
A Author Contributions

IB, BZ: led the research, designed and ran the scaling experiments, designed and experimented with
the training strategies. JS, TL, EC, AS, WF, XD: advised the research, proposed experiments and
helped with the writing. AS, IB, BZ: ran preliminary experiments using label smoothing, longer
training and RandAugment. IB: demonstrated ResNets outperforming EfficientNets across all scales,
designed the scaling strategies and the Pareto curve of models, designed/ran (semi-)supervised
learning experiments. BZ: ran the regularization studies. WF, BZ, IB: did a majority of the writing.
BZ, EC: analyzed scaling experiments and generated the scaling plots. XD: proposed, designed
and ran the 3D video classification experiments, lead the open-sourcing. AS: proposed lowering
the weight decay for better performance and ran preliminary experiments comparing SimCLR to
supervised learning. TL: designed and ran the transfer learning experiments comparing to self-
supervised learning.

B Discussion
Why is it important to tease apart improvements coming from training methods vs architec-
tures? Training methods can be more task-specific than architectures (e.g. data augmentation is
more helpful on small datasets). Therefore, improvements coming from training methods do not
necessarily generalize as well as architectural improvements. Packaging newly proposed architectures
together with training improvements makes accurate comparisons between architectures difficult. The
large improvements coming from training strategies, when not being controlled for, can overshadow
architectural differences.

How should one compare different architectures? Since training methods and scale typically
improve performance [31, 25], it is critical to control for both aspects when comparing different
architectures. Controlling for scale can be achieved through different metrics. While many works
report parameters and FLOPs, we argue that latencies and memory consumption are generally more
relevant [39]. Our experimental results (Section 7.1) re-emphasize that FLOPs and parameters are
not representative of latency or memory consumption [39, 36].

Do the improved training strategies transfer across tasks? The answer depends on the domain
and dataset sizes available. Many of the training and regularization methods studied here are not
used in large-scale pre-training (e.g. 300M images) [27, 8]. Data augmentation is useful for small
datasets or when training for many epochs, but the specifics of the augmentation method can be
task-dependent (e.g. scale jittering instead of RandAugment in Table 5).

Do the scaling strategies transfer across tasks? The best performing scaling strategy depends
on the training regime and whether overfitting is an issue, as discussed in Section 6. When training
for 350 epochs on ImageNet, we find scaling the depth to work well, whereas scaling the width is
preferable when training for few epochs (e.g. 10 epochs). This is consistent with works employing
width scaling when training for few epochs on large-scale datasets [27]. We are unsure how our
scaling strategies apply in tasks that require larger image resolutions (e.g. detection and segmentation)
and leave this to future work.

Are architectural changes useful? Yes, but training methods and scaling strategies can have even
larger impacts. Simplicity often wins, especially given the non-trivial performance issues arising
on custom hardware. Architecture changes that decrease speed and increase complexity may be
surpassed by scaling up faster and simpler architectures that are optimized on available hardware (e.g
convolutions instead of depthwise convolutions for GPUs/TPUs). We envision that future successful
architectures will emerge by co-design with hardware, particularly in resource-tight regimes like
mobile phones [18].

How should one allocate a computational budget to produce the best vision models? We rec-
ommend beginning with a simple architecture that is efficient on available hardware (e.g. ResNets on
GPU/TPU) and training several models, to convergence, with different image resolutions, widths and
depths to construct a Pareto curve. Note that this strategy is distinct from [55] which instead allocate
a large portion of the compute budget for identifying an optimal initial architecture to scale. They
then do a small grid search to find the compound scaling coefficients used across all model scales.
RegNet [39] does most of their studies when training for only 10 epochs.

15



C Additional Experimental Results

Scaling Strategies Improve EfficientNet. We apply the slow image resolution scaling strategy
(Strategy #2) to EfficientNets and train several versions with reduced image resolutions, without
changingthe width or depth. Figure 5 demonstrates a marked improvement of the re-scaled Efficient-
Nets (EfficientNet-RS) on the speed-accuracy Pareto curve over the original EfficientNets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time Per Training Step (Sec)

79

80

81

82

83

84
To

p-
1 

Im
ag

eN
et

 A
cc

ur
ac

y

101-192

152-192

152-224
152-256

200-256

270-256

B1

B2

B3

B4

B4-192

B4-224

B4-256

B5-256
B5-288

B6-256
B6-288

B6-320

Speed-Accuracy Pareto Curve

ResNet-RS
EfficientNet
EfficientNets-RS

Figure 5: Speed-Accuracy Pareto curve comparing ResNets-RS and EfficientNet-RS to EfficientNet.
Scaling EfficientNets using the slow image resolution scaling strategy (instead of the original compound scaling
rule) improves the Pareto efficiency of EfficientNets. Note that ResNet-RS still outperforms EfficientNet-
RS. This figure is a zoomed in version of Figure 4 with EfficientNet-RS added. Models are annotated with
(model depth - image resolution), so 152-192 corresponds to ResNet-RS-152 with image resolution 192×192.
EfficientNet hyperparameters: The RandAugment magnitude is set to 10 for image resolution 224 or smaller,
20 for image resolution larger than 320 and 15 otherwise. All other hyperparameters are kept the same as per the
original EfficientNets.

ImageNet test set results. We present top-1 accuracies on the ImageNet test-set for two
ResNet-RS models in Table 6. We observe no sign of overfitting.

Model Image Resolution top-1 Val top-1 Test

ResNet-RS-152 224 82.8 82.7
ResNet-RS-270 256 83.8 83.7

Table 6: ImageNet accuracies on the validation and test splits.

D ResNet-RS Training and Regularization Methods

Our training methods aim to closely match that of EfficientNet [55], but with a few small differences
listed below. (1) We use the cosine learning rate schedule [34] instead of an exponential decay for
simplicity (no additional hyperparameters). (2) We use RandAugment [7] in all models, whereas
EfficientNets were originally trained with AutoAugment [6]. We reran EfficientNets B0-B4 with
RandAugment and found it offered no performance improvement and report EfficientNet B5 and B7
with the RandAugment results from [7]5. (3) We use the Momentum optimizer instead of RMSProp
for simplicity. See Table D for a comparison between our training setup and EfficientNet.

5This makes our comparison to EfficientNet-B6 more nuanced as the B6 performance most likely could be
improved by 0.1-0.3% top-1 if ran with RandAugment (based on improvements obtained from B5 and B7).

16



ResNet (2015) ResNet-RS (2021) EfficientNets (2019)
Epochs Trained 90 350 350

LR Decay Schedule Stepwise Cosine Exponential Decay
Optimizer Momentum Momentum RMSProp

EMA of Weights X X
Label Smoothing X X
Stochastic Depth X X
RandAugment X X
Dropout on FC X X

Smaller Weight Decay X X
Squeeze-Excitation X X
Stem Modifications X X

Table 7: Comparing training method between ResNet, ResNet-RS and EfficientNet. ResNet (2015) refers
to the ResNet originally trained in [13].

Hyperparameters Table 8 presents the training and regularization hyperparameters used for train-
ing ResNet-RS models. We increase regularization as with model scale. Note that we have less hyper-
parameter setups compared to EfficientNets [55]. We perform early stopping on the minival-set
set for the two largest models from Table 2 (ResNet-RS-350 at resolution 320 and ResNet-RS-420 at
resolution 320).

Model Depth Image Resolution RandAugment Stochastic Depth Dropout
Magnitude Rate Rate

ResNet-RS 50 160 × 160 10 0.0 0.25

ResNet-RS 101 160 × 160 10 0.0 0.25

ResNet-RS 101 192 × 192 15 0.0 0.25
ResNet-RS 152 192 × 192 15 0.0 0.25
ResNet-RS 152 224 × 224 15 0.0 0.25

ResNet-RS 152 256 × 256 15 0.0 0.25

ResNet-RS 200 256 × 256 15 0.1 0.25
ResNet-RS 270 256 × 256 15 0.1 0.25

ResNet-RS 350 256 × 256 15 0.1 0.25

ResNet-RS 350 320 × 320 15 0.1 0.4
ResNet-RS 420 320 × 320 15 0.1 0.4

Table 8: Hyperparameters for all ResNet-RS models. All models train for 350 epochs, use a weight decay of
4e-5, an EMA value of 0.9999 (for both weights and Batch Norm moving averages), 2 layers of RandAugment
(with different magnitudes as shown above) and a label smoothing rate of 0.1. The learning rate is warmed up to
a maximum value of 0.1/B, with B the batch size, and decayed to 0 using a cosine schedule [34]. Dropout rate
means each activation after the global average pooling layers gets dropped out with probability dropout rate.

E ResNet-RS Architecture Details

We provide more details of the ResNet-RS architectural changes. We reiterate that ResNet-RS is
a combination of: improved scaling strategies, improved training methodologies, the ResNet-D
modifications [15] and the Squeeze-Excitation module [21].

ResNet-D [15] combines the following four adjustments to the original ResNet architecture. First,
the 7×7 convolution in the stem is replaced by three smaller 3×3 convolutions, as first proposed in
Inception-V3 [53]. Second, the stride sizes are switched for the first two convolutions in the residual
path of the downsampling blocks. Third, the stride-2 1×1 convolution in the skip connection path of
the downsampling blocks is replaced by stride-2 2×2 average pooling and then a non-strided 1×1
convolution. Fourth, the stride-2 3×3 max pool layer is removed and the downsampling occurs in the
first 3×3 convolution in the next bottleneck block. We diagram these modifications in Figure 6.

17



Squeeze-and-Excitation [21] reweighs channels via cross-channel interactions by average pooling
signals from the entire feature map. For all experiments we use a Squeeze-and-Excitation ratio of
0.25 based on preliminary experiments.

Table 9 shows the block layouts for all ResNet depths used throughout our work. ResNet-50 through
ResNet-200 use the standard block configurations from [13]. ResNet-270 and onward primarily scale
the number of blocks in c3 and c4 and we try to keep their ratio roughly constant. We empirically
found that adding blocks in the lower stages limits overfitting as blocks in the lower layers have
significantly less parameters, even though all blocks have the same amount of FLOPs. Figure 6 shows
the ResNet-D architectural changes used in our ResNet-RS models.

Model Depth Block Configuration
ResNet 50 [3-4-6-3]
ResNet 101 [3-4-23-3]
ResNet 152 [3-8-36-3]
ResNet 200 [3-24-36-3]
ResNet 270 [4-29-53-4]
ResNet 350 [4-36-72-4]
ResNet 420 [4-44-87-4]

Table 9: Block configurations for all ResNet depths used in the ResNet-RS Pareto Curve.
ResNets of depths 50, 101, 152 and 200 use the standard block allocations from [13]. The dif-
ferent numbers represent the number of blocks in c2, c3, c4 and c5 respectively. Note that our
depth scaling mainly scales the blocks in c3 and c4, which limits overfitting (due to the increase in
parameters) that can occur when blocks are added to c5.

1x1, 64

3x3, 64

1x1, 256
c2

1x1, 128

3x3, 128

1x1, 512
c3

1x1, 256

3x3, 256

1x1, 1024
c4

1x1, 512

3x3, 512

1x1, 2048
c5

Block
Group

x3

x4

x23

x3

Convolution
Layout

3x3, 64, s2

3x3, 64stem x1
3x3, 64

Output
Size

Avg Pool

1000-d FC

x1

112x112

56x56

14x14

28x28

7x7

1x1 Dropout

Figure 6: ResNet-RS Architecture Diagram. Output Size assumes a 224×224 input image resolu-
tion. In the convolutional layout column x2 refers to the the first 3× 3 convolution being applied
with a stride of 2. The ResNet-RS architecture is a simple combination of Squeeze-and-Excitation
and ResNet-D. The × symbol refers to how many times the blocks are repeated in the ResNet-101
architecture. These values change across depths according to the blocks layouts in Table 9.

F Scaling Analysis Regularization and Model Details

Regularization for 10 and 100 epochs. We did not use RandAugment, Dropout, Stochastic Depth
or Label Smoothing. Flips and crops were used and a weight decay of 4e-5.

18



Filter Scaling Dropout Rate
0.25 0.0
0.5 0.1
1.0 0.25
1.5 0.6
2.0 0.75

Table 10: Dropout values for filter scaling. Filter scaling refers to the filter scaling multiplier based
on the number of filters in the original ResNet architecture.

Regularization for 350 epoch models. The dropout rates used for various filter multipliers (across
all image resolutions and depths) are in Table 10. RandAugment is used with 2 layers and its
magnitude is set to 10 for filter multipliers in [0.25, 0.5] or image resolution in [64, 160], 15 for image
resolution in [224, 320] and 20 otherwise. We apply stochastic depth with a drop rate of 0.2 for image
resolutions 224 and above. We do not apply stochastic depth filter multiplier 0.25 (or images smaller
than 224). All models use a label smoothing of 0.1 and a weight decay of 4e-5. These values were set
based on the preliminary experiments across various model scales on the ImageNet minival-set.

Block allocation for ResNet-300 and ResNet-400. For ResNet 101 and ResNet-200 we use the
block allocations decribed in Table 9. For ResNet-300, our block allocation is [4-36-54-4] and
ResNet-400 is [6-48-72-6].

G Fine-Tuning Protocols for Transfer Learning

For fine-tuning we initialize the parameters in the ResNet backbone with a pre-trained model and
randomly initialize the rest of the layers. We perform end-to-end fine-tuning with an extensive
grid search of the combinations of learning rate and training steps to ensure each pre-trained model
achieves its best fine-tuning performance. We experiment with different weight decays but do not
find it making a big difference and set it to 1e-4. All models are trained with cosine learning rate
for simplicity. Below we describe the dataset, evaluation metric, model architecture, and training
parameters for each task.

CIFAR-100: We use standard CIFAR-100 train and test sets and report the top-1 accuracy. We
resize the image resolution to 256× 256. We replace the classification head in the pre-trained model
with a randomly initialized linear layer that predicts 101 classes, including background. We use a
batch size of 512 and search the combination of training steps from 5000 to 20000 and learning rates
from 0.005 to 0.32. We find the best learning rate for SimCLR (0.16) is much higher than SimCLRv2
(0.01) and the supervised model (0.005). This trend holds for the following tasks.

PASCAL Segmentation: We use PASCAL VOC 2012 train and validation sets and report the
mIoU metric. The training images are resampled into 512× 512 with scale jittering [0.5, 2.0] (i.e.
randomly resample image between 256× 256 to 1024× 1024 and crop it to 512× 512). We remove
the classification head and add randomly initialized FPN [33] layers. We follow the practice in [66]
to combine P3 to P7 and upsample it to P2. The segmentation head consists of 3 convolution layers
after P2 layer and a linear layer to predict 21 categories including background at each pixel location.
We use a batch size of 64 and search the combination of training steps from 5000 to 20000 and
learning rates from 0.005 to 0.32.

PASCAL Detection: We use PASCAL VOC 2007+2012 trainval set and VOC 2007 test set and
report the AP50 with 11 recall points to compute average precision. The training images are resampled
into 896 with scale jittering [0.5, 2.0]. We remove the classification head and add randomly initialized
FPN [33] layers from P3 to P7. We use Faster R-CNN [42] consisting a region proposal head and
a 4conv1fc Fast R-CNN head. We use a batch size of 32 and search the combination of training
steps from 5000 to 20000 and learning rates from 0.005 to 0.32.

NYU Depth: We use NYU depth v2 dataset with 47584 train and 654 validation images. We report
the percentage of predicted depth values within 1.25 relative ratio compared to the ground truth.
The training images are resampled into 640 with scale jittering [0.5, 2.0]. The model architecture is

19



identical to segmentation model, except the last linear layer predicts a single depth value per pixel.
We use a batch size of 64 and search the combination of training steps from 10000 to 40000 and
learning rates from 0.005 to 0.32.

H Video Classification Experimental Details

The baseline 3D ResNet-50 was trained for 200 epochs with a cosine learning rate decay. The
reported accuracies are averaged over 2 runs.

We follow the training and inference protocols in [38, 10]. We train with a random 224×224 crop or
its horizontal flip on the spatial domain and sample a 32-frame clip with temporal stride 2. We use
a 1024 batch size, 0.8 learning rate with cosine decay and train for 200 epochs for the baseline. At
inference, we use 256×256 crop size for the spatial domain and adopt the 30 views protocol [10].

Starting from the baseline, we apply the following training methods: dropout with a rate of 0.5, 0.1
label smoothing, stochastic depth with 0.2 drop rate, EMA of weights, smaller weight decay (set
to 4e-5) and a 350 epoch training schedule. For data augmentation, we use scale jittering [38] as a
replacement to RandAugment. We adjust the stochastic depth rate to 0.1 when applying scale jittering
to optimize performance. To implement the ResNet-D stem for the 3D ResNet, we use the same
kernel configurations for the spatial domain and use temporal kernel sizes of [5, 1, 1] for the three
layers.

I Profiling Setup

All latencies refer to training latencies. All models were run on TPUv3 [24] with bfloat16
precision in TensorFlow 1.x. TPU latencies are measured on 8 TPUv3 cores with a batch size of
1024 (i.e. 128 per core) which is divided by 2 until it fits onto the accelerator’s memory. In the cases
where a smaller batch size is employed, we normalize the reported latency to the original batch size
of 1024 images. For GPU profiling we use a single Tesla-V100 with float32 precision with a
starting batch size of 128, also divided by multiples of 2 if necessary.

20


