩ SF ) + u)2

sup
V ∈CS∩SF

|µ 1

n
〈V ,XTE〉| ≤ µC ′

√
κmax||Σe||

1
2
ω(CS ∩ SF ) + u√

n

≤ C ′ 1
√
κmax

||Σe||
1
2
ω(CS ∩ SF ) + u√

n
, (65)

with probability at least 1− 2 exp(−u2), where we use µ = 1/κmax.

Substituting (60), (64) and (65) into (56) yields

||Sk+1 − S?||F

≤ (1− κmin

κmax
)||Sk − S?||F +

1

4

κmin

κmax
||Lk −L?||F + C

2ω(CS ∩ SF ) + u√
n

||Sk − S?||F

+ C
ω(CS ∩ SF ) + ω(CL ∩ SF ) + u√

n
||Lk −L?||F + C ′

1
√
κmax

||Σe||
1
2
ω(CS ∩ SF ) + u√

n
, (66)

with probability at least 1− 6 exp(−u2), under the condition of
√
n ≥ C ′′′(ω(CS ∩ SF ) + ω(CL ∩

SF ) + u).

Following the same procedure, we could derive the bound of ||Lk+1 −L?||F
||Lk+1 −L?||F

≤ (1− κmin

κmax
)||Lk −L?||F +

1

4

κmin

κmax
||Sk − S?||F + C

2ω(CL ∩ SF ) + u√
n

||Lk −L?||F

+ C
ω(CL ∩ SF ) + ω(CS ∩ SF ) + u√

n
||Sk − S?||F + C ′

1
√
κmax

||Σe||
1
2
ω(CL ∩ SF ) + u√

n
, (67)
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with probability at least 1− 6 exp(−u2), under the condition of
√
n ≥ C ′′′(ω(CS ∩ SF ) + ω(CL ∩

SF ) + u).

Considering (66) and (67) as a whole leads to

||Sk+1 − S?||F + ||Lk+1 −L?||F

≤ (1− 3

4

κmin

κmax
+ C ′′

ω(CL ∩ SF ) + ω(CS ∩ SF ) + u√
n

)︸ ︷︷ ︸
ρ

(||Sk − S?||F + ||Lk −L?||F)

+ C ′
1

√
κmax

||Σe||
1
2
ω(CS ∩ SF ) + ω(CL ∩ SF ) + u√

n︸ ︷︷ ︸
ξ

= ρ(||Sk − S?||F + ||Lk −L?||F) + ξ, (68)

with probability at least 1− 12 exp(−u2), under the condition of
√
n ≥ C ′′′(ω(CS ∩ SF ) + ω(CL ∩

SF ) + u).

To guarantee the convergence, that is, ρ < 1, we require the number of measurements satisfying
√
n > C ′′

4

3

κmax

κmin
(ω(CS ∩ SF ) + ω(CL ∩ SF ) + u). (69)

In this way, we could get the event

||Sk+1 − S?||F + ||Lk+1 −L?||F ≤ ρ(||Sk − S?||F + ||Lk −L?||F) + ξ

≤ ρk+1(||S0 − S?||F + ||L0 −L?||F) +
ξ

1− ρ
(70)

holds with probability at least 1− c exp(−u2), where the second inequality is due to taking union
bound and the fact ρ < 1.

Further, if the number of measurements satisfies
√
n > 4C ′′

κmax

κmin
(ω(CS ∩ SF ) + ω(CL ∩ SF ) + u), (71)

we could derive a simpler format

ρ = 1− 3

4

κmin

κmax
+ C ′′

ω(CL ∩ SF ) + ω(CS ∩ SF ) + u√
n

< 1− κmin

2κmax
. (72)

B Proof of corollaries

B.1 Proof of Corollary 1

As the proof of Theorem 1, the difference between Γk+1 and Γ? could be bounded by three parts

||Γk+1 − Γ?||F
= ||PK(Γk − µ∇fn(Γk))− Γ?||F
≤ sup

V ∈C∩SF
〈V ,Γk − Γ? − µ∇fn(Γk)〉

≤ sup
V ∈C∩SF

〈V , (I − µΣx)(Γk − Γ?)〉︸ ︷︷ ︸
I

+ sup
V ∈C∩SF

〈V , µ(Σx −
1

n
XTX)(Γk − Γ?)〉︸ ︷︷ ︸

II

+ sup
V ∈C∩SF

〈V , µ 1

n
XTE〉︸ ︷︷ ︸

III

. (73)

The first term I of (73) about the population loss function could be bounded by the same procedure as
the proof of Theorem 1.
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When the rows of X are independent with the distribution N (0,Σx), the spectral density func-
tion becomes fx(θ) = Σx/(2π) for any θ ∈ [−π, π] and M(fx) = λmax(Σx)/(2π), m(fx) =
λmin(Σx)/(2π). Under this setting, Assumption 2 naturally guarantees

κmin ≤ λmin(Υx) ≤ λmax(Υx) ≤ κmax, (74)
κmin ≤ λmin(Σx) ≤ λmax(Σx) ≤ κmax, (75)

where Υx = In ⊗Σx.

In this way, the conditions of Lemma 4 are satisfied and the second term II of (73) could be bounded
following the same procedure as Theorem 1.

With the facts thatX and E are independent and their rows are independent Gaussian vectors, we
could avoid the decoupling step in the proof of Lemma 5 and derive a similar result except for the
absolute constant by following the remained part of the proof for Lemma 5.

Taking the three terms of (73) into consideration, we could derive the result with the same form as
Theorem 1.

B.2 Proof of Corollary 2

In this setting, the objective function is

f(S,L) =
1

2
||Y − S −L||2F. (76)

We could bound the difference between Sk+1 and S? as
||Sk+1 − S?||F
= ||PKS

(Sk − µ∇Sf(Sk,Lk))− S?||F
≤ sup

V ∈CS∩SF
〈V ,Sk − S? − µ∇Sf(Sk,Lk)〉

= sup
V ∈CS∩SF

〈V ,Sk − S? − (Sk − S?)− (Lk −L?) +E〉

= sup
V ∈CS∩SF

〈V ,−(Lk −L?) +E〉

≤ sup
V ∈CS∩SF

〈V ,−(Lk −L?)〉︸ ︷︷ ︸
I

+ sup
V ∈CS∩SF

〈V ,E〉︸ ︷︷ ︸
II

, (77)

Based on Assumption 3 and the derivation of (59), we could bound the first term I of (77) as
sup

V ∈CS∩SF
〈V ,−(Lk −L?)〉

≤ sup
V ∈CS∩SF ,U∈CL∩SF

〈V ,−U〉||Lk −L?||F

= sup
V ∈CS∩SF ,U∈CL∩SF

〈PMS
(V ) + PM⊥

S
(V ),−(PML

(U) + PM⊥
L

(U))〉||Lk −L?||F

≤
(
σ̄max(PMS

PML
)||PMS

(V )||F||PML
(U)||F + σ̄max(PMS

PM⊥
L

)||PMS
(V )||F||PM⊥

L
(U)||F

+ σ̄max(PM⊥
S
PML

)||PM⊥
S

(V )||F||PML
(U)||F

+ σ̄max(PM⊥
S
PM⊥

L
)||PM⊥

S
(V )||F||PM⊥

L
(U)||F

)
||Lk −L?||F

≤ 1

8

(
||PMS

(V )||F||PML
(U)||F + ||PMS

(V )||F||PM⊥
L

(U)||F

+ ||PM⊥
S

(V )||F||PML
(U)||F + ||PM⊥

S
(V )||F||PM⊥

L
(U)||F

)
||Lk −L?||F

=
1

8

(
||PMS

(V )||F + ||PM⊥
S

(V )||F
)(
||PML

(U)||F + ||PM⊥
L

(U)||F
)
||Lk −L?||F

≤ 1

4

√
||PMS

(V )||2F + ||PM⊥
S

(V )||2F
√
||PML

(U)||2F + ||PM⊥
L

(U)||2F||Lk −L?||F

≤ 1

4
||Lk −L?||F. (78)
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Under the robust PCA setting, the noise matrix E could be interpreted as

E =
1

n

n∑
i=1

ziz
T
i − (S? +L?) =

1

n
ZTZ − (S? +L?), (79)

where {zi} is a sequence of independent Gaussian vectors with the distribution N (0,S? + L?),
Z = [z1, · · · , zn]T is a matrix whose rows are i.i.d. Gaussian vectors and E[ 1nZ

TZ] = S? +L?.

In this way, the second term II of (77) could be bounded as the second term II of (73).

Taking the two parts of (77) into consideration, we could derive

||Sk+1 − S?||F ≤
1

4
||Lk −L?||F + C||S? +L?||

ω(CS ∩ SF ) + u√
n

, (80)

with probability at least 1− 2 exp(−u2), under the condition
√
n > ω(CS ∩ SF ) + u.

The difference between Lk+1 and L? could be derived with the same way.

From [42, Corollary 10.3.4 and Exercise 10.4.4], we could derive ω(CS ∩ SF ) ≤ C ′
√
s? log d and

ω(CL ∩ SF ) ≤ C ′′
√
r?d.

C Proof of auxiliary lemmas

C.1 Proof of Lemma 2

From the definition of projection, x̄ is the optimal solution of the following optimization problem

x̄ = argmin
x

ιK(x) +
1

2
||x− y||22, (81)

where ιK(·) is the indicator function defined as

ιK(x) =

{
0 if x ∈ K,
∞ otherwise. (82)

According to the fact that x̄ is the optimal solution, we could derive

0 ∈ ∂ιK(x̄) + x̄− y = ∂ιK(x̄) + x̄− x? + x? − y, (83)

where ∂ιK(x̄) is the subdifferential of ιK(·) at x̄.

After reformulation, we could derive

−(x̄− x? + x? − y) ∈ ∂ιK(x̄) = N(x̄;K), (84)

where N(x̄;K) is the normal cone of K at x̄. Here we adopt the fact that ∂ιK(x̄) = N(x̄;K) from
[43, Example 2.32] and the normal cone at x̄ ∈ K is defined in [43, Definition 9] as

N(x̄;K) := {v | 〈v,x− x̄〉 ≤ 0, ∀x ∈ K}. (85)

Combining with the definition of normal cone (85), we could get

〈−(x̄− x? + x? − y),x? − x̄〉 ≤ 0, (86)

where we use the fact x? ∈ K.

Then it is easy to verify that

||x̄− x?||22 ≤ 〈x̄− x
?,y − x?〉 ≤ sup

v∈C∩S2
〈v,y − x?〉||x̄− x?||2, (87)

where the second inequality is from (x̄− x?)/||x̄− x?||2 ∈ C ∩ S2.
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C.2 Proof of Lemma 3

First, we write Γ− Γ? − µ∇f(Γ) as

Γ− Γ? − µ∇f(Γ) = (I − µΣx)(Γ− Γ?). (88)

Under Assumption 2 and the choice of step size µ = 1/κmax, it is easy to verify that the matrix
I −µΣx is positive semi-definite and its largest eigenvalue is no more than 1− κmin

κmax
. Then we could

derive

||Γ− Γ? − µ∇f(Γ)||F ≤ λmax(I − µΣx)||Γ− Γ?||F ≤ (1− κmin

κmax
)||Γ− Γ?||F, (89)

where we use the fact that ||AB||F ≤ ||A||||B||F for two matricesA andB.

C.3 Proof of Lemma 4

To bound the supremum of the random process XU ,V = 〈V , (Σx− XTX
n )U〉, whereU ∈ C1 ∩ SF

and V ∈ C2 ∩ SF , we first illustrate the random process XU ,V has a mixed tail and then apply
Lemma 6.

Lemma 6. [44, Theorem 3.5] Suppose the random process (Xt)t∈T has a mixed tail

P (|Xt −Xs| > u) ≤ 2 exp
(
−min(

u2

d2(t, s)2
,

u

d1(t, s)
)
)
, (90)

then we could derive

P
(

sup
t∈T
|Xt −Xt0 | > C

(
γ2(T, d2) + γ1(T, d1) + u∆2(T ) + u2∆1(T )

))
≤ 2 exp(−u2), (91)

where ∆2(T ) (∆1(T )) is the diameter of T with respect to the semi-metric d2 (d1).

Here γα-functional is defined as [45, Section 2.3]

γα(T, d) = inf
T

sup
t∈T

∞∑
n=0

2n/αd(t, Tn),

for 0 < α <∞.

First we could rearrange the increment as

XU ,V −XW ,Z

= 〈V , (Σx −
XTX

n
)U〉 − 〈Z, (Σx −

XTX

n
)W 〉

= tr
{

(Σx −
XTX

n
)(UV T −WZT )

}
= E

[ 1

n
vec(XT )T

(
In ⊗ (UV T −WZT )

)
vec(XT )

]
− 1

n
vec(XT )T

(
In ⊗ (UV T −WZT )

)
vec(XT ). (92)

We could further rearrange UV T −WZT as

UV T −WZT = UV T −WV T +WV T −WZT = (U −W )V T +W (V −Z)T . (93)

Its Frobenius norm could be bounded as

||UV T −WZT ||2F ≤ 2||U −W ||2F + 2||V −Z||2F ≤ 2||( U
V )− ( W

Z )||2F. (94)

The following lemma illustrates the quadratic form 〈UT ,XTX〉 has a mixed tail.
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Lemma 7. Suppose vec(XT ) follows the distribution N (0,Υx). We have the tail bound

P
(
| tr(XUXT )−E tr(XUXT )| > u

)
≤ 2 exp

(
− cmin(

u2

n||Υx||2||U ||2F
,

u

||Υx||||U ||F
)
)
, (95)

where c is a constant.

For the VAR model (1), we could verify vec(XT ) ∼ N (0,Υx) and EXTX = nΣx. In this way,
the conditions of Lemma 7 are satisfied. Then we could derive

P
(
|〈V , (Σx −

XTX

n
)U〉 − 〈Z, (Σx −

XTX

n
)W 〉| > u

)
≤ 2 exp

(
− cmin(

u2

2
n ||Υx||

2||( U
V )− ( W

Z )||2F
,

u
√
2
n ||Υx||||( U

V )− ( W
Z )||F

)
)

≤ 2 exp
(
− cmin(

u2

2
nκ

2
max||( U

V )− ( W
Z )||2F

,
u

√
2
n κmax||( U

V )− ( W
Z )||F

)
)

≤ 2 exp
(
−min(

u2

2
nκ

2
maxC

2||( U
V )− ( W

Z )||2F
,

u
√
2
n κmaxC||( U

V )− ( W
Z )||F

)
)
, (96)

where the second inequality is from the condition λmax(Υx) ≤ κmax and the last inequality holds for
two positive constants c ≤ 1 and C ≥ 1.

From (96), the increment XU ,V − XW ,Z has a mixed tail with d2 =
√

2Cκmax|| · ||F/
√
n and

d1 =
√

2Cκmax|| · ||F/n.

Combined with Lemma 6, we could derive the event

sup
U∈C1∩SF
V ∈C2∩SF

|〈V , (Σx −
XTX

n
)U〉| > C ′

(
γ2(T, d2) + γ1(T, d1) + u∆2(T ) + u2∆1(T )

)
(97)

holds with probability at most 2 exp(−u2). Here T = C1 ∩ SF × C2 ∩ SF .

We adopt the following lemma to transfer the γ1-functional to the γ2-functional and deal with the
coefficients of metrics.
Lemma 8. [21, Lemma 2.7, Equation 46] For γα-functional, we have

γ1(S, || · ||2) ≤ γ22(S, || · ||2), (98)
γα(S, cd) = cγα(S, d), (99)

where α > 0, c > 0.

Combining with the Talagrand’s majorizing measure theorem [46, Theorem 2.1.1], we could bound
the γ2-functional by the Gaussian width

γ2(T, || · ||F) ≤ C ′′ω(T ) ≤ C ′′(ω(C1 ∩ SF ) + ω(C2 ∩ SF )), (100)

where the Frobenius norm for a matrix is equivalent to the l2 norm for a vector.

Then we could rearrange (97) further with Lemma 8 and (100)

sup
U∈C1∩SF
V ∈C2∩SF

|〈V , (Σx −
XTX

n
)U〉|

> C ′
(√

2CC ′′κmax
ω(C1 ∩ SF ) + ω(C2 ∩ SF )√

n
+
√

2C(C ′′)2κmax
(ω(C1 ∩ SF ) + ω(C2 ∩ SF ))2

n

+
√

2Cκmax
u√
n

∆F (T ) +
√

2Cκmax
u2

n
∆F (T )

)
(101)

holds with probability at most 2 exp(−u2), where we use the facts ∆2(T ) =
√

2Cκmax∆F (T )/
√
n

and ∆1(T ) =
√

2Cκmax∆F (T )/n.
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From the facts (ω(C1∩SF )+ω(C2∩SF ))2+u2 ≤ (ω(C1∩SF )+ω(C2∩SF )+u)2 and ∆F (T ) ≤ 4,
we could rearrange (97) when the item (ω(C1 ∩ SF ) + ω(C2 ∩ SF ) + u)/

√
n is dominant and derive

P
(

sup
U∈C1∩SF
V ∈C2∩SF

|〈V , (Σx−
XTX

n
)U〉| > C ′′′κmax

ω(C1 ∩ SF ) + ω(C2 ∩ SF ) + u√
n

)
≤ 2 exp(−u2),

(102)
when n ≥ (ω(C1 ∩ SF ) + ω(C2 ∩ SF ) + u)2.

C.4 Proof of Lemma 7

This lemma is a direct corollary of the Hanson-Wright inequality.
Lemma 9 (Hanson-Wright inequality [47]). Suppose x is a random vector with independent sub-
Gaussian components xi satisfying E[xi] = 0 and ||xi||ψ2

≤ K. A ∈ Rn×n is a fixed matrix. For
u > 0, we could get

P (|xTAx− ExTAx| > u) ≤ 2 exp
(
− cmin(− u2

K4||A||2F
,

u

K2||A||
)
)
, (103)

where c > 0 is a constant.

First, we could rearrange

tr(XUXT ) = vec(XT )T (In ⊗U)vec(XT ) = vec(XT )TΥ
− 1

2
x Υ

1
2
x (In ⊗U)Υ

1
2
x Υ

− 1
2

x vec(XT ).
(104)

In this way, Υ−
1
2

x vec(XT ) becomes an isotropic Gaussian vector. Combining the rotation invariance
of Gaussian vectors, we could derive

P
(
| tr(XUXT )− E tr(XUXT )| > u

)
= P

(
|gTΥ

1
2
x (In ⊗U)Υ

1
2
x g − EgTΥ

1
2
x (In ⊗U)Υ

1
2
x g| > u

)
≤ 2 exp

(
− cmin(

u2

||Υ
1
2
x (In ⊗U)Υ

1
2
x ||2F

,
u

||Υ
1
2
x (In ⊗U)Υ

1
2
x ||

)
)

≤ 2 exp
(
− cmin(

u2

n||Υx||2||U ||2F
,

u

||Υx||||U ||F
)
)
,

where g is a vector with independent standard Gaussian entries. Here we use ||AB||F ≤ ||A||||B||F,
||AB|| ≤ ||A||||B|| and ||A|| ≤ ||A||F for two matricesA andB.

C.5 Proof of Lemma 5

The analysis is inspired by [41, Theorem 1], which is based on the decoupling theory in [48]. First
we introduce two related definitions.
Definition 2 ({Fi}-tangent sequence). [48, Definition 2.1] Let {di} be a sequence of random
variables adapted to an increasing sequence of σ-fields {Fi} and assume F0 is the trivial σ-field.
Then a sequence {ei} adapted to {Fi} is {Fi}-tangent to {di} if for all i

p(di|Fi−1) = p(ei|Fi−1). (105)

Definition 3 (Decoupled sequence). [48, Definition 2.2] A sequence {ei} of random variables
adapted to an increasing sequence of σ-fields {Fi} contained in F is said to satisfy condition CI if
there exists a σ-algebra G contained in F such that {ei} is a sequence of conditionally independent
random variables given G and

p(di|Fi−1) = p(ei|Fi−1) = p(ei|G)

for all i. Then the sequence {ei} is said to be decoupled.

The following lemma guarantees the existence of the decoupled sequence.
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Lemma 10. [48] For any sequence {di} adapted to an increasing sequence of σ-fields {Fi}, there
alway exists a sequence {ei}, which is {Fi}-tangent to {di} and satisfies the CI condition.

The following lemma is an important tool to analyze the exponential inequalities for martingales.

Lemma 11. [48, Corollary 3.1] Let {di}, {ei} be {Fi}-tangent. Suppose {ei} is decoupled. Let
g ≥ 0 be any random variable measurable respect to σ({di}∞i=1). Then for any finite t,

E[g exp(t

n∑
i=1

di)] ≤

√√√√E[g2 exp(2t

n∑
i=1

ei)]. (106)

The core of the proof is to illustrate the increment 〈V −Z,XTE〉 has a mixed tail.

First, we could rearrange 〈V −Z,XTE〉 as

〈V −Z,XTE〉 =

n∑
t=1

eTt (V −Z)Txt−1 =

n∑
t=1

mt, (107)

where the term of the martingale difference sequence {mt} is defined as mt = eTt (V −Z)Txt−1.

Furthermt could be viewed as a zero-mean Gaussian variable with the variance ||Σ
1
2
e (V −Z)Txt−1||22

conditioned on Ft−1 = σ({e0, · · · , et−1}), where we set e0 = x0 for we consider the stationary
data {xt}nt=0. We could rewrite the moment generating function (MGF) of 〈V −Z,XTE〉 as

E[exp(λ

n∑
t=1

eTt (V −Z)Txt−1)]

= E[exp(λ

n∑
t=1

mt)]

≤

√√√√E exp(2λ

n∑
t=1

m′t)

≤

√√√√E[exp(2λ2
n∑
t=1

||Σ
1
2
e (V −Z)Txt−1||22)]

=

√
E
[

exp
(

2λ2vec(XT )T (In ⊗ (V −Z)Σe(V −Z)T )vec(XT )
)]

=

√
E
[

exp
(

2λ2gTΥ
1
2
x (In ⊗ (V −Z)Σe(V −Z)T )Υ

1
2
x g
)]
, (108)

where the first inequality follows Lemma 11 by noting {m′t} is the decoupled sequence tangent to

{mt} satisfying m′t ∼ N (0, ||Σ
1
2
e (V − Z)Txt−1||22) conditioned on Ft−1 = σ({e0, · · · , et−1}).

The second inequality is from the fact that {m′t} is conditionally independent given G whose existence
is guaranteed by Lemma 10 and the property of sub-Gaussian variables [49, Definition 2.2]. The
last equality uses the rotation invariance of Gaussian vectors for vec(XT ) ∼ N (0,Υx) where
Υx = E[vec(XT )vec(XT )T ] and g is a standard Gaussian vector.

We could rearrange the component of (108) further

E
[

exp
(

2λ2gTΥ
1
2
x (In ⊗ (V −Z)Σe(V −Z)T )Υ

1
2
x g
)]

= E[exp(2λ2gTQTQg)]

= E[exp(2λ2gTVQΣ
2
QV

T
Q g)]

= E[exp(2λ2zTΣ2
Qz)]

= E[exp(2λ2
nd∑
i=1

s2i z
2
i )], (109)
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where UQΣQV
T
Q is the singular value decomposition ofQ = (In ⊗Σ

1
2
e (V −Z)T )Υ

1
2
x , {si} are

the singular values ofQ and {zi} are the entries of z = V T
Q g. Here z is a standard Gaussian vector

from the rotation variance of Gaussian vectors and the fact VQ is an unitary matrix.

From the fact that {zi} are independent standard Gaussian variables, we could bound (109) as

E[exp(2λ2
nd∑
i=1

s2i z
2
i )] ≤ exp(C2λ2

nd∑
i=1

s2i ) ≤ exp(C2λ2||Q||2F), (110)

for λ ≤ 1
C||Q|| where C is a positive constant. Here the first inequality uses the property of sub-

Gaussian variables [42, Proposition 2.5.2] and the second inequality is from the definition of ||Q||F.

Combining (108), (109) and (110), we could bound the MGF of 〈V −Z,XTE〉 as

E
[

exp
(
λ

n∑
t=1

eTt (V −Z)Txt−1

)]
≤

√√√√E exp(2λ

n∑
t=1

m′t)

≤

√√√√E[exp(2λ2
nd∑
i=1

s2i z
2
i )]

≤ exp(
1

2
C2λ2||Q||2F), (111)

for λ ≤ 1
C||Q|| .

After bounding the MGF, we could derive the tail bound

P
(
〈V −Z,XTE〉 > u

)
≤

E
[

exp
(
λ〈V −Z,XTE〉

)]
exp(λu)

≤ exp
(
−min(

u2

2C2||Q||2F
,

u

2C||Q||
)
)

≤ exp
(
−min(

u2

2C2n||Υx||||Σe||||V −Z||2F
,

u

2C||Υx||
1
2 ||Σe||

1
2 ||V −Z||F

)
)
, (112)

where the second inequality is from (111) and the choice of λ to minimize the quadratic function. The
third inequality holds by noting ||Q||2F ≤ n||Υx||||Σe||||V −Z||2F and ||Q|| ≤ ||Υx||

1
2 ||Σe||

1
2 ||V −Z||F,

where we use the facts ||AB||F ≤ ||A||||B||F, ||AB|| ≤ ||A||||B|| and ||A|| ≤ ||A||F for two matrices
A andB.

By considering the coefficient 1/n, we could rearrange (112) as

P
( 1

n
〈V −Z,XTE〉 > u

)
≤ exp

(
−min(

u2

2C2 1
n ||Υx||||Σe||||V −Z||2F

,
u

2C 1
n ||Υx||

1
2 ||Σe||

1
2 ||V −Z||F

)
)

≤ exp
(
−min(

u2

2C2 1
nκmax||Σe||||V −Z||2F

,
u

2C 1
nκ

1
2
max||Σe||

1
2 ||V −Z||F

)
)
, (113)

where the second inequality is due to Assumption 2.

The other direction of the tail bound follows the same procedure.

In this way, we illustrate the increment 1
n 〈V − Z,X

TE〉 has a mixed tail with d2(·) =
√

2C
√
κmax||Σe||

1
2 || · ||F/

√
n and d1(·) = 2C

√
κmax||Σe||

1
2 || · ||F/n. Following the procedure
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in the proof of Lemma 4 to deal with γ2-functional and γ1-functional, we could rearrange the
following formula under the condition of n > (ω(C ∩ SF ) + u)2

γ2(T, d2) + γ1(T, d1) + u∆2(T ) + u2∆1(T )

≤
√

2CC ′
√
κmax||Σe||

1
2

√
n

ω(C ∩ SF ) +
2C(C ′)2

√
κmax||Σe||

1
2

n
ω(C ∩ SF )2

+ 2

√
2C
√
κmax||Σe||

1
2

√
n

u+
4C
√
κmax||Σe||

1
2

n
u2

≤ C ′′
√
κmax||Σe||

1
2 (
ω(C ∩ SF ) + u√

n
+
ω(C ∩ SF )2 + u2

n
)

≤ C ′′
√
κmax||Σe||

1
2 (
ω(C ∩ SF ) + u√

n
+

(ω(C ∩ SF ) + u)2

n
)

≤ 2C ′′
√
κmax||Σe||

1
2
ω(C ∩ SF ) + u√

n
, (114)

where the last inequality is from the condition of n > (ω(C ∩ SF ) + u)2.

Combining with Lemma 6, we could derive

P
(

sup
V ∈C∩SF

| 1
n
〈V ,XTE〉| > C ′′′

√
κmax||Σe||

1
2
ω(C ∩ SF ) + u√

n

)
≤ 2 exp(−u2), (115)

under the condition of n > (ω(C ∩ SF ) + u)2.

D Additional numerical results

D.1 Background modeling

We evaluate the result in Corollary 2 through the background modeling problem in [50]. The
background modeling problem aims to reconstruct the static background through a sequence of video
frames with moving objects in the foreground. By vectoring and stacking the frames as columns
of the observed matrix Y , the static background is modeled as a low-rank component L? and the
foreground is viewed as a dynamic and sparse perturbation S?. In this way, the background modeling
problem could be viewed as the robust PCA problem considered in Corollary 2 without noise. We
use the first 1600 frames of the Highway dataset in [50] at a resolution of 320× 240. By dividing the
video into parts with 200 frames, we select the constraint parameters in (29) through cross validation
and then solve the problem by AltPGD (Algorithm 2). Figure 5(a) and 5(b) show one original frame
and its extracted background from the video frames.

(a) Original input frame (b) Low-rank frame

Figure 5: Background modeling in the Highway video.
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Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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