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Abstract

Diffusion-based robotic policies trained with imitation learning has achieved re-1

markable results in complex manipulation tasks. However, such policies are2

constrained by the quality and coverage of their training data, limiting their adapta-3

tion to new environments. Existing approaches to address this obstacle typically4

rely on fine-tuning the diffusion model, which can be unstable and require costly5

human demonstrations. We instead study the online adaptation of pretrained diffu-6

sion policies without parameter updates. We introduce Value-Guided Denoising7

(VGD), a simple method that steers a frozen diffusion policy using gradients from8

a reinforcement-learned value function. At inference, VGD guides diffusion de-9

noising steps toward actions with higher Q-values. This enables adaptation with10

only black-box access to the pretrained policy. On Robomimic benchmarks, our11

method achieves substantially higher success rates than existing RL-with-diffusion12

approaches. These results demonstrate that diffusion policies can be steered effi-13

ciently at deployment, yielding strong performance gains with minimal data and14

computation. Code available at https://anonymous.4open.science/r/VGD.15

1 Introduction16

Large-scale pretraining has produced highly capable foundation models in vision and language17

[1, 2, 3]. Inspired by this success, robot learning has achieved impressive results with imitation18

learning, where expert demonstrations train policies via supervised behavior cloning (BC). Diffusion19

models in particular have emerged as a strong parameterization for BC policies, achieving state-20

of-the-art results in manipulation [4, 5, 6]. Due to their scalability and simplicity, such methods21

comprise the emerging paradigm for robot learning.22

However, imitation learning is inherently limited by its data. Policy performance depends on the23

quality, coverage, and diversity of data [7]. At test time, small imprecisions in control can accumulate,24

eventually leading the policy to states far from those in demonstrations. This leads to degraded25

behavior, such as misaligned grasps or mistimed gripper closure [8]. Consequently, BC-learned26

policies can struggle to achieve satisfactory performance, especially in novel environments and under27

nuisance shifts such as changes in lighting or camera pose [9, 10].28

How can we improve the proficiency of diffusion-based BC policies? A natural solution is fine-29

tuning on additional data. However, collecting quality demonstrations require expensive and time-30

consuming procedures like human teleoperation [11]. Recent work has used reinforcement learning31

(RL) to fine-tune policies using autonomous interactions between the agent and the environment32

[12, 13, 14, 15, 16, 17]. But these approaches are often too sample-inefficient or unstable for practical33

use [17, 15]. These limitations motivate a different question: can we adapt diffusion policies without34

updating their parameters, and simply steer them towards better actions at inference?35
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Figure 1: Illustration of our approach, Value-Guided Denoising (VGD). In a standard application
of a diffusion-based BC policy, we sample an initial noise latent xT , then successively denoise it
through the DDIM sampling process. At each denoising step t, the standard DDIM decoding maps
xτ to xτ−1 =

√
ατ−1 · x̂(τ)

0 +
√
1− ατ−1 · ϵ(τ)θ (xτ ), where x̂0 is the model’s predicted denoising

target (given by Equation 1) and ϵ
(τ)
θ is the predicted noise. To steer the output of the diffusion model

towards more desirable actions, we shift the predicted target x̂(τ)
0 along the gradient of a RL-learnt

critic to x̂
′(τ)
0 , which we use as the new denoising target to calculate the next latent x′

τ−1. We repeat
this procedure repeats throughout the denoising process, steering the pretrained diffusion model onto
more desirable actions without altering its weights.

This prompts us to examine the diffusion sampling process. Our insight is that each denoising step in36

the diffusion process is a weighted sum of the predicted denoised target x̂(τ)
0 and the predicted noise37

ϵ
(t)
θ [18]. We observe that x̂(τ)

0 can be nudged toward higher-value actions using gradients from a38

learned critic, while leaving ϵ
(t)
θ unchanged. Details can be found in Section 2. This procedure enables39

policy steering at inference time, using only black-box access to the pretrained model. Crucially, it40

also avoids unstable backpropagation through the full diffusion chain and sidesteps the challenges41

of fine-tuning large, complex architectures [12, 19, 20]. Instead, we only train a lightweight critic42

on state-action pairs – a standard RL task. Figure 1 illustrates this process.43

We formalize this steering process as Value-Guided Denoising (VGD). Compared to prior RL-with-44

diffusion methods, we show that VGD leverages the structure of diffusion models to steer actions with45

greater sample-efficiency. On Robomimic benchmarks [21], VGD substantially improves success46

rates over state-of-the-art baselines.47

2 Preliminaries48

Markov Decision Process (MDP) We consider a MDPM = (S,A, P, r, γ). At time t, the agent49

observes st ∈ S (i.e. environment and proprioceptive states), takes action at ∈ A, receives reward50

rt = r(st,at), and transitions to the next state st+1 ∼ P (· | st,at). For a given policy π, the51

Q-function Qπ(s,a) represents the the γ-discounted return of policy π from taking action a after52

observing state s. That is,53

Qπ(s,a) := Eπ

[ ∞∑
t=0

γtrt | s0 = s,a0 = a

]
.
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In our VGD algorithm, this state-action critic is the only network we train – all other components of54

the diffusion policy remain frozen.55

Diffusion policies Diffusion policies treat action generation as conditional denoising [5]. Instead56

of predicting an action chunk x0 directly, the policy learns to invert a forward noising process57

that gradually corrupts x0 into Gaussian noise. Concretely, given x0 and a decreasing sequence58

{ατ}Tτ=1 ∈ (0, 1]T , the forward process produces noisy latents xτ via59

q(xτ | x0) = N (
√
ατ x0, (1− ατ )I).

A neural network ϵ
(τ)
θ (xτ , s), conditioned on the current observation s, learns to predict the noise60

injected at step τ , forming the generative process. At inference, we by sampling xT ∼ N (0, 1) and61

iteratively denoise it using this network until we obtain an action chunk x0 to execute.62

While both DDPM [22] and DDIM [18] samplers are compatible with our method, we focus on63

DDIM – a popular sampling algorithm that enables faster inference with fewer decoding steps. With64

DDIM, we update from xτ to xτ−1 via65

xτ−1 =
√
ατ−1

(
xτ −

√
1− ατ · ϵ(τ)θ (xτ , s)√

ατ

)
︸ ︷︷ ︸

“predicted x0”

+
√
1− ατ−1 − σ2

τ · ϵ
(τ)
θ (xτ , s)︸ ︷︷ ︸

“direction pointing to xτ ”

+στϵ
(τ)
θ (xτ , s)︸ ︷︷ ︸

random noise

(1)

We set στ = 0 so that the decoding process is deterministic given the initial noise xT . Here, the first66

term can be viewed as an estimate of the clean action output x0 [18]. We denote this term as x̂(τ)
0 .67

Thus, each update is a linear combination of x̂(τ)
0 and the noise prediction ϵ

(τ)
θ (xτ ).68

As the diffusion proceeds and τ → 0, ατ−1 tends to 1 so that xτ converges to x̂
(τ)
0 . Thus, we can69

interpret x̂(τ)
0 as an evolving “denoising target" toward which the latent trajectory drifts. We are70

motivated to utilize the denoising targets x̂
(τ)
0 for steering because they approximately lie in the71

distribution of action outputs, which is not true of the intermediate latents xτ .1 This makes it a72

natural interface for steering with a learned value function, as we describe next, eliminating the need73

for backpropagatation through the diffusion policy in previous methods.74

3 Value-Guided Denoising75

The VGD algorithm comprises two parts: the diffusion procedure, and the training process. We begin76

by describing diffusion with VGD.77

3.1 Diffusion with VGD78

At each denoising step τ , the denoising target79

x̂
(τ)
0 =

xτ −
√
1− ατ · ϵ(τ)θ (xτ , s)√

ατ
(2)

provides an increasingly accurate proxy for the final action that will be produced by the diffusion80

process. Our goal is to steer this process so that the final action is biased toward higher-value81

outcomes. Given a pretrained diffusion model, let πVGD
ϕ denote the policy obtained by applying82

VGD steering on to this model using critic Qϕ. To sample from πVGD
ϕ (s), we begin by sampling a83

noisy latent xT ∼ N (0, 1). Then, at each step τ , we treat x̂(τ)
0 as an action candidate, shift it in the84

direction of increasing Q-value, then use this new denoising target to update xτ .85

1The intermediate latents lie between the standard Gaussian and the distribution of desired action outputs, so
they cannot be evaluated by a state-action critic effectively. For more analysis on the differences between the
two terms in the realm of image generation, see Section 4 in [22].
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Specifically, given xτ at step τ , we first compute the denoising target x̂(τ)
0 using Equation 2, then86

derive the new denoising target as87

x̂
′(τ)
0 := x̂

(τ)
0 + λ · ∇aQϕ(s,a)

∣∣∣
a=x̂

(τ)
0

.

Here, λ ≥ 0 is a guidance strength, which we anneal over the start of training to stabilise learning88

(see Appendix C for details). In practice, we parametrize this Q-value critic as an MLP, and use89

Pytorch’s automatic differentiation to compute the gradient above. Then, we simply substitute this90

new target into Equation 1 to obtain the next latent:91

x′
τ−1 =

√
ατ−1 · x̂′(τ)

0 +
√
1− ατ−1 · ϵ(τ)θ (xτ ). (3)

We repeat this procedure, using x′
τ−1 as the starting latent xτ−1 for the next denoising step, until we92

obtain the final action output x0 = a. This describes how we sample a ∼ πVGD
ϕ (s). Algorithm 293

provides a summary. As detailed in Appendix C, we also experiment with disabling VGD for the94

initial denoising steps to improve performance, as the initial denoising targets x̂(τ)
0 are far away from95

the target action distribution for large τ .96

Crucially, no gradients flow through the pretrained diffusion policy ϵθ; we only backpropagate97

through the critic. This differs from previous policy fine-tuning methods [12, 19, 20]. We steer98

directly in action space via x̂
(τ)
0 , which stabilizes guidance and improves sample-efficiency.99

3.2 Critic100

Algorithm 1 Online Critic Training with Value-Guided Denoising

1: input: frozen diffusion policy ϵ
(τ)
θ

2: Initialize critic Qϕ, replay buffer B.
3: for each environment step do
4: Sample a ∼ πVGD

ϕ (s) ▷ Sample action according to Value-Guided Denoising
5: Execute action a; observe (r, s′), and add (s,a, r, s′) to B
6: for u = 1 to updates_per_step do
7: Sample {(si,ai, ri, s

′
i)}Bi=1 ∼ B

8: for i = 1 to batch_size do
9: Sample a′

i ∼ πVGD
ϕ (s′i)

10: yi ← ri + γ Qϕ(s
′
i,a

′
i) ▷ Form Q-learning targets

11: end for

12: Update ϕ to minimize LQ =
1

B

B∑
i=1

(
Qϕ(si,ai)− yi

)2
13: end for

VGD only requires a critic Qϕ(s,a). We train this function online with off-policy TD learning.101

Transitions (s,a, r, s′) enter a replay buffer. After every interaction, we update the critic for a fixed102

number of gradient steps. Each update samples a minibatch of transitions from the buffer. For each103

transition, we resample a new action from πVGD
ϕ (s) to obtain a candidate action a′. This ensures that104

the target matches the policy used to act.105

Finally, we update the critic parameters ϕ by minimizing the squared Bellman error over the batch.106

Importantly, the pretrained diffusion policy itself is never updated. The only learning occurs in the107

critic, whose gradients are later used for steering the denoising process. See Algorithm 1 for the108

pseudocode summary of this procedure. This setup allows us to benefit from reinforcement signals109

without disturbing the diffusion policy’s prior.110

In summary, we learn a state–action critic Qϕ(s,a) from replay using standard TD targets. At action111

time, we treat the frozen diffusion policy as a prior and perform a locally greedy improvement at each112

denoising step. 2113

2This approximates solving argmaxa Qϕ(s,a) in the neighborhood defined by the diffusion decoder, rather
than taking a global argmax. It is therefore not Q-learning nor direct policy optimization in the classic sense: it
has no explicit argmax and no actor updates. We experimented with applying Soft-Actor-Critic to steer denoising
targets in lieu of gradient ascient on Qϕ, but this did not yield significant improvements.
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Figure 2: On ROBOMIMIC [21] benchmarks, VGD achieves sample-efficient adaptation of diffusion-
based policies using online data.

4 Experiments114

We evaluate the ability of Value-Guided Denoising (VGD) to improve pretrained diffusion policies115

using online interaction. Experiments are conducted on ROBOMIMIC [21] manipulation benchmarks,116

following the diffusion-policy evaluation protocol in prior work. For Robomimic Square and117

Transport, we use the diffusion policy checkpoints from Ren et. al [12] as our pretrained model.118

For Can and Square, we use the diffusion policies from Wagenmaker et. al [23]. In all cases, we119

freeze the diffusion policy and apply Algorithm 1 to train a critic online. We also anneal the VGD120

strength coefficient λ over the initial stage of each run to stabilise learning. Details can be found in121

Appendix C. Each experiment is averaged over 4 seeds, and error bands show the 95% confidence122

interval.123

We compare against several state-of-the-art methods that combine diffusion policies with reinforce-124

ment learning. The first group of these methods directly adapt a pre-trained diffusion policy. DPPO125

[12] fine-tunes with a PPO-style objective to perform policy-gradient updates to the diffusion model’s126

weights. Additionally, IDQL [13] and IQL [14] add a Q-learning terms to the fine-tuning of the127

diffusion model. The second group of methods learn from scratch with a diffusion policy. DIPO128

[17] treats the diffusion model as the policy class and optimizes it online via standard RL gradients,129

whereas QSM [15] seeks to align the diffusion score with the action-value gradient.130

Figure 2 summarizes results. VGD (black) consistently matches or outperforms prior methods across131

all tasks. In each task, VGD substantially improves upon the pretrained policy, achieving near-perfect132

success rates on Can, Lift, and Square. On Transport, the most challenging task featuring two133

robotic arms, VGD delivers the largest relative gains. This highlights how VGD applies corrections134

without destabilizing the pretrained model. In addition, VGD adapts the pretrained policy with less135

online data than existing methods on a majority of tasks, highlighting its sample-efficiency.136

5 Discussion and Limitations137

We introduce Value-Guided Denoising (VGD), a method that steers frozen diffusion policies using138

reinforcement-learned value gradients. VGD provides a practical solution to the performance gaps of139

BC-trained policies. This makes it a promising tool for model deployment and sim-to-real transfer140
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[24], even when the underlying model weights are not available. VGD applies broadly to any policy141

with a diffusion action head. This includes generalist vision-language-action (VLA) models that142

condition on language, such as Nvidia’s GR00T N1 [25]. We are currently running such experiments.143

Another natural extension is to pretrain the critic with offline RL, providing a stronger initialization144

before online adaptation.145

Despite its lightweight training requirements, VGD introduces higher inference costs: each environ-146

ment step requires differentiating the critic at multiple denoising steps. One solution is to use VGD to147

generate additional demonstrations, and then fine-tune the diffusion model on this data to remove the148

critic from the loop. Another limitation is that fixed-size gradient updates may be suboptimal for tasks149

requiring very fine-grained control. Future work could address this by learning an actor to adaptively150

adjust denoising targets x̂(τ)
0 . A greater range of empirical experiments would also demonstrate the151

broader applicability of our method. We expect to address these limitations in upcoming work.152

In summary, VGD highlights how reward signals can be leveraged to guide pretrained diffusion153

policies efficiently at deployment. We hope this perspective motivates further exploration of inference-154

time steering as a complement to traditional fine-tuning in robot learning.155
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A Related Works288

Behavior cloning and Diffusion models Diffusion-based behavioral cloning has emerged as a strong289

class of policies for robotic control. Diffusion Policy demonstrated visuomotor policy learning via conditional290

action denoising [5]. Extensions have incorporated 3D representations [26], goal-masking for exploration [27],291

and transformer-based backbones [28]. Methods such as JUICER enable efficient long-horizon assembly from292

few demonstrations [29], while DP3 attains strong generalization across real-world tasks [26]. Diffusion-based293

policies have also been scaled to multi-task and generalist settings, including Octo [30], π0 [31] and Gr00t294

N1 [25]. These works establish diffusion models as a scalable and expressive policy class, but do not address295

adaptation after pretraining.296

RL-based adaptation of diffusion policies. Several approaches apply reinforcement learning to improve297

diffusion policies. DPPO fine-tunes diffusion models with PPO-style objectives [12]. IDQL combines diffusion298

actors with implicit Q-learning critics [13]. QSM matches denoiser scores with Q-gradients [15]. DIPO299

formulates diffusion policies as the policy class within standard actor-critic frameworks [32]. Recent efforts300

avoid weight updates, instead steering behavior via auxiliary policies or noise perturbations. RESIP adds a301

residual RL policy to refine pretrained actions [33], while DSRL optimizes over the diffusion noise space to adapt302

behavior with black-box access [23]. These methods highlight the potential of RL-guided adaptation, though303

most involve fine-tuning or auxiliary networks, unlike our lightweight steering approach. As we demonstrate304

empirically, altering diffusion weights lead to greater instability and is less sample-efficient compared to our305

method.306

Value-guided or critic-guided diffusion. Beyond robotics, value or critic functions have been integrated307

into diffusion sampling. Q-score matching [15], energy-weighted diffusion [34, 35], and diffusion-based308

variational optimization [36] embed critic signals into denoising objectives. Other approaches use rejection309

sampling [37, 13], score regularization [38], or advantage-weighted classifiers [39] to bias samples toward higher-310

value actions. Analogous techniques exist in image generation, where classifier or latent noise optimization311

guides diffusion outputs [40, 41, 42]. In contrast, our method applies critic gradients directly to denoising targets312

at inference, enabling fine-grained, step-wise policy steering without retraining.313

B VGD algorithm314

Algorithm 2 Value-Guided Denoising

Require: state s; pretrained ϵ
(τ)
θ (·, s); critic Qϕ; guidance strength λ ≥ 0

1: Sample initial latent xT ∼ N (0, I)
2: for τ = T, T − 1, . . . , 1 do
3: x̂

(τ)
0 ←

(
xτ −

√
1− ατ ϵ

(τ)
θ (xτ , s)

)/√
ατ ▷ predicted x0

4: gτ ← ∇aQϕ(s,a)
∣∣
a=x̂

(τ)
0

▷ autodiff; no gradients through ϵθ

5: x̂
′(τ)
0 ← x̂

(τ)
0 + λ gτ

6: xτ−1 ←
√
ατ−1 x̂

′(τ)
0 +

√
1− ατ−1 ϵ

(τ)
θ (xτ , s)

7: end for
8: return a← x0 =0

C Experimental details315

Code is available at https://anonymous.4open.science/r/VGD.316

We evaluate VGD on four ROBOMIMIC: Can, Lift, Square, and Transport using frozen diffusion policies and317

training only a state–action critic online. Data for the methods we compare to (eg. DPPO, DIPO) are taken from318

[23]. Otherwise, VGD experiments were run on a Nvidia Geforce RTX 5090 GPU, with each run taking ≈ 12319

hours. Environments are vectorized. Observations are low-dimensional, comprised of proprioceptive and object320
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states. The frozen diffusion policy conditions on each observation step, and executes actions in chunks (see321

Table 1 for sizes).322

Base policies. For each task we load a pretrained diffusion checkpoint and keep all policy weights frozen.323

For Robomimic Square and Transport, we use the diffusion policy checkpoints from Ren et. al [12] as324

our pretrained model. For the more challenging tasks Can and Square, we use the diffusion policies from325

Wagenmaker et. al [23], which fine-tune upon the Ren et. al policies to provide stronger initial learning signals326

for our RL experiments. Decoding uses DDIM with a fixed number of denoising steps depending on task (see327

Table 1). Additionally, to stabilise learning, we clip each component of predicted clean actions to 1.0.328

VGD decoding. At each denoising step we form the DDIM predicted clean action x̂
(τ)
0 , nudge it along the329

critic gradient by a step-dependent coefficient λ, and substitute the modified target back into the update. We are330

motivated to set λ = 0 for the initial few denoising steps, when x̂
(τ)
0 is still noisy and contain little information331

about the eventual output of the diffusion process. Empirically, for ROBOMIMIC tasks with 8 to 10 DDIM steps,332

we find that setting λ = 0 for the first 5 and 7 steps respectively reduces compute without changing performance.333

Thus, we use this setting for the experiments. Additionally, we anneal λ during the very start of training to334

stabilize learning. In particular, we increase λ from 0 to its full value over a set number of warmup steps (see335

Table 1). Note that they are insignificant in proportion to the total number of environment steps. However, later336

experimentation revealed that they have no impact on performance.337

Critic and RL loop. We train only the critic (double-Q with n_critics=2, min backup) via off-policy338

TD with Polyak averaging (τ = 0.005) to a target critic. This is implemented via the algorithms provided in339

STABLE BASELINES 3 [43]. Before training begins, we first run the frozen diffusion policy for a set number of340

steps to initialize the replay buffer with rollouts. In all cases, we use a sparse 0/1 reward: a positive reward is341

given only at steps where the robot completes the given task. Parts of this training code is adapted from [23].342

Task Action chunk size UTD γ λ warmup (updates) DDIM steps initial rollout

Can 4 20 0.99 0.01 0 8 1,501
Lift 4 30 0.99 0.005 50,000 8 1,501
Square 4 20 0.999 0.005 80,000 8 2,001
Transport 8 20 0.99 0.0008 100,000 10 20,001

Table 1: Per-task hyperparameters for ROBOMIMIC tasks.

Hyperparameter Value

Optimizer Adam
Learning rate 3 × 10−4

Number of environments 4
Batch size 512 or 1024 (per task)
Replay buffer size 10,000,000 transitions
Critic MLP 3 layers × 2048 units, Tanh activations
Target network smoothing τ 0.005
Q critics 2

Table 2: Shared training hyperparameters used across VGD experiments.
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NeurIPS Paper Checklist343

1. Claims344

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s345

contributions and scope?346

Answer: [Yes]347

Justification: The abstract and introduction explained that diffusion policies face obstacles, what VGD348

is, and how VGD helps overcome these obstacles by improving upon previous methods. Then, the349

paper explains VGD in detail, then shows that it alleviates the aforementioned obstacles through350

experiments in Robomimic.351

Guidelines:352

• The answer NA means that the abstract and introduction do not include the claims made in the353

paper.354

• The abstract and/or introduction should clearly state the claims made, including the contributions355

made in the paper and important assumptions and limitations. A No or NA answer to this356

question will not be perceived well by the reviewers.357

• The claims made should match theoretical and experimental results, and reflect how much the358

results can be expected to generalize to other settings.359

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not360

attained by the paper.361

2. Limitations362

Question: Does the paper discuss the limitations of the work performed by the authors?363

Answer: [Yes]364

Justification: We discuss limitations towards the end of the paper, including: higher compute cost at365

inference and the need for more empricial experiments.366

Guidelines:367

• The answer NA means that the paper has no limitation while the answer No means that the paper368

has limitations, but those are not discussed in the paper.369

• The authors are encouraged to create a separate "Limitations" section in their paper.370

• The paper should point out any strong assumptions and how robust the results are to violations of371

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,372

asymptotic approximations only holding locally). The authors should reflect on how these373

assumptions might be violated in practice and what the implications would be.374

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested375

on a few datasets or with a few runs. In general, empirical results often depend on implicit376

assumptions, which should be articulated.377

• The authors should reflect on the factors that influence the performance of the approach. For378

example, a facial recognition algorithm may perform poorly when image resolution is low or379

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide380

closed captions for online lectures because it fails to handle technical jargon.381

• The authors should discuss the computational efficiency of the proposed algorithms and how382

they scale with dataset size.383

• If applicable, the authors should discuss possible limitations of their approach to address problems384

of privacy and fairness.385

• While the authors might fear that complete honesty about limitations might be used by reviewers386

as grounds for rejection, a worse outcome might be that reviewers discover limitations that387

aren’t acknowledged in the paper. The authors should use their best judgment and recognize388

that individual actions in favor of transparency play an important role in developing norms that389

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize390

honesty concerning limitations.391

3. Theory assumptions and proofs392

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete393

(and correct) proof?394

Answer: [NA]395

Justification: The paper does not include theoretical results. The preliminaries have been checked.396

Guidelines:397

• The answer NA means that the paper does not include theoretical results.398
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.399

• All assumptions should be clearly stated or referenced in the statement of any theorems.400

• The proofs can either appear in the main paper or the supplemental material, but if they appear in401

the supplemental material, the authors are encouraged to provide a short proof sketch to provide402

intuition.403

• Inversely, any informal proof provided in the core of the paper should be complemented by404

formal proofs provided in appendix or supplemental material.405

• Theorems and Lemmas that the proof relies upon should be properly referenced.406

4. Experimental result reproducibility407

Question: Does the paper fully disclose all the information needed to reproduce the main experimental408

results of the paper to the extent that it affects the main claims and/or conclusions of the paper409

(regardless of whether the code and data are provided or not)?410

Answer: [Yes]411

Justification: We have included all information necessary for reproduction, including experimental412

setups. Importantly, we have also included our code in a Github repository (which contains instructions413

for installation). We have also included pseudocode.414

Guidelines:415

• The answer NA means that the paper does not include experiments.416

• If the paper includes experiments, a No answer to this question will not be perceived well by the417

reviewers: Making the paper reproducible is important, regardless of whether the code and data418

are provided or not.419

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make420

their results reproducible or verifiable.421

• Depending on the contribution, reproducibility can be accomplished in various ways. For422

example, if the contribution is a novel architecture, describing the architecture fully might suffice,423

or if the contribution is a specific model and empirical evaluation, it may be necessary to either424

make it possible for others to replicate the model with the same dataset, or provide access to425

the model. In general. releasing code and data is often one good way to accomplish this, but426

reproducibility can also be provided via detailed instructions for how to replicate the results,427

access to a hosted model (e.g., in the case of a large language model), releasing of a model428

checkpoint, or other means that are appropriate to the research performed.429

• While NeurIPS does not require releasing code, the conference does require all submissions430

to provide some reasonable avenue for reproducibility, which may depend on the nature of the431

contribution. For example432

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to433

reproduce that algorithm.434

(b) If the contribution is primarily a new model architecture, the paper should describe the435

architecture clearly and fully.436

(c) If the contribution is a new model (e.g., a large language model), then there should either be437

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,438

with an open-source dataset or instructions for how to construct the dataset).439

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are440

welcome to describe the particular way they provide for reproducibility. In the case of441

closed-source models, it may be that access to the model is limited in some way (e.g.,442

to registered users), but it should be possible for other researchers to have some path to443

reproducing or verifying the results.444

5. Open access to data and code445

Question: Does the paper provide open access to the data and code, with sufficient instructions to446

faithfully reproduce the main experimental results, as described in supplemental material?447

Answer: [Yes]448

Justification: We have released the code (see abstract); the Github repository contains the exact449

commands and environments needed to run the code.450

Guidelines:451

• The answer NA means that paper does not include experiments requiring code.452

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/453

guides/CodeSubmissionPolicy) for more details.454

• While we encourage the release of code and data, we understand that this might not be possible,455

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless456

this is central to the contribution (e.g., for a new open-source benchmark).457
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• The instructions should contain the exact command and environment needed to run to reproduce458

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/459

guides/CodeSubmissionPolicy) for more details.460

• The authors should provide instructions on data access and preparation, including how to access461

the raw data, preprocessed data, intermediate data, and generated data, etc.462

• The authors should provide scripts to reproduce all experimental results for the new proposed463

method and baselines. If only a subset of experiments are reproducible, they should state which464

ones are omitted from the script and why.465

• At submission time, to preserve anonymity, the authors should release anonymized versions (if466

applicable).467

• Providing as much information as possible in supplemental material (appended to the paper) is468

recommended, but including URLs to data and code is permitted.469

6. Experimental setting/details470

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,471

how they were chosen, type of optimizer, etc.) necessary to understand the results?472

Answer: [Yes]473

Justification: We have presented all experimental setup details in the Appendix.474

Guidelines:475

• The answer NA means that the paper does not include experiments.476

• The experimental setting should be presented in the core of the paper to a level of detail that is477

necessary to appreciate the results and make sense of them.478

• The full details can be provided either with the code, in appendix, or as supplemental material.479

7. Experiment statistical significance480

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-481

tion about the statistical significance of the experiments?482

Answer: [Yes]483

Justification: We have given error bands for our experimental results, which represent the 95%484

confidence interval. The experiments were averaged over 4 runs each.485

Guidelines:486

• The answer NA means that the paper does not include experiments.487

• The authors should answer "Yes" if the results are accompanied by error bars, confidence488

intervals, or statistical significance tests, at least for the experiments that support the main claims489

of the paper.490

• The factors of variability that the error bars are capturing should be clearly stated (for example,491

train/test split, initialization, random drawing of some parameter, or overall run with given492

experimental conditions).493

• The method for calculating the error bars should be explained (closed form formula, call to a494

library function, bootstrap, etc.)495

• The assumptions made should be given (e.g., Normally distributed errors).496

• It should be clear whether the error bar is the standard deviation or the standard error of the497

mean.498

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report499

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is500

not verified.501

• For asymmetric distributions, the authors should be careful not to show in tables or figures502

symmetric error bars that would yield results that are out of range (e.g. negative error rates).503

• If error bars are reported in tables or plots, The authors should explain in the text how they were504

calculated and reference the corresponding figures or tables in the text.505

8. Experiments compute resources506

Question: For each experiment, does the paper provide sufficient information on the computer507

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?508

Answer: [Yes]509

Justification: Yes, we have provided the compute information in the Appendix: one RTX 5090, running510

for around 15 hours per run.511

Guidelines:512
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• The answer NA means that the paper does not include experiments.513

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud514

provider, including relevant memory and storage.515

• The paper should provide the amount of compute required for each of the individual experimental516

runs as well as estimate the total compute.517

• The paper should disclose whether the full research project required more compute than the518

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into519

the paper).520

9. Code of ethics521

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code522

of Ethics https://neurips.cc/public/EthicsGuidelines?523

Answer: [Yes]524

Justification: We have reviewed the Code of Ethics and confirm that all codes are satisfied.525

Guidelines:526

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.527

• If the authors answer No, they should explain the special circumstances that require a deviation528

from the Code of Ethics.529

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due530

to laws or regulations in their jurisdiction).531

10. Broader impacts532

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts533

of the work performed?534

Answer: [NA]535

Justification: Our work contributes to the development of robotics models and test them in virtual536

environments, which do not have a direct societal impact.537

Guidelines:538

• The answer NA means that there is no societal impact of the work performed.539

• If the authors answer NA or No, they should explain why their work has no societal impact or540

why the paper does not address societal impact.541

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,542

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-543

ment of technologies that could make decisions that unfairly impact specific groups), privacy544

considerations, and security considerations.545

• The conference expects that many papers will be foundational research and not tied to particular546

applications, let alone deployments. However, if there is a direct path to any negative applications,547

the authors should point it out. For example, it is legitimate to point out that an improvement in548

the quality of generative models could be used to generate deepfakes for disinformation. On the549

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks550

could enable people to train models that generate Deepfakes faster.551

• The authors should consider possible harms that could arise when the technology is being used552

as intended and functioning correctly, harms that could arise when the technology is being used553

as intended but gives incorrect results, and harms following from (intentional or unintentional)554

misuse of the technology.555

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies556

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-557

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the558

efficiency and accessibility of ML).559

11. Safeguards560

Question: Does the paper describe safeguards that have been put in place for responsible release of561

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or562

scraped datasets)?563

Answer: [NA]564

Justification: The paper poses no such risks.565

Guidelines:566

• The answer NA means that the paper poses no such risks.567
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• Released models that have a high risk for misuse or dual-use should be released with necessary568

safeguards to allow for controlled use of the model, for example by requiring that users adhere to569

usage guidelines or restrictions to access the model or implementing safety filters.570

• Datasets that have been scraped from the Internet could pose safety risks. The authors should571

describe how they avoided releasing unsafe images.572

• We recognize that providing effective safeguards is challenging, and many papers do not require573

this, but we encourage authors to take this into account and make a best faith effort.574

12. Licenses for existing assets575

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,576

properly credited and are the license and terms of use explicitly mentioned and properly respected?577

Answer: [Yes]578

Justification: We have cited and acknowledged the papers and authors that our code has been adapted579

from.580

Guidelines:581

• The answer NA means that the paper does not use existing assets.582

• The authors should cite the original paper that produced the code package or dataset.583

• The authors should state which version of the asset is used and, if possible, include a URL.584

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.585

• For scraped data from a particular source (e.g., website), the copyright and terms of service of586

that source should be provided.587

• If assets are released, the license, copyright information, and terms of use in the package should588

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for589

some datasets. Their licensing guide can help determine the license of a dataset.590

• For existing datasets that are re-packaged, both the original license and the license of the derived591

asset (if it has changed) should be provided.592

• If this information is not available online, the authors are encouraged to reach out to the asset’s593

creators.594

13. New assets595

Question: Are new assets introduced in the paper well documented and is the documentation provided596

alongside the assets?597

Answer: [Yes]598

Justification: Our code release (the Github repository) contains all necessary information. Please let us599

know if any details are missing.600

Guidelines:601

• The answer NA means that the paper does not release new assets.602

• Researchers should communicate the details of the dataset/code/model as part of their sub-603

missions via structured templates. This includes details about training, license, limitations,604

etc.605

• The paper should discuss whether and how consent was obtained from people whose asset is606

used.607

• At submission time, remember to anonymize your assets (if applicable). You can either create an608

anonymized URL or include an anonymized zip file.609

14. Crowdsourcing and research with human subjects610

Question: For crowdsourcing experiments and research with human subjects, does the paper include611

the full text of instructions given to participants and screenshots, if applicable, as well as details about612

compensation (if any)?613

Answer: [NA]614

Justification: The work does not involve human subjects.615

Guidelines:616

• The answer NA means that the paper does not involve crowdsourcing nor research with human617

subjects.618

• Including this information in the supplemental material is fine, but if the main contribution of the619

paper involves human subjects, then as much detail as possible should be included in the main620

paper.621
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other622

labor should be paid at least the minimum wage in the country of the data collector.623

15. Institutional review board (IRB) approvals or equivalent for research with human subjects624

Question: Does the paper describe potential risks incurred by study participants, whether such625

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an626

equivalent approval/review based on the requirements of your country or institution) were obtained?627

Answer: [NA]628

Justification: The paper does not involve crowdsourcing nor research with human subjects.629

Guidelines:630

• The answer NA means that the paper does not involve crowdsourcing nor research with human631

subjects.632

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be633

required for any human subjects research. If you obtained IRB approval, you should clearly state634

this in the paper.635

• We recognize that the procedures for this may vary significantly between institutions and636

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for637

their institution.638

• For initial submissions, do not include any information that would break anonymity (if applica-639

ble), such as the institution conducting the review.640

16. Declaration of LLM usage641

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard642

component of the core methods in this research? Note that if the LLM is used only for writing,643

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or644

originality of the research, declaration is not required.645

Answer: [NA]646

Justification: The core method development in this research does not involve LLMs as any important,647

original, or non-standard components.648

Guidelines:649

• The answer NA means that the core method development in this research does not involve LLMs650

as any important, original, or non-standard components.651

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what652

should or should not be described.653
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