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ABSTRACT

Deep Multi-agent Reinforcement Learning (MARL) is often confronted with large
state and action spaces, necessitating the utilization of neural networks with exten-
sive parameters and incurring substantial computational overhead. Consequently,
there arises a pronounced need for methods that expedite training and enable
model compression in MARL. Nevertheless, existing training acceleration tech-
niques are primarily tailored for single-agent scenarios, as the task of compress-
ing MARL agents within sparse models presents unique and intricate challenges.
In this paper, we introduce an innovative Multi-Agent Sparse Training (MAST)
framework. MAST capitalizes on gradient-based topology evolution to exclu-
sively train multiple MARL agents using sparse networks. This is then combined
with a novel hybrid TD-(λ) schema, coupled with the Soft Mellowmax Operator,
to establish dependable learning targets, particularly in sparse scenarios. Addi-
tionally, we employ a dual replay buffer mechanism to enhance policy stability
within sparse networks. Remarkably, our comprehensive experimental investiga-
tion on the SMAC benchmarks, for the first time, that deep multi-agent Q learning
algorithms manifest significant redundancy in terms of Floating Point Operations
(FLOPs). This redundancy translates into up to 20-fold reduction in FLOPs for
both training and inference, accompanied by a commensurate level of model com-
pression, all achieved with less than 3% performance degradation.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) (Shoham & Leyton-Brown, 2008), combined with
deep neural networks, has not only revolutionized the field of artificial intelligence but also demon-
strated remarkable success across a diverse spectrum of critical applications. From conquering
multi-agent video games like Quake III Arena (Jaderberg et al., 2019), StarCraft II (Mathieu et al.,
2021), Dota 2 (Berner et al., 2019), and Hide and Seek (Baker et al., 2019) to guiding autonomous
robots through intricate real-world environments (Shalev-Shwartz et al., 2016; Da Silva et al., 2017;
Chen et al., 2020b), deep MARL has established itself as an indispensable and versatile tool for
addressing complex, multifaceted challenges. Its unique ability to capture intricate interactions and
dependencies among multiple agents has generated novel insights and solutions, solidifying its role
as a transformative paradigm across various domains (Zhang et al., 2021; Albrecht et al., 2023).

Nonetheless, the extraordinary success of deep MARL comes at a substantial computational cost.
Training these agents involves the intricate task of adapting neural networks to accommodate an
expanded parameter space, especially when the number of agents involved is substantial. For ex-
ample, the training regimen for AlphaStar (Mathieu et al., 2021), designed for StarCraft II, which
spanned an arduous 14-day period, utilizing 16 TPUs per agent. The OpenAI Five (Berner et al.,
2019) model for Dota 2 underwent a marathon training cycle, spanning 180 days and tapping into
thousands of GPUs. This exponential growth in computational demands as the number of agents
increases presents a formidable challenge when deploying MARL in practical problems. The joint
action and state spaces swell exponentially, imposing a steep demand on computational resources.

Researchers have explored dynamic sparse training (DST) like SET (Mocanu et al., 2018) and RigL
(Evci et al., 2020) to address computational challenges. While initial attempts at sparse single-agent
deep reinforcement learning (DRL) training have been made in (Sokar et al., 2022; Graesser et al.,
2022), DST methods have struggled to achieve consistent model compression across diverse envi-
ronments. RLx2 (Tan et al., 2022) enables sparse neural network training for DRL but is ineffective
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for multi-agent RL (MARL). In a motivating experiment, we tested various sparse training methods
on the 3s5z tasks from SMAC (Samvelyan et al., 2019) using a neural network with only 10% of
its original parameters, as shown in Figure 1. Classical DST methods, including SET and RigL, as
well as RLx2 for single-agent RL, perform poorly in MARL scenarios, not to mention static sparse
networks (SS). In contrast, our MAST framework achieves over 90% win rate. The sole prior effort
to train sparse MARL agents, as in (Yang et al., 2022), prunes agent networks during training with
weight grouping (Wang et al., 2019). However, this approach fails to maintain sparsity throughout
training, reaching only about 80% sparsity. Moreover, their experimental evaluation is confined to a
two-user environment, PredatorPrey-v2, in MuJoCo (Todorov et al., 2012).
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Figure 1: Comprison of dif-
ferent sparse traning methods.

These observations underscore the fact that, despite their promise,
the application of sparse networks in the context of MARL re-
mains largely uncharted territory. The existing state-of-the-art DST
technique, RLx2 (Tan et al., 2022), while effective in single-agent
scenarios, demonstrates limitations when confronted with the chal-
lenges posed by MARL. MARL introduces unique complexities, in-
cluding larger system spaces, the non-stationarity inherent in multi-
agent training, and the partially observable nature of each agent.
Consequently, a critical and intriguing question emerges: Can we
train MARL agents using sparse networks throughout?

We give an affirmative answer to the question by presenting a novel sparse training framework,
MAST, tailored explicitly for value decomposition methods in MARL. It leverages gradient-based
topology evolution, offering a powerful tool for the efficient exploration of network configurations in
sparse models. Notably, our investigation has unveiled the formidable challenges faced by MARL
algorithms in the realm of ultra-sparse models, i.e., inaccurate learning targets and training insta-
bility. To surmount these challenges, MAST introduces innovative solutions. We present a novel
hybrid TD(λ) target mechanism, coupled with the Soft Mellowmax operator, which facilitates pre-
cise value estimation even in the face of extreme sparsity. Additionally, MAST unveils a dual buffer
mechanism designed to bolster training stability in sparse environments. As a result, MAST empow-
ers the training of highly efficient MARL agents with minimal performance compromise, employing
ultra-sparse networks throughout the training process. Our extensive experiments, conducted across
several popular MARL algorithms, validate MAST’s position at the forefront of sparse training.
These experiments reveal MAST’s ability to achieve model compression ratios ranging from 5× to
20×, all while incurring minimal performance trade-offs, typically under 3%. Moreover, MAST
boasts the impressive capability to reduce FLOPs required for both training and inference by up
to an astounding 20×, showing a large margin over other baselines including SET (Mocanu et al.,
2018), RigL (Evci et al., 2020) and RLx2 (Tan et al., 2022).

2 RELATED WORK

Sparse networks, initially proposed in deep supervised learning, can train a 90%-sparse network
without performance degradation from scratch. However, for deep reinforcement learning, the learn-
ing target is not fixed but evolves in a bootstrap way (Tesauro et al., 1995), and the distribution of the
training data can also be non-stationary (Desai et al., 2019), which makes the sparse training more
difficult. We list some representative works for training sparse models from supervised learning to
reinforcement learning. A more comprehensive illustration can be found in Appendix A.1.
Sparse Models in Supervised Learning Various techniques have been explored for creating
sparse networks, ranging from pruning pre-trained dense networks (Han et al., 2015; 2016; Srinivas
et al., 2017), to employing derivatives (Dong et al., 2017; Molchanov et al., 2019). Another avenue
of research revolves around the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019), which
posits the feasibility of training sparse networks from scratch, provided a sparse “winning ticket”
initialization is identified. Additionally, there is a body of work dedicated to training sparse neural
networks from the outset, involving techniques that evolve the structures of sparse networks during
training. Examples include SET (Mocanu et al., 2018) and RigL (Evci et al., 2020).
Sparse Models in Single-Agent RL Existing research (Schmitt et al., 2018; Zhang et al., 2019)
has employed knowledge distillation with static data to ensure training stability and generate small
dense agents. Policy Pruning and Shrinking (PoPs) (Livne & Cohen, 2020) generates sparse agents
through iterative policy pruning. Another line of investigation aims to train sparse DRL models from
scratch, eliminating the necessity of pre-training a dense teacher. (Sokar et al., 2022; Graesser et al.,

2



Under review as a conference paper at ICLR 2024

2022) utilize the DST in single-agent RL, achieving a 50% − 80% sparsity level. More recently,
RLx2 (Tan et al., 2022) has demonstrated the capacity to train DRL agents with highly sparse neural
networks from scratch, yet RLx2 performs poorly in MARL as demonstrated in Section 5.1.
Sparse Models in MARL The existing endeavour has made attempts to train sparse MARL
agents, such as (Yang et al., 2022), which prunes networks for multiple agents during training.
Another avenue of research seeks to enhance the scalability of MARL through sparse architectural
modifications. For instance, (Sun et al., 2020) uses a sparse communication graph with graph neural
networks to reduce problem scale, and (Kim & Sung, 2023) adopts structured pruning for a deep
neural network to extend the scalability. Others focus on parameter sharing between agents to reduce
the number of trainable parameters, with representative works including (Li et al., 2021; Christianos
et al., 2021). Yet existing methods fail to maintain high sparsity throughout the training process.

3 DEEP MULTI-AGENT REINFORCEMENT LEARNING PRELIMINARIES
We model the MARL problem as a decentralized partially observable Markov decision process
(Oliehoek et al., 2016), represented by a tuple ⟨N ,S,U , P, r,Z, O, γ⟩, with detailed specification
in Appendix A.2. Deep Multi-Agent Q-learning extends the deep Q learning method (Mnih et al.,
2013) to multi-agent scenarios (Sunehag et al., 2018; Rashid et al., 2020b; Son et al., 2019). Each
agent encounters partial observability, and the agent-wise Q function is defined over its history τi
as Qi for agent i. Subsequently, the joint action-value function Qtot(τ ,u) operates over the joint
action-observation history τ and joint action u. The objective, given transitions (τ ,u, r, τ ′) sam-
pled from the experience replay buffer B, is to minimize the mean squared error loss L(θ) on the
temporal-difference (TD) error δ = y−Qtot(τ ,u). Here, the TD target y = r+γmaxu′ Q̄tot(τ

′,u′),
where Q̄tot is the target network for the joint action Q-function, periodically copied from Qtot. Pa-
rameters of Qtot are updated using θ′ = θ − α∇θL(θ), with α representing the learning rate.
CTDE We focus on algorithms that adhere to the Centralized Training with Decentralized Execu-
tion (CTDE) paradigm (Oliehoek et al., 2008; Kraemer & Banerjee, 2016). Within this paradigm,
agents undergo centralized training, where they have access to the complete action-observation his-
tory and global state information. However, during execution, they are constrained to their individual
local action-observation histories. To efficiently implement CTDE, the Individual-Global-Maximum
(IGM) property (Son et al., 2019), defined in Eq. (1), serves as a key mechanism.

argmax
u

Qtot(s,u) =
(
argmax

u1

Q1 (s, u1) , · · · , argmax
uN

QN (s, uN )
)
. (1)

Many deep MARL algorithms adhere to the IGM criterion, such as the QMIX series algorithms
(Rashid et al., 2020b;a). These algorithms employ a mixing network fs with non-negative weights,
enabling the joint Q-function to be expressed as Qtot(s,u) = fs (Q1 (s, u1) , · · · , QN (s, uN )).

4 BOOSTING THE PERFORMANCE OF SPARSE MARL AGENTS

This section outlines the pivotal components of the MAST framework. Initially, MAST relies on
the gradient-based topology evolution for finding proper sparse network topology. However, as de-
picted in Figure 1, training ultra-sparse MARL models using topology evolution presents substantial
challenges. Consequently, MAST introduces innovative solutions to address the accuracy of value
learning in ultra-sparse models by concurrently refining training data targets and distributions.

4.1 TOPOLOGY EVOLUTION
Drop Grow

Topology Evolution

Initialization

Sparse
Training

Figure 2: Network topology evolution.

The topology evolution mechanism in MAST follows the
RigL method (Evci et al., 2020). RigL improves the opti-
mization of sparse neural networks by leveraging weight
magnitude and gradient information to jointly optimize
model parameters and connectivity. After setting the ini-
tial network sparsity, the initial sparsity distribution of
each layer is decided by Erdős–Rényi strategy from (Mocanu et al., 2018). As shown in Figure 2,
RigL periodically dynamically drops a subset of existing connections with the smallest absolute
weight values and concurrently grows an equivalent number of empty connections with the largest
gradients. The diminishing update fraction ζt for connections follows ζt = ζ0

2 (1 + cos(πt/Tend)),
where ζ0 is the initial update fraction, and Tend is the training steps. This process maintains the
network sparsity throughout the training yet with strong evolutionary ability.

The topology evolution is detailed in Algorithm 1, where the symbol ⊙ denotes the element-wise
multiplication operator, while Mθ symbolizes the binary mask that delineates the sparse topology
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for the network θ. We set a low topology adjustment rate as prior studies (Evci et al., 2020; Tan
et al., 2022), occurring at intervals of 200 gradient updates. This setup minimizes the computational
burden of topology evolution, ensuring operational feasibility even on resource-constrained devices.
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Figure 3: An overview of MAST-QMIX.

Algorithm 1 Topology Evolution (Evci et al.,
2020)

1: θl, Nl, sl: parameters, number of parame-
ters, sparsity of layer l.

2: for each layer l do
3: k = ζt(1− sl)Nl

4: Idrop = ArgTopK(−|θl ⊙Mθl |, k)
5: Igrow = ArgTopKi/∈θl⊙Mθl

\Idrop
(|∇θlL, k|)

6: Update Mθl according to Idrop and Igrow
7: θl ← θl ⊙Mθl
8: end for

Figure 3 provides an overview of sparse models when MAST is applied to QMIX. MAST introduces
three innovative solutions to achieve accurate value learning in ultra sparse models: i) Hybrid TD(λ)
targets to mitigate estimation errors from network sparsity. ii) The Soft Mellowmax operator to
reduce overestimation in sparse models. iii) Dual replay buffers to stabilize sparse training.

4.2 HYBRID TD(λ) TARGETS

In MAST, we utilize hybrid TD(λ) targets to generate reliable learning targets, which achieves a
good trade-off between sparse network fitting errors and learning variances. We will first introduce
the benefit of TD(λ) targets and then show the necessity of the hybrid scheme.

TD(λ) Targets Temporal difference (TD) learning is a fundamental method for determining an
optimal policy in reinforcement learning, with the value network iteratively updated by minimizing
a squared loss driven by the TD target. Denote the multi-step return T (n)

t at timestep t for deep
multi-agent Q learning as T (n)

t =
∑t+n

i=t γi−tri + γn+1 maxu Qtot (si+n+1,u). As evidenced in
prior works (Sokar et al., 2022; Tan et al., 2022), sparse networks, denoted by parameters θ̂ =
θ ⊙ Mθ, where ⊙ signifies element-wise multiplication, and Mθ is a binary mask representing
the network’s sparse topology, operates within a reduced hypothesis space with fewer parameters.
Consequently, the sparse network θ̂ may induce a large bias, such that the learning targets become
unreliable. Denote the network fitting error as ϵ(s,u) = Qtot(s,u; θ) −Qπt

tot(s,u), it will be larger
under an improper sparsified model compared to a dense network, as evidenced in Figure 1 where
improper sparsified models fail in learning good policy. Specifically, Eq. (2) from (Tan et al., 2022)
characterises the expected error between the multi-step TD target T (n)

t and the true Q-function Qπt

associated with the target policy πt conditioned on transitions from the behaviour policy bt, reveals
that introducing a multi-step return target discounts the network fitting error by a γn factor.

Ebt [T
(n)
t (s,u)]−Qπt

tot(s,u) =
(
Ebt [T

(n)
t (s,u)]− Eπt [T

(n)
t (s,u)]

)
︸ ︷︷ ︸

Policy inconsistency error

+γn Eπ[ϵ(st+n, πt(ut+n))]︸ ︷︷ ︸
Network fitting error

.

(2)
Thus, employing a multi-step return T (n)

t with a sufficiently large n, e.g., T (∞)
t or Monte Carlo

methods (Sutton & Barto, 2018), effectively diminishes the network fitting error by a very small
factor of γn approaching 0 for γ < 1. However, the Monte Carlo method is susceptible to large vari-
ance, which implies that an optimal TD target shall be a multi-step return with a judiciously chosen
n, striking a balance between network fitting error and variances. This motivates us to introduce the
TD(λ) target (Sutton & Barto, 2018) to achieve good trade-off: T λ

t = (1− λ)
∑∞

n=1 λ
n−1T (n)

t for
λ ∈ [0, 1], which average all of the possible multi-step returns {T (n)

t }∞n=1 into a single return by
using a weight that decays exponentially, and is computationally efficient with episode-form data.

Hybrid Scheme Previous studies (Fedus et al., 2020; Tan et al., 2022) have highlighted that an
immediate shift to multi-step targets can exacerbate policy inconsistency error in Eq. (2). Since the
TD(λ) target T λ

t averages all potential multi-step returns {T (n)
t }∞n=1, an immediate transition to this

target may encounter similar issues. We adopt a hybrid strategy inspired by the delayed approach
in Tan et al. (2022). Initially, when the training step is less than T0, we use one-step TD targets
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(T (1)
t ) to minimize policy inconsistency errors. As training progresses and the policy stabilizes, we

seamlessly transition to TD(λ) targets to mitigate sparse network fitting errors. Such a hybrid TD(λ)
mechanism ensures consistent and reliable learning targets, even within sparse models.
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Figure 4: Performance com-
parison of various TD targets.

Furthermore, we empirically demonstrate the effectiveness of our
proposed hybrid TD(λ) targets on the 3s5z task in the SMAC, as
illustrated in Figure 4. Our findings underscore the pivotal role of
TD(λ) in enhancing the learning process of sparse models. Inter-
estingly, we observe that including a 1-step return target during
initial training, although slightly reducing sample efficiency, con-
tributes significantly to the agents’ learning in the final stages. This
highlights the necessity of our hybrid approach for sparse networks.
Moreover, we examine hybrid multi-step TD targets in RLx2 (Tan
et al., 2022) for single-agent sparse training with a fixed n = 3, in
our experiments on RigL-QMIX. Figure 4 clearly illustrates the superiority of our hybrid TD(λ)
mechanism. This suggests the optimal TD target may not always be a fixed multi-step return; in-
stead, an average value is a robust choice, coinciding with Figure 7.2 in (Sutton & Barto, 2018).

4.3 SOFT MELLOWMAX OPERATOR

We empirically observe that the overestimation issue still arises in sparse MARL models, signifi-
cantly impacting performance. MAST utilizes a robust operator, i.e., Soft Mellomax operator from
(Gan et al., 2021), to alleviate the overestimation and achieve accurate value estimation.
Overestimation The max operator in the Bellman operator poses a well-known theoretical chal-
lenge, i.e., overestimation, hindering the convergence of various linear or non-linear approximation
schemes (Tsitsiklis & Van Roy, 1996), which stands as a significant source of instability in the orig-
inal deep Q-network (DQN) (Mnih et al., 2015). Deep MARL algorithms, including QMIX (Rashid
et al., 2020b), also grapple with the overestimation issue. Recent research efforts (Gan et al., 2021;
Pan et al., 2021) have aimed to alleviate overestimation through conservative operators and regu-
larization techniques. Moreover, Our empirical investigations reveal that the overestimation issue
persists in sparse models, significantly impacting performance.
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Figure 5: Effects of Soft Mellowmax operator.

Figure 5 illustrates the win rates and
estimated values of QMIX with or
without our Soft Mellowmax opera-
tor on 3s5z in the SMAC. We de-
rive estimated values by averaging
over 40 episodes sampled from the
replay buffer every 10, 000 timestep.
Figure 5(a) shows that the perfor-
mance of RigL-QMIX-SM outper-
forms RigL-QMIX, and Figure 5(b)
shows that Soft Mellowmax operator
does effectively mitigate the overestimation bias. These emphasize that in sparse models, QMIX
still faces overestimation issues, highlighting the critical importance of addressing overestimation.
Soft Mellow operator For MARL algorithms satifying the IGM property in Eq. (1), we replace
the max operator in Qi to Soft Mellowmax operator (Gan et al., 2021) in Eq. (3), to mitigate over-
estimation bias in the joint-action Q function within sparse models.

smω(Qi(τ, ·)) =
1

ω
log

[∑
u∈U

softmax (Qi (τ, u)) exp (ωQi (τ, u))

]
, (3)

where softmaxα (Qi (τ, u)) =
exp(αQi(τ,u))∑

u′∈U exp(αQi(τ,u′)) , ω > 0 and α ∈ R. Eq. (3) can be regarded as
a specific instance of the weighted quasi-arithmetic mean (Beliakov et al., 2016). The softmaxα(Q)
can be interpreted as a representation of policy probability, aligning with the framework of entropy
regularization and KL divergence (Fox et al., 2015; Mei et al., 2019). Also note that when α = 0,
the Soft Mellowmax operator simplifies to the Mellomax operator mm(·) as:

mmω(Qi (τ, ·)) =
1

ω
log

[∑
u∈U

1

|U|
exp (ωQi (τ, u))

]
. (4)
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Also, limω→∞ mmω Qi (τ, ·) = maxu Qi (τ, u), limω→0 mmω Qi (τ, ·) = 1
|U|

∑
u Qi (τ, u) ac-

cording to (Asadi & Littman, 2017). As demonstrated in (Gan et al., 2021), the Soft Mellomax
operator extends the capabilities of the Mellomax operator in various aspects, including provable
performance bounds, overestimation bias reduction, and sensitivity to parameter settings.

4.4 DUAL BUFFERS

Training with online data enhances learning stability but sacrifices sample (Song et al., 2023). Con-
versely, offline data training boosts sample efficiency at the expense of stability. Figure 6 displays
training dynamics for RigL-QMIX and others in SMAC’s 3s5z task, revealing QMIX instability
in sparse models. Inspired by (Li et al., 2022), MAST employs a hybrid approach with two replay
buffers: B1 (offline, large capacity, typically around 5000) and B2 (online, smaller capacity, usually
around 100). B1 follows an off-policy style, while B2 aligns with an on-policy style. In each step,
MAST samples b1 episodes from B1 and b2 transitions from B2, conducting a gradient update based
on a combined batch of size (b1 + b2). As seen in Figure 6, dual buffers enhance QMIX’s train-
ing stability under sparse models, leading to consistent policy improvements and higher rewards.
This mechanism remains insensitive in dense cases where network parameters ensure stable policy
improvements. Notably, while prior works have explored prioritized or dynamic-capacity buffers
(Schaul et al., 2015; Tan et al., 2022), they may be not applicable here due to data being in episode
form, since addressing partial observation issue in MARL using recurrent neural networks.
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Figure 6: Effects of dual
buffers in QMIX.

Target Value and Loss Function Combining hybrid TD(λ) with
the Soft Mellowmax operator, we modify the target y as follows:

yS =

{
G

(1)
t , if t < T0.

(1− λ)
∑∞

n=1 λ
n−1T (n)

t , Otherwise.
(5)

Here, λ ∈ [0, 1] is a hyperparameter, and T (n)
t =

∑t+n
i=t γi−tri +

γn+1fs
(
smω(Q̄1(τ1, ·), . . . , smω(Q̄N (τN , ·)

)
, where fs denotes

the mixing network and Q̄i is the target network of Qi. The loss
function of MAST is defined as: LS(θ) = E(s,u,r,s′)∼B1∪B2

[
(yS −Qtot(s,u))

2
]
. When λ = 0, it

is equivalent to the 1-step TD target. When λ = 1, it can be thought of as the Monte Carlo method.

5 EXPERIMENTS

In this section, we conduct a comprehensive performance evaluation of MAST across four tasks:
3m, 2s3z, 3s5z, and 2c vs 64zg from the SMAC benchmark (Samvelyan et al., 2019). MAST
serves as a versatile sparse training framework specifically tailored for value decomposition-based
Multi-Agent Reinforcement Learning (MARL) algorithms. In Section 5.1, we integrate MAST
with state-of-the-art MARL algorithms, including QMIX (Rashid et al., 2020b), WQMIX (Rashid
et al., 2020a), and RES (Pan et al., 2021), with detailed implementation given in Appendix A.3.
This integration allows us to meticulously quantify the benefits derived from sparsification. To
gain a profound understanding of the individual components that constitute MAST, we present a
comprehensive ablation study in Section 5.2. Furthermore, we assess the performance of sparse
models generated by MAST in Section 5.3. Detailed experimental configurations can be found in
Appendix B. Also note that each reported result is based on the average performance over four
independent runs, each utilizing distinct random seeds.

5.1 COMPARATIVE EVALUATION

Table 1 presents a comprehensive summary of our comparative evaluation, where MAST is bench-
marked against the following baseline methods: (i) Tiny: Utilizing tiny dense networks with a
parameter count matching that of the sparse model during training. (ii) SS: Employing static sparse
networks with random initialization. (iii) SET (Mocanu et al., 2018): prunes connections based on
their magnitude and randomly expands connections. (iv) RigL (Evci et al., 2020): This approach
leverages dynamic sparse training, akin to MAST, by removing and adding connections based on
magnitude and gradient criteria. (v) RLx2 (Tan et al., 2022): A specialized dynamic sparse training
framework tailored for single-agent reinforcement learning.

We set the same sparsity levels for both the joint Q function Qtot, and each individual agent’s Q
function Qi. For every algorithm and task, the sparsity level indicated in Table 1 corresponds to
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the highest admissible sparsity threshold of MAST. Within this range, MAST’s performance consis-
tently remains within a±3% margin compared to the dense counterpart, effectively representing the
minimal sparse model size capable of achieving performance parity with the original dense model.
All other baselines are evaluated under the same sparsity level as MAST. We assess the performance
of each algorithm by computing the average win rate per episode over the final 20 policy evaluations
conducted during training, with policy evaluations taking place at 10000-step intervals. Identical hy-
perparameters are employed across all 4 environments for 3 algorithms, detailed in Appendix B.3.
Table 1: Comparisons of MAST with sparse training baselines. Sp.: sparsity. Total Size: total model
parameters (detailed in Appendix B.4). The data is all normalized w.r.t. the dense model.

Alg. Env. Sp. Total
Size

FLOPs
(Train)

FLOPs
(Test)

Tiny
(%)

SS
(%)

SET
(%)

RigL
(%)

RLx2
(%)

Ours
(%)

Q-
MIX

3m 95% 0.066x 0.051x 0.050x 98.3 91.6 96.0 95.3 12.1 100.9
2s3z 95% 0.062x 0.051x 0.050x 83.7 73.0 77.6 68.2 45.8 98.0
3s5z 90% 0.109x 0.101x 0.100x 68.2 34.0 52.3 45.2 50.1 99.0
64* 90% 0.106x 0.100x 0.100x 58.2 40.2 67.1 48.7 9.9 96.4
Avg. 92% 0.086x 0.076x 0.075x 77.1 59.7 73.2 64.3 29.8 98.6

WQ-
MIX

3m 90% 0.108x 0.100x 0.100x 98.3 96.9 97.8 97.8 98.0 98.6
2s3z 90% 0.106x 0.100x 0.100x 89.6 75.4 85.9 86.8 87.3 100.2
3s5z 90% 0.105x 0.100x 0.100x 70.7 62.5 56.0 50.4 60.7 96.1
64* 90% 0.104x 0.100x 0.100x 51.0 29.6 44.1 41.0 52.8 98.4
Avg. 90% 0.106x 0.100x 0.100x 77.4 66.1 70.9 69.0 74.7 98.1

RES

3m 95% 0.066x 0.055x 0.050x 97.8 95.6 97.3 91.1 97.9 99.8
2s3z 90% 0.111x 0.104x 0.100x 96.5 92.8 92.8 94.7 94.0 98.4
3s5z 85% 0.158x 0.154x 0.150x 95.1 89.0 90.3 92.8 86.2 99.4
64* 85% 0.155x 0.151x 0.150x 83.3 39.1 44.1 35.3 72.7 104.9
Avg. 89% 0.122x 0.116x 0.112x 93.2 79.1 81.1 78.5 87.7 100.6
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Figure 7: Performances under
different sparsity.

Performance Table 1 unequivocally illustrates MAST’s substan-
tial performance superiority over all baseline methods in all four en-
vironments across the three algorithms. Notably, static sparse (SS)
consistently exhibit the lowest performance on average, highlight-
ing the difficulty of finding optimal sparse network topologies in the
context of sparse MARL models. Dynamic sparse training meth-
ods, namely SET and RigL, slightly outperform (SS), although
their performance remains unsatisfactory. Sparse networks also, on
average, underperform tiny dense networks. However, MAST sig-
nificantly outpaces all other baselines, indicating the successful re-
alization of accurate value estimation through our MAST method,
which effectively guides gradient-based topology evolution. Notably, the single-agent method RLx2
consistently delivers subpar results in all experiments, potentially due to its limited replay buffer ca-
pacity, severely hampering sample efficiency. To further substantiate the efficacy of MAST, we
conduct performance comparisons across various sparsity levels in 3s5z, as depicted in Figure 7.
This reveals an intriguing observation: the performance of sparse models experiences a sharp decline
beyond a critical sparsity threshold. Compared to conventional DST techniques, MAST significantly
extends this critical sparsity threshold, enabling higher levels of sparsity while maintaining perfor-
mance. Moreover, RES achieves a higher critical sparsity threshold than the other two algorithms
with existing baselines, e.g., SET and RigL, achieving a sparsity level of over 80% on average.
However, it is essential to note that the Softmax operator in RES results in significantly higher com-
putational FLOPs (as detailed in Appendix B.4.5), making it incomparable in terms of training and
inference acceleration to MAST.

FLOPs Reduction and Model Compression In contrast to knowledge distillation or behavior
cloning methodologies, exemplified by works such as (Livne & Cohen, 2020; Vischer et al., 2022),
MAST maintains a sparse network consistently throughout the entire training regimen. Conse-
quently, MAST endows itself with a unique advantage, manifesting in a remarkable acceleration
of training FLOPs. We observed up to 20-fold acceleration in training and inference FLOPs for
MAST-QMIX in the 2s3z task, with an average acceleration of 10-fold, 9-fold, and 8-fold for
QMIX, WQMIX, and RES-QMIX, respectively. Moreover, MAST showcases significant model

7



Under review as a conference paper at ICLR 2024

compression ratios, achieving reductions in model size ranging from 5-fold to 20-fold for QMIX,
WQMIX, and RES-QMIX, while incurring only minor performance trade-offs, typically below 3%.

5.2 ABLATION STUDY

We conduct a comprehensive ablation study on three critical elements of MAST: hybrid TD(λ)
targets, the Soft Mellowmax operator, and dual buffers, specifically evaluating their effects on QMIX
and WQMIX. Notably, since MAST-QMIX shares similarities with MAST-RES, our experiments
focus on QMIX and WQMIX within the 3s5z task. This meticulous analysis seeks to elucidate the
influence of each component on MAST and their robustness in the face of hyperparameter variations.
The reported results are expressed as percentages and are normalized with respect to dense models.

Hybrid TD(λ) We commence our analysis by evaluating various burn-in times T0, for hybrid
TD(λ). Additionally, we explore the impact of different λ values within hybrid TD(λ). The results
are presented in Table 2, revealing hybrid TD(λ) targets achieve optimal performance with a burn-in
time of T0 = 0.75M and λ = 0.6. It is noteworthy that hybrid TD(λ) targets lead to significant
performance improvements in WQMIX, while their impact on QMIX is relatively modest.

Table 2: Ablation study on Hybrid TD(λ).

Alg. T0 λ
0 0.75M 1.5M 2M 0 0.2 0.4 0.6 0.8 1

QMIX / RES 93.6 97.9 92.5 91.5 91.5 94.7 96.8 96.8 97.9 89.4
WQMIX 83.5 98.0 76.9 70.3 83.5 83.5 74.7 98.0 96.1 87.9

Avg. 88.5 97.9 84.7 80.9 87.5 89.1 85.7 97.4 97.0 88.6

Soft Mellowmax Operator The Soft Mellowmax operator in Eq.(3) introduces two hyperparam-
eters, α and ω. A comprehensive examination of various parameter configurations is presented in
Table3. Our analysis reveals that the performance of MAST exhibits robustness to changes in the
two hyperparameters associated with the Soft Mellowmax operator.
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Figure 8: Comparison of dif-
ferent operators.

Additionally, it is worth noting that the Softmax operator is also
employed in (Pan et al., 2021) to mitigate overestimation in multi-
agent Q learning. To examine the effectiveness of various opera-
tors, including max, Softmax, Mellowmax, and Soft Mellowmax,
we conduct a comparative analysis in Figure 8. Our findings in-
dicate that the Soft Mellowmax operator surpasses all other base-
lines in alleviating overestimation. Although the Softmax operator
demonstrates similar performance to the Soft Mellowmax operator,
it is important to note that the Softmax operator entails higher com-
putational costs, as elucidated in Appendix B.4.5.

Dual buffers It is worth noting that in each training step, we concurrently sample two batches
from the two buffers, B1 and B2. We maintain a fixed total batch size of 32 while varying the sample
partitions b1 : b2 within MAST. The results, detailed in Table 3, reveal that employing two buffers
with a partition ratio of 5 : 3 yields the best performance. Additionally, we observed a significant
degradation in MAST’s performance when using data solely from a single buffer, whether it be the
online or offline buffer. This underscores the vital role of dual buffers in sparse MARL.

Table 3: Ablation study on dual buffers and Soft Mellowmax Operator.

Alg. Smaple Partitions Soft Mellowmax Operator

8 : 0 5 : 3 3 : 5 0 : 8
α = 1
ω = 10

α = 5
ω = 5

α = 5
ω = 10

α = 10
ω = 5

α = 10
ω = 10

QMIX / RES 93.6 97.9 97.8 85.1 97.9 100.0 98.9 96.8 97.9
WQMIX 64.8 98.0 86.8 70.3 98.0 92.3 87.9 92.3 85.7

Avg. 79.2 97.9 92.3 77.7 97.9 96.1 93.4 94.5 91.8

5.3 SPARSE MODELS OBTAINED BY MAST

We conduct a comparative analysis of diverse sparse network architectures. With identical spar-
sity levels, distinct sparse architectures lead to different hypothesis spaces. As emphasized in
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(Frankle & Carbin, 2019), specific architectures, such as the “winning ticket,” outperform ran-
domly generated counterparts. We compare three architectures: the “random ticket” (randomly
sampled topology held constant during training), the “winning ticket” (topology from a MAST or
RigL run and kept unchanged during training), and the “cheating ticket” (trained with MAST).
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Figure 9: Comparison of
different sparse masks.

Figure 9 illustrates that both the “cheating ticket” and “winning
ticket” by MAST achieve the highest performance, closely approach-
ing the original dense model’s performance. Importantly, using a
fixed random topology during training fails to fully exploit the bene-
fits of high sparsity, resulting in significant performance degradation.
Furthermore, RigL’s “winning ticket” fares poorly, akin to the “ran-
dom ticket.” These results underscore the advantages of our MAST
approach, which automatically discovers effective sparse architec-
tures through gradient-based topology evolution, without the need for
pretraining methods like knowledge distillation (Schmitt et al., 2018).
Crucially, our MAST method incorporates key elements: the hybrid TD(λ) mechanism, Soft Mel-
lowmax operator, and dual buffers. Compared to RigL, these components significantly improve
value estimation and training stability in sparse models facilitating efficient topology evolution.

Figure 10 showcases the evolving sparse mask of a hidden layer during MAST-QMIX training in
3s5z, capturing snapshots at 0, 5, 10, and 20 million steps. For additional layers, refer to Ap-
pendix B.8. The upper section of Figure 10 illustrates the mask, while the lower part presents
connection counts for output dimensions, sorted in descending order. Notably, a pronounced shift
in the mask is evident at the start of training, followed by a gradual convergence of connections
within the layer onto a subset of input neurons. This convergence is discernible from the cluster-
ing of light pixels forming continuous rows in the lower segment of the final mask visualization,
where several output dimensions exhibit minimal or no connections. This observation underscores
the distinct roles played by various neurons in the representation process, emphasizing the prevalent
redundancy in dense models and highlighting the effectiveness of our MAST framework.
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Figure 10: Part of first hidden layer weight masks in MAST-QMIX for agent 1. Upper part: Light
pixels in row i and column j indicate the existence of the connection for input dimension j and
output dimension i, while the dark pixel represents the empty connection; Lower part: Number of
nonzero connections for output dimensions in descending order.

6 CONCLUSION

This paper introduces MAST, a novel sparse training framework for deep MARL, utilizing gradient-
based topology evolution to efficiently explore network configurations in sparse models. MARL
faces significant challenges in ultra-sparse models, including value estimation errors and training
instability. To address these, MAST offers innovative solutions: a hybrid TD(λ) target mechanism
combined with the Soft Mellowmax operator for precise value estimation in extreme sparsity, and a
dual buffer mechanism for enhanced training stability. MAST enables efficient MARL agent training
with minimal performance impact, employing ultra-sparse networks throughout. Our experiments
across popular MARL algorithms validate MAST’s leadership in sparse training, achieving model
compression of 5× to 20× with minimal performance degradation, and up to a remarkable 20×
reduction in FLOPs for both training and inference. Besides, the limitation and future work of the
MAST framework are discussed in Appendix A.4.
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Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–
384, 2021.

14



Under review as a conference paper at ICLR 2024

Supplementary Materials

A Additional Details for MAST Framework 15

A.1 Comprehensive Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2 Decentralized Partially Observable Markov Decision Process . . . . . . . . . . . . 16

A.3 MAST with Different Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.4 Limitations of MAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B Experimental Details 19

B.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3 Hyperparameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.4 Calculation of Model Sizes and FLOPs . . . . . . . . . . . . . . . . . . . . . . . . 20

B.5 Training Curves of Comparative Evaluation in Section 5.1 . . . . . . . . . . . . . 24

B.6 Standard Deviations of Results in Table 1 . . . . . . . . . . . . . . . . . . . . . . 26

B.7 Sensitivity Analysis for Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 26

B.8 Visualization of Sparse Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A ADDITIONAL DETAILS FOR MAST FRAMEWORK

A.1 COMPREHENSIVE RELATED WORK

Sparse networks, initially proposed in deep supervised learning can train a 90%-sparse network
without performance degradation from scratch. However, for deep reinforcement learning, the learn-
ing target is not fixed but evolves in a bootstrap way (Tesauro et al., 1995), and the distribution of
the training data can also be non-stationary (Desai et al., 2019), which makes the sparse training
more difficult. In the following, we list some representative works for training sparse models from
supervised learning to reinforcement learning.

Sparse Models in Supervised Learning Various techniques have been explored for creating
sparse networks, ranging from pruning pre-trained dense networks (Han et al., 2015; 2016; Srinivas
et al., 2017), to employing methods like derivatives (Dong et al., 2017; Molchanov et al., 2019), reg-
ularization (Louizos et al., 2018), dropout (Molchanov et al., 2017), and weight reparameterization
(Schwarz et al., 2021). Another avenue of research revolves around the Lottery Ticket Hypothe-
sis (LTH) (Frankle & Carbin, 2019), which posits the feasibility of training sparse networks from
scratch, provided a sparse “winning ticket” initialization is identified. This hypothesis has garnered
support in various deep learning models (Chen et al., 2020a; Brix et al., 2020). Additionally, there
is a body of work dedicated to training sparse neural networks from the outset, involving techniques
that evolve the structures of sparse networks during training. Examples include Deep Rewiring
(DeepR) (Bellec et al., 2017), Sparse Evolutionary Training (SET) (Mocanu et al., 2018), Dynamic
Sparse Reparameterization (DSR) (Mostafa & Wang, 2019), Sparse Networks from Scratch (SNFS)
(Dettmers & Zettlemoyer, 2019), and Rigged Lottery (RigL) (Evci et al., 2020). Furthermore, meth-
ods like Single-Shot Network Pruning (SNIP) (Lee et al., 2019) and Gradient Signal Preservation
(GraSP) (Wang et al., 2020) are geared towards identifying static sparse networks prior to training.

Sparse Models in Single-Agent RL Existing research (Schmitt et al., 2018; Zhang et al., 2019)
has employed knowledge distillation with static data to ensure training stability and generate small
dense agents. Policy Pruning and Shrinking (PoPs) (Livne & Cohen, 2020) generates sparse agents
through iterative policy pruning, while the LTH in DRL is first indentified in (Yu et al., 2020).
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Another line of investigation aims to train sparse DRL models from scratch, eliminating the necessity
of pre-training a dense teacher. Specifically, (Sokar et al., 2022) introduces the Sparse Evolutionary
Training (SET) approach, achieving a remarkable 50% sparsity level through topology evolution in
DRL. Additionally, (Graesser et al., 2022) observes that pruning often yields superior results, with
plain dynamic sparse training methods, including SET and RigL, significantly outperforming static
sparse training approaches. More recently, RLx2 (Tan et al., 2022) has demonstrated the capacity to
train DRL agents with highly sparse neural networks from scratch. Nevertheless, the application of
RLx2 in MARL yields poor results, as demonstrated in Section 5.1.

Sparse Models in MARL Existing works have made attempts to train sparse MARL agents, such
as (Yang et al., 2022), which prunes networks for multiple agents during training, employing weight
grouping (Wang et al., 2019). Another avenue of sparse MARL research seeks to enhance the
scalability of MARL algorithms through sparse architectural modifications. For instance, (Sun et al.,
2020) proposes the use of a sparse communication graph with graph neural networks to reduce
problem scale. (Kim & Sung, 2023) adopts structured pruning for a deep neural network to extend
the scalability. Yet another strand of sparse MARL focuses on parameter sharing between agents to
reduce the number of trainable parameters, with representative works including (Gupta et al., 2017;
Li et al., 2021; Christianos et al., 2021). However, existing methods fail to maintain high sparsity
throughout the training process, such that the FLOPs reduction during training is incomparable to
the MAST framework outlined in our paper.

A.2 DECENTRALIZED PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

We model the MARL problem as a decentralized partially observable Markov decision process
(Dec-POMDP) (Oliehoek et al., 2016), represented by a tuple ⟨N ,S,U , P, r,Z, O, γ⟩, where
N = {1, . . . , N} denotes the finite set of agents, S is the global state space, U is the action space
for an agent, P is the transition probability, r is the reward function, Z is the observation space for
an agent, O is the observation function, and and γ ∈ [0, 1) is the discount factor. At each timestep t,
each agent i ∈ N receives an observation z ∈ Z from the observation function O(s, i) : S×N 7→ Z
due to partial observability, and chooses an action ui ∈ U , which forms a joint action u ∈ U ≡ Un.
The joint action u taken by all agents leads to a transition to the next state s′ according to transition
probability P (s′ | s,u) : S ×U × S 7→ [0, 1] and a joint reward r(s,u) : S × U 7→ R. As the time
goes by, each agent i ∈ N has an action-observation history τi ∈ T ≡ (Z×U)∗, where T is the his-
tory space. Based on τi, each agent i outputs an action ui according to its constructed policy πi(ui |
τi) : T ×U 7→ [0, 1]. The goal of agents is to find an optimal joint policy π = ⟨π1, . . . , πN ⟩, which
maximize the joint cumulative rewards J(s0;π) = Eut∼π(·|st),st+1∼P (·|st,ut)

[∑∞
t=0 γ

ir(st,ut)
]
,

where s0 is the initial state. The joint action-value function associated with policy π is defined as
Qπ(st,ut) = Eut+i∼π(·|st+i),st+i+1∼P (·|st+i,ut+i)

[∑∞
i=0 γ

ir(st+i,ut+i)
]
.

A.3 MAST WITH DIFFERENT ALGORITHMS

In this section, we present the pseudocode implementations of MAST for QMIX (Rashid et al.,
2020b) and WQMIX (Rashid et al., 2020a) in Algorithm 2 and Algorithm 3, respectively. It is note-
worthy that RES (Pan et al., 2021) exclusively modifies the training target without any alterations to
the learning protocol or network structure. Consequently, the implementation of MAST with RES
mirrors that of QMIX.

Crucially, MAST stands as a versatile sparse training framework, applicable to a range of value
decomposition-based MARL algorithms, extending well beyond QMIX, WQMIX1, and RES. Fur-
thermore, MAST’s three innovative components—hybrid TD(λ), Soft Mellowmax operator, and
dual buffer—can be employed independently, depending on the specific algorithm’s requirements.
This flexible framework empowers the training of sparse networks from the ground up, accommo-
dating a wide array of MARL algorithms.

In the following, we delineate the essential steps of implementing MAST with QMIX (Algorithm 2).
The steps for WQMIX are nearly identical, with the exception of unrestricted agent networks and

1Note that WQMIX encompasses two distinct instantiations, namely Optimistically-Weighted (OW) QMIX
and Centrally-Weighted (CW) QMIX. In this paper, we specifically focus on OWQMIX.
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the unrestricted mixing network’s inclusion. Also, note that we follow the symbol definitions from
(Colom, 2021) in Algorithm 2 and 3.

Gradient-based Topology Evolution: The process of topology evolution is executed within
Lines 31-33 in Algorithm 2. Specifically, the topology evolution update occurs at intervals of ∆m

timesteps. For a comprehensive understanding of additional hyperparameters pertaining to topology
evolution, please refer to the definitions provided in Algorithm 1.

Algorithm 2 MAST-QMIX
1: Initialize sparse agent networks, mixing network and hypernetwork with random parameters θ

and random masks Mθ with determined sparsity S .
2: θ̂ ← θ ⊙Mθ // Start with a random sparse network
3: Initialize target networks θ̂− ← θ̂
4: Set the learning rate to α
5: Initialize the replay buffer B1 ← {} with large capacity C1 and B2 ← {} with small capacity

C2

6: Initialize training step← 0
7: while step < Tmax do
8: t← 0
9: s0 ← initial state

10: while st ̸= terminal and t< episode limit do
11: for each agent a do
12: τat ← τat−1 ∪ {(ot, ut−1)}
13: ϵ← epsilon-schedule(step)

14: ua
t ←

{
argmaxua

t
Q (τat , u

a
t ) with probability 1− ϵ

randint(1, |U |) with probability ϵ
// ϵ-greedy exploration

15: end for
16: Get reward rt and next state st+1

17: B1 ← B1 ∪ {(st,ut, rt, st+1)} // Data in the buffer is of episodes form.
18: B2 ← B2 ∪ {(st,ut, rt, st+1)}
19: t← t+ 1,step← step + 1
20: end while
21: if |B1| > batch-size then
22: b← random batch of episodes from B1 and B2 // Sample from dual buffers.
23: for each timestep t in each episode in batch b do
24:

Qtot ← Mixing-network
(
(Q1(τ

1
t , u

1
t ), · · · , Qn(τ

n
t , u

n
t ));Hypernetwork(st; θ̂)

)
25: Compute TD target y according to Eq. (6). // TD(λ) targets with Soft Mellowmax oper-

ator.
26: end for
27: ∆Qtot ← y −Qtot

28: ∆θ̂ ← ∇θ̂
1
b

∑
(∆Qtot)

2

29: θ̂ ← θ̂ − α∆θ̂
30: end if
31: if step mod ∆m = 0 then
32: Topology Evolution(networksθ̂ by Algorithm 1.
33: end if
34: if step mod I = 0, where is the target network update interval then
35: θ̂− ← θ̂ // Update target network.
36: θ̂− ← θ̂− ⊙Mθ̂
37: end if
38: end while
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Algorithm 3 MAST-(OW)QMIX
1: Initialize sparse agent networks, mixing network and hypernetwork with random parameters θ

and random masks Mθ with determined sparsity S.
2: Initialize unrestricted agent networks and unrestricted mixing network with random parameters

ϕ and random masks Mϕ with determined sparsity S.
3: θ̂ ← θ ⊙Mθ , ϕ̂← ϕ⊙Mϕ // Start with a random sparse network
4: Initialize target networks θ̂− ← θ̂,ϕ̂− ← ϕ̂
5: Set the learning to rate α
6: Initialize the replay buffer B1 ← {} with large capacity C1 and B2 ← {} with small capacity

C2

7: Initialize training step← 0
8: while step < Tmax do
9: t← 0,

10: s0 ← initial state
11: while st ̸= terminal and t< episode limit do
12: for each agent a do
13: τat ← τat−1 ∪ {(ot, ut−1)}
14: ϵ← epsilon-schedule(step)

15: ua
t ←

{
argmaxua

t
Q(τat , u

a
t ; θ̂) with probability 1− ϵ

randint(1, |U |) with probability ϵ
// ϵ-greedy exploration

16: end for
17: Get reward rt and next state st+1

18: B1 ← B1 ∪ {(st,ut, rt, st+1)} // Data in the buffer is of episodes form.
19: B2 ← B2 ∪ {(st,ut, rt, st+1)}
20: t← t+ 1, step← step + 1
21: end while
22: if |B1| > batch-size then
23: b← random batch of episodes from B1 and B2 // Sample from dual buffers.
24: for each timestep t in each episode in batch b do
25:

Qtot ← Mixing-network
(
(Q1(τ

1
t , u

1
t ; θ̂), ..., Qn(τ

n
t , u

n
t ; θ̂));Hypernetwork(st; θ̂)

)
26:

Q̂∗ ← Unrestricted-Mixing-network
(
Q1(τ

1
t , u

1
t ; ϕ̂), ..., Qn(τ

n
t , u

n
t ; ϕ̂), st

)
27: Compute TD target y with target Unrestricted-Mixing network according to Eq. (6).

// TD(λ) targets with Soft Mellowmax operator.

28: ω(st,ut)←
{
1, Qtot < y

α, otherwise.
29: end for
30: ∆Qtot ← y −Qtot

31: ∆θ̂ ← ∇θ̂
1
b

∑
ω(s,u)(∆Qtot)

2

32: θ̂ ← θ̂ − α∆θ̂
33: ∆Q̂∗ ← y − Q̂∗

34: ∆ϕ̂← ∇ϕ̂
1
b

∑
(∆Q̂∗)2

35: ϕ̂← ϕ̂− α∆ϕ̂
36: end if
37: if step mod ∆m = 0 then
38: Topology Evolution(networksθ̂) and Topology Evolution(networksϕ̂) by Algorithm 1.
39: end if
40: if step mod I = 0, where is the target network update interval then
41: θ̂− ← θ̂, ϕ̂− ← ϕ̂

42: θ̂− ← θ̂− ⊙Mθ̂, ϕ̂
− ← ϕ̂− ⊙Mϕ̂

43: end if
44: end while

18



Under review as a conference paper at ICLR 2024

TD Targets: Hybrid TD(λ) with Soft Mellowmax operator is computed in the Line 25 in Algo-
rithm 2, which modify the TD target y as follows:

yS =

{
G

(1)
t , if t < T0.

(1− λ)
∑∞

n=1 λ
n−1T (n)

t , Otherwise.
(6)

Here, λ ∈ [0, 1] is a hyperparameter, and

T (n)
t =

t+n∑
i=t

γi−tri + γn+1fs
(
smω(Q̄1(τ1, ·), . . . , smω(Q̄N (τN , ·)

)
, (7)

where fs denotes the mixing network and Q̄i is the target network of Qi. The loss function of
MAST, LS(θ), is defined as:

LS(θ) = E(s,u,r,s′)∼B1∪B2

[
(yS −Qtot(s,u))

2
]

(8)

Dual Buffers: With the creation of two buffers B1 and B2, the gradient update with data sampled
from dual buffers is performed in Lines 21-30 in Algorithm 2.

A.4 LIMITATIONS OF MAST

This paper introduces MAST, a novel framework for sparse training in deep MARL, leveraging
gradient-based topology evolution to explore network configurations efficiently. However, under-
standing its limitations is crucial for guiding future research efforts.

Hyperparameters: MAST relies on multiple hyperparameters for its key components: topology
evolution, TD(λ) targets with Soft Mellowmax Operator, and dual buffers. Future work could ex-
plore methods to automatically determine these hyperparameters or streamline the sparse training
process with fewer tunable settings.

Implementation: While MAST achieves efficient MARL agent training with minimal perfor-
mance trade-offs using ultra-sparse networks surpassing 90% sparsity, its current use of unstructured
sparsity poses challenges for running acceleration. The theoretical reduction in FLOPs might not
directly translate to reduced running time. Future research should aim to implement MAST in a
structured sparsity pattern to bridge this gap between theoretical efficiency and practical implemen-
tation.

B EXPERIMENTAL DETAILS

In this section, we offer comprehensive experimental insights, encompassing hardware configura-
tions, environment specifications, hyperparameter settings, model size computations, FLOPs calcu-
lations, and supplementary experimental findings.

B.1 HARDWARE SETUP

Our experiments are implemented with PyTorch 2.0.0 (Paszke et al., 2017) and run on 4× NVIDIA
GTX Titan X (Pascal) GPUs. Each run needs about 12 ∼ 24 hours for QMIX or WQMIX, and
about 24 ∼ 72 hours for RES for two million steps. depends on the environment types. The code
will be open-sourced upon publication of the paper.

B.2 ENVIRONMENT

We assess the performance of our MAST framework using the SMAC benchmark (Samvelyan et al.,
2019), a dedicated platform for collaborative multi-agent reinforcement learning research based on
Blizzard’s StarCraft II real-time strategy game, specifically version 4.10. It is important to note that
performance may vary across different versions. Our experimental evaluation encompasses four
distinct maps, each of which is described in detail below.
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• 3m: An easy map, where the agents are 3 Marines, and the enemiesa are 3 Marines.
• 2s3z: An easy map, where the agents are 2 Stalkers and 3 Zealots, and the enemies are 2

Stalkers and 3 Zealots.
• 3s5z: An easy map, where the agents are 3 Stalkers and 5 Zealots, and the enemies are 3

Stalkers and 5 Zealots.
• 2c vs 64zg: A hard map, where the agents are 2 Colossi, and the enemies are 64 Zer-

glings.

B.3 HYPERPARAMETER SETTINGS

Table 5 provides a comprehensive overview of the hyperparameters employed in our experiments
for MAST-QMIX, MAST-WQMIX, and MAST-RES. It includes detailed specifications for network
parameters, RL parameters, and topology evolution parameters, allowing for a thorough understand-
ing of our configurations. Besides, MAST is implemented based on the PyMARL (Samvelyan et al.,
2019) framework with the same network structures and hyperparameters as given in Table 5. We also
provide a hyperparameter recommendation for three key components, i.e. gradient-based topology
evolution, Soft Mellowmax enabled hybrid TD(λ) targets and dual buffers, in Table 4 for deployment
MAST framework in other problems.

Table 4: Recommendation for Key Hyperparameters in MAST.
Category Hyperparameter Value
Topology
Evolution Initial mask update fraction ζ0 0.5

Mask update interval ∆m 200 episodes

TD Targets Burn-in time T0 3/8 of total training steps
λ value in TD(λ) 0.6 or 0.8

α in soft mellow-max operator 1
ω in soft mellow-max operator 10

Dual
Buffer Offline buffer size C1 5× 103 episodes

Online buffer size C2 128 episodes
Sample partition

of online and offline buffer 3:5

B.4 CALCULATION OF MODEL SIZES AND FLOPS

B.4.1 MODEL SIZE

First, we delineate the calculation of model sizes, which refers to the total number of parameters
within the model.

• For a sparse network with L fully-connected layers, the model size, as expressed in prior
works (Evci et al., 2020; Tan et al., 2022), can be computed using the equation:

Mlinear =

L∑
l=1

(1− Sl)IlOl, (9)

where Sl represents the sparsity, Il is the input dimensionality, and Ol is the output dimen-
sionality of the l-th layer.

• For a sparse network with L GRU layers, considering the presence of 3 gates in a single
layer, the model size can be determined using the equation:

MGRU =

L∑
l=1

(1− Sl)× 3× hl × (hl + Il), (10)

where hl represents the hidden state dimensionality.

Specifically, the ”Total Size” column in Table 1 within the manuscript encompasses the model size,
including both agent and mixing networks during training. For QMIX, WQMIX, and RES, target
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Table 5: Hyperparameters of MAST-QMIX, MAST-WQMIX and MAST-RES.
Category Hyperparameter Value

Shared
Hyperparameters

Optimizer RMSProp
Learning rate α 5× 10−4

Discount factor γ 0.99
Number of hidden units

per layer of agent network 64

Hidden dimensions in the
GRU layer of agent network 64

Embedded dimensions
of mixing network 32

Hypernet layers
of mixing network 2

Embedded dimensions
of hypernetwork 64

Activation Function ReLU
Batch size B 32 episodes
Warmup steps 50000

Initial ϵ 1.0
Final ϵ 0.05

Double DQN update True
Target network update interval I 200 episodes
Initial mask update fraction ζ0 0.5

Mask update interval ∆m timesteps of 200 episodes
Offline buffer size C1 5× 103 episodes
Online buffer size C2 128 episodes

Burn-in time T0 7.5× 105

α in soft mellow-max operator 1
ω in soft mellow-max operator 10

Number of episodes
in a sampled batch
of offline buffer S1

20

Number of episodes
in a sampled batch
of online buffer S2

12

Hyperparameters
for MAST-QMIX Linearly annealing steps for ϵ 50k

λ value in TD(λ) 0.8

Hyperparameters
for MAST-WQMIX Linearly annealing steps for ϵ 100k

λ value in TD(λ) 0.6
Coefficient of Qtot loss 1
Coefficient of Q̂∗ loss 1

Embedded dimensions of
unrestricted mixing network 256

Embedded number of actions
of unrestricted agent network 1

α in weighting function 0.1

Hyperparameters
for MAST-RES Linearly annealing steps for ϵ 50k

λ value in TD(λ) 0.8
λ value in Softmax operator 0.05

Inverse temperature β 5.0
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networks are employed as target agent networks and target mixing networks. We denote the model
sizes of the agent network, mixing network, unrestricted agent network, and unrestricted mixing
network as MAgent, MMix, MUnrestricted-Agent, and MUnrestricted-Mix, respectively. Detailed calculations
of these model sizes are provided in the second column of Table 6.

Table 6: FLOPs and model size for MAST-QMIX , MAST-WQMIX and MAST-RES.

Algorithm Model size Training
FLOPs

Inference
FLOPs

MAST-QMIX 2MAgent + 2MMix 4B(FLOPsAgent + FLOPsMix) FLOPsAgent

MAST-WQMIX
MAgent +MMix+
2MUnrestricted-Agent+
2MUnrestricted-Mix

3B(FLOPsAgent + FLOPsMix)+
4B · FLOPsUnrestricted-Agent+
4B · FLOPsUnrestricted-Mix

FLOPsAgent

MAST-RES 2MAgent + 2MMix
4B · FLOPsAgent+

(5 + nm)B · FLOPsMix
FLOPsAgent

B.4.2 FLOPS CALCULATION

Initially, for a sparse network with L fully-connected layers, the required FLOPs for a forward pass
are computed as follows (also adopted in (Evci et al., 2020) and (Tan et al., 2022)):

FLOPs =
L∑

l=1

(1− Sl)(2Il − 1)Ol, (11)

where Sl is the sparsity, Il is the input dimensionality, and Ol is the output dimensionality of the
l-th layer. Similarly, for a sparse network with L GRU (Chung et al., 2014) layers, considering the
presence of 3 gates in a single layer, the required FLOPs for a forward pass are:

FLOPs =
L∑

l=1

(1− Sl)× 3× hl × [2(hl + Il)− 1], (12)

where hl is the hidden state dimensionality.

We denote B as the batch size employed in the training process, and FLOPsAgent and FLOPsMix as
the FLOPs required for a forward pass in the agent and mixing networks, respectively. The inference
FLOPs correspond exactly to FLOPsAgent, as detailed in the last column of Table 6. When it comes to
training FLOPs, the calculation encompasses multiple forward and backward passes across various
networks, which will be thoroughly elucidated later. Specifically, we compute the FLOPs necessary
for each training iteration. Additionally, we omit the FLOPs associated with the following processes,
as they exert minimal influence on the ultimate result:

• Interaction with the environment: This operation, where agents decide actions for inter-
action with the environment, incurs FLOPs equivalent to FLOPsAgent. Notably, this value is
considerably smaller than the FLOPs required for network updates, as evident in Table 6,
given that B ≫ 1.

• Updating target networks: Each parameter in the networks is updated as θ′ ← θ. Conse-
quently, the number of FLOPs in this step mirrors the model size, and is thus negligible.

• Topology evolution: This element is executed every 200 gradient updates. To be precise,
the average FLOPs involved in topology evolution are computed as B × 2FLOPsAgent

(1−S(a))∆m
for

the agent, and B × 2FLOPsMix
(1−S(m))∆m

for the mixer. Given that ∆m = 200, the FLOPs incurred
by topology evolution are negligible.

Therefore, our primary focus shifts to the FLOPs related to updating the agent and mixer. We will
first delve into the details for QMIX, with similar considerations for WQMIX and RES.

B.4.3 TRAINING FLOPS CALCULATION IN QMIX
Recall the way to update networks in QMIX is given by

θ ← θ − α∇θ
1

B

∑
(yt −Qtot(si, ai; θ))

2, (13)

22



Under review as a conference paper at ICLR 2024

where B is the batch size. Subsequently, we can compute the FLOPs of training as:
FLOPstrain = FLOPsTD target + FLOPscompute loss + FLOPsbackward pass, (14)

where FLOPsTD target, FLOPscompute loss, and FLOPsbackward pass refer to the numbers of FLOPs in
computing the TD targets in forward pass, loss function in forward pass, and gradients in backward
pass (backward-propagation), respectively. By Eq. (6) and (8), we have:

FLOPsTD target =B × (FLOPsAgent + FLOPsMix),

FLOPscompute loss =B × (FLOPsAgent + FLOPsMix).
(15)

For the FLOPs of gradients backward propagation, FLOPsbackward pass, we compute it as two times
the computational expense of the forward pass, which is adopted in existing literature (Evci et al.,
2020), i.e.,

FLOPsbackward pass = B × 2× (FLOPsAgent + FLOPsMix), (16)

Combining Eq. (14), Eq. (15), and Eq. (16), the FLOPs of training in QMIX is:
FLOPstrain = B × 4× (FLOPsAgent + FLOPsMix). (17)

B.4.4 TRAINING FLOPS CALCULATION IN WQMIX
The way to update the networks in WQMIX is different from that in QMIX. Specifically, denote
the parameters of the original network and unrestricted network as θ and ϕ, respectively, which are
updated according to

θ ←θ − α∇θ
1

B

∑
i

ω(si, ai)(T λ
t −Qtot(si, ai; θ))

2

ϕ←ϕ− α∇ϕ
1

B

∑
i

(T λ
t − Q̂∗(si, ai;ϕ))

2
, (18)

where B is the batch size, ω is the weighting function, Q̂∗ is the unrestricted joint action value
function. As shown in Algorithm 3, the way to compute TD target in WQMIX is different from that
in QMIX. Thus, we have

FLOPsTD target = B × (FLOPsUnrestricted-Agent + FLOPsUnrestricted-Mix). (19)
In this paper, we take an experiment on one of two instantiations of QMIX. i.e., OW-QMIX (Rashid
et al., 2020a). Thus, the number of FLOPs in computing loss is
FLOPscompute loss = B × (FLOPsAgent + FLOPsMix + FLOPsUnrestricted-Agent + FLOPsUnrestricted-Mix).

(20)
where unrestricted-agent and unrestricted-mix have similar network architectures as Qtot and Qtot

to, respevtively. The FLOPs of gradients backward propagation can be given as
FLOPsbackward pass = B×2×(FLOPsAgent+FLOPsMix+FLOPsUnrestricted-Agent+FLOPsUnrestricted-Mix).

(21)
Thus, the FLOPs of training in WQMIX can be computed by
FLOPstrain = B × (3FLOPsAgent + 3FLOPsMix + 4FLOPsUnrestricted-Agent + 4FLOPsUnrestricted-Mix).

(22)

B.4.5 TRAINING FLOPS CALCULATION IN RES
Calculations of FLOPs for RES are similar to those in QMIX. The way to update the network
parameter in RES is:

θ ← θ − α∇θ
1

B

∑
i

(T λ
t −Qtot(si, ai; θ))

2, (23)

where B is the batch size. Meanwhile, note that the way to compute TD target in RES (Pan et al.,
2021) includes computing the approximate Softmax operator, we have:

FLOPsTD target = B × (FLOPsAgent + n×m× (2FLOPsMix)), (24)
where n is the number of agents, m is the maximum number of actions an agent can take in a
scenario. Other terms for updating networks are the same as QMIX. Thus, the FLOPs of training in
RES can be computed by

FLOPstrain = B × (4FLOPsAgent + (3 + 2× n×m)FLOPsMix). (25)
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B.5 TRAINING CURVES OF COMPARATIVE EVALUATION IN SECTION 5.1

Figure 11, Figure 12, and Figure 13 show the training curves of different algorithms in four
SMAC environments. The performance is calculated as the average win rate per episode
over the last 20 evaluations of the training. MAST outperforms baseline algorithms on all
four environments in all three algorithms. We smooth the training curve by a 1-D filter by
scipy.signal.savgol filter in Python with window length=21 and polyorder=2.

These figures unequivocally illustrate MAST’s substantial performance superiority over all baseline
methods in all four environments across the three algorithms. Notably, static sparse (SS) consistently
exhibit the lowest performance on average, highlighting the difficulty of finding optimal sparse net-
work topologies in the context of sparse MARL models. Dynamic sparse training methods, namely
SET and RigL, slightly outperform (SS), although their performance remains unsatisfactory. Sparse
networks also, on average, underperform tiny dense networks. However, MAST significantly out-
paces all other baselines, indicating the successful realization of accurate value estimation through
our MAST method, which effectively guides gradient-based topology evolution. Notably, the single-
agent method RLx2 consistently delivers subpar results in all experiments, potentially due to its
limited replay buffer capacity, severely hampering sample efficiency.
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(c) MAST-QMIX 90% on 3s5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(d) MAST-QMIX 90% on 64zg
Figure 11: Training processes of MAST-QMIX on four SAMC benchmarks.
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(a) MAST-WQMIX 90% on 3m
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(b) MAST-WQMIX 90% on 2s3z
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(c) MAST-WQMIX 90% on 3s5z
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(d) MAST-WQMIX 90% on 64zg

Figure 12: Training processes of MAST-WQMIX on four SAMC benchmarks.
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(a) MAST-RES 95% on 3m
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(b) MAST-RES 90% on 2s3z
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(c) MAST-RES 85% on 3s5z
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(d) MAST-RES 85% on 64zg

Figure 13: Training processes of MAST-RES on four SAMC benchmarks.
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B.6 STANDARD DEVIATIONS OF RESULTS IN TABLE 1

Table 7 showcases algorithm performance across four SMAC environments along with their cor-
responding standard deviations. It’s important to note that the data in Table 7 is not normalized
concerning the dense model. Notably, MAST’s utilization of topology evolution doesn’t yield in-
creased variance in results, demonstrating consistent performance across multiple random seeds.

Table 7: Results in Table 1 with standard deviations
Alg. Env. Tiny(%) SS(%) SET(%) RigL(%) RLx2(%) Ours(%)

Q-
MIX

3m 96.3±4.3 89.8±7.9 94.1±5.9 93.4±9.5 11.9±20.5 98.9±2.0
2s3z 80.8±12.9 70.4±13.1 74.9±16.4 65.8±14.5 44.2±17.0 94.6±4.6
3s5z 64.2±11.8 32.0±20.3 49.3±16.6 42.6±19.2 47.2±16.2 93.3±5.1
64* 54.0±29.9 37.3±23.4 62.3±21.9 45.2±23.4 9.2±15.0 89.5±6.2
Avg. 73.8±14.7 57.4±16.2 70.1±15.2 61.7±16.6 28.1±17.2 94.1±4.5

WQ-
MIX

3m 97.0±4.0 95.6±4.0 96.5±3.6 96.5±3.6 96.7±4.3 97.3±4.0
2s3z 86.0±7.9 72.4±12.4 82.5±10.9 83.3±10.3 83.8±9.9 96.2±4.2
3s5z 64.5±17.9 57.0±14.5 51.1±15.0 46.0±20.5 55.4±11.3 87.6±6.9
64* 43.8±27.4 25.4±22.0 37.8±26.2 35.2±16.7 45.3±24.7 84.4±8.4
Avg. 68.5±13.5 62.2±13.0 64.0±13.5 65.8±11.4 70.3±12.5 91.4±5.9

RES

3m 96.9±4.1 94.7±4.8 96.4±4.3 90.3±7.4 97.0±3.8 102.2±3.2
2s3z 95.8±3.8 92.2±5.9 92.2±5.5 94.0±5.7 93.4±5.5 97.7±2.6
3s5z 92.2±4.8 86.3±8.8 87.6±5.9 90.0±7.3 83.6±9.2 96.4±3.4
64* 73.5±25.8 34.5±29.6 38.9±32.3 31.1±36.2 64.1±33.8 92.5±4.9
Avg. 89.6±9.6 76.9±12.3 78.8±12.0 76.3±14.1 84.5±13.1 97.2±3.5

Avg. 78.7±12.8 65.6±13.9 72.0±13.7 67.8±14.5 61.0±14.3 94.2±4.6

B.7 SENSITIVITY ANALYSIS FOR HYPERPARAMETERS

Table 8 shows the performance with different mask update intervals (denoted as ∆m) in different
environments, which reveals several key observations:

• Findings indicate that a small ∆m negatively impacts performance, as frequent mask ad-
justments may prematurely drop critical connections before their weights are adequately
updated by the optimizer.

• Overall, A moderate ∆m = 200 episodes performs well in different algorithms.

Table 8: Sensitivity analysis on mask update interval.

Alg. ∆m = 20
episodes

∆m = 100
episodes

∆m = 200
episodes

∆m = 1000
episodes

∆m = 2000
episodes

QMIX/RES 99.4% 97.7% 99.0% 100.6% 100.6%
WQMIX 83.2% 91.9% 96.1% 68.1% 71.5%

Average 91.3% 94.8% 97.5% 84.3% 86.0%

B.8 VISUALIZATION OF SPARSE MASKS

We present a series of visualizations capturing the evolution of masks within network layers during
the MAST-QMIX training in the 3s5z scenario. These figures, specifically Figure 15 (a detailed
view of Figure 10), Figure 17, and Figure 20, offer intriguing insights. Additionally, we provide
connection counts for input and output dimensions in each sparse mask, highlighting pruned di-
mensions. To facilitate a clearer perspective on connection distributions, we sort dimensions based
on the descending order of nonzero connections, focusing on the distribution rather than specific
dimension ordering. The connection counts associated with Figure 10 in the main paper s given in
Figure 14.
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Figure 14: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 10.

During the initial phases of training, a noticeable shift in the mask configuration becomes evident,
signifying a dynamic restructuring process. As the training progresses, connections within the hid-
den layers gradually coalesce into a subset of neurons. This intriguing phenomenon underscores the
distinct roles assumed by individual neurons in the representation process, thereby accentuating the
significant redundancy prevalent in dense models.

• Figure 15 provides insights into the input layer, revealing that certain output dimensions
can be omitted while preserving the necessity of each input dimension.

• Figure 17 showcases analogous observations, reinforcing the idea that only a subset of
output neurons is indispensable, even within the hidden layer of the GRU.

• Figure 20 presents distinct findings, shedding light on the potential redundancy of certain
input dimensions in learning the hyperparameters within the hypernetwork.

T = 0M T = 0.5M

T = 1M T = 2M

Figure 15: The learned mask of the input layer weight of Q1. Light pixels in row i and column
j indicate the existence of the connection for input dimension j and output dimension i, while the
dark pixel represents the empty connection.
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Figure 16: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 15.

T = 0M T = 0.5M T = 1M T = 2M

Figure 17: The learned mask of the GRU layer weight of Q1. Light pixels in row i and column
j indicate the existence of the connection for input dimension j and output dimension i, while the
dark pixel represents the empty connection.
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Figure 18: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 17.
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Figure 19: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 20.

T = 0M T = 0.5M T = 1M T = 2M

Figure 20: The learned mask of the first layer weight of Hypernetwork. Light pixels in row i and
column j indicate the existence of the connection for input dimension j and output dimension i,
while the dark pixel represents the empty connection.
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