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A PRELIMINARIES

A random variable X called a sub-Weibull random variable with tail parameter § and scale factor K,
which is denoted by X ~ subW (6, K'). We next introduce the equivalent properties and theoretical
tools of sub-Weibull distributions.

A.1 PROPERTIES

Definition A.1 (Sub-Weibull Equivalent Properties Vladimirova et al. (2020)). Let X be a random
variable and 0 > 0, and there exists some constant K1, Ko, K3, K4 depending on 0. Then the
following characterizations are equivalent:

1. The tails of X satisfy
3K, > 0 such that P(|X| > t) < 2exp(—(t/K1)?),vt > 0.

2. The moments of X satisfy
3Ky > 0 such that | X ||, < Kop®,Vk > 1.

3. The moment generating function (MGF) of | X |% satisfies
3K > 0 such that Elexp((AX|)?)] < exp((AK3)?),VA € (0,1/K3).

4. The MGF of | X|# is bounded at some point,
3K, > 0 such that Elexp((| X|/K4)?)] < 2.

A.2 THEORETICAL TOOLS

Based on the properties of sub-Weibull variables, we have the following high probability bounds and
concentration inequalities for heavier tails as theoretical tools. Besides, We define I, norm as ||||,, for
any p > 1.

Lemma A.1. Let a variable X ~ subW (0, K), for any 6 € (0, 1), then with probability (1 — ) we
have

IX| < K log” (2/9).

Proof. Let K1 = K in Definition A.1, and take ¢ = K log? (2/6), then the inequality holds with
probability 1 — 4. O

Lemma A.2 (Vladimirova et al. (2020); Madden et al. (2020)). Let X1, ..., X,, are subW (0, K;)
random variables with scale parameters K1, ...K,. Vx > 0, we have

" x
P Xi| > z) < 2exp(—(——=n—~+
(‘; | ) ( (9(9)Z¢:1Ki)
where g(0) = (4¢)? for < 1 and g(0) = 2(2¢0)? for 6 > 1.
Lemma A.3 (Sub-Weibull Freedman Inequality Madden et al. (2020)). Ler (2, F,(F;),P) be a
filtered probability space. Let (&;) and (K;) be adapted to (#;). Let n € N, then Vi € [n], assume
Ki_1 > 0, E[&]F_1] = 0, and Elexp((|&]/Ki—1)%)|Fi—1] < 2 where § > 1/2.1If 0 > 1/2,

assume there exists (m;) such that K;_1 < m,.

if0 =1/2 leta=2, thenVx,3 >0, a>0,and \ € [0, 5~],

) 2a

D=

)

k k k
P U {Zfl >z and ZaKf_l < aZfi + ﬂ} < exp(—Az + 2)%3), 3)
i=1 i=1

ken] =1
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and vz, 5,2 >0,

]P’U{

ke[n]  i=1

M»

)\2
>z and ZaKZ-{l < B} < exp(—Az + ?6) 4

If0 € (3,1, let a = (40)?°¢? and b = (40)%e. Y, B > 0, and o > bmax;e[n,ymi, and X € [0, 5],

P U {Z§Z>mand ZaKz 1<azgl+6} < exp(—Az +2)%3), %)

keln]  i=1

andVz,3 >0, and \ € [0, 7———]

7 bmax;epym;

P U {Z@ >z and ZaKZ-{l < B} < exp(—Az + %26) (6)

keln]  i=1

Ifo > 1, let 5 € (0,1). Let a = (22041 +2)T'(20 + 1) + 2%°T'(30 + 1)/3 and b = 2logn/8’*,

where T'(z) = [ t*"te ™ dt. Vo, > 0, o > bmax;e[,ym;, and A € [0, 5],

P U {Zfzzxand ZaKZ 1<a251+5} <exp(—Az +2X%3) +20, (7)
ken] =1

andVx,B > 0, and X € [0 L

7 bmax;en)mi ]’

2

k k
P U {Z@ > x and ZGKZ‘271 Sﬁ} Sexp(—)\x—k%ﬁ)—i-%. (8)
i i=1

Lemma A.4 (Zhang (2005)). Let 21, ..., z, be a sequence of randoms variables such that zj, may
depend the previous variables z1, = Zk—l for all k=1,.. n Consider a sequence of functionals
k(21 ey 28), k =1,..,n Let o2 = Y} _ | E., [(& — E.,[¢])?] be the conditional variance.
Assume \fk —E., [fk“ < b for each k. Let p € (0,1] and § € (0,1). With probability at least 1 — §
we have

1
Z&rZE% &l < ”“ blopg‘s ©

Lemma A.5 (Cutkosky & Mehta (2020)). For any vector g € RY, (g/|gll2, VLs(w)) >
HVLS?’(W)Hz _ SHE*L?;G(W)Hz.

Lemma A.6 (Madden et al. (2020)). If X ~ subW (6, K), then E[|X?|] < 20(p0 + 1)K ¥p > 0.
In particular, E[X?] < 2I'(20 + 1) K2.

Lemma A.7 (Bakhshizadeh et al. (2023)). Suppose X1, ..., X, 2 X are independent and identically
distributed random variables whose right tails are captured by an increasing and continuous function
I : R — R2% with the property I(x) = Q(z) as x — oo. Let X* = XH(X <L), Sn,=Y" X
and ZV = XL — E[X]. Define Tmax := sup{z > 0: z < nv(mz,n) 221, then

mx

exp(—c,nl(mz)) + mexp(—I(max)), if T > Tmax,

P(Sy — E[Sm] > mz) < ma? mad, .. (1)
exp(— no(maze . n)

— ) + mexp(— if0 <2 < Tmax,
QU(me‘max, 77) ) ( nv(mmmaXa 77) )7 e

(10)

where ¢, = 1 — % andv(L,n) = E[(Z%)21(Z* < 0) + (Z1)? exp(nI(LL)ZL)]I(ZL >
0)],v8 € (0,1].
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Lemma A.8 (Bakhshizadeh et al. (2023)). Consider the same settings as the ones in Lemma A.7.
Assume E[X;] = 0, then ¥Vt > 0 we have

mt?

m) + exp(—nmax{ci, %}I(mt)) +mexp(—I(mt)).  (11)

P(S,, > mt) < exp(—

Lemma A.9 (Ahlswede-Winter Inequality). Let Y be a random, symmetric, positive semi-definite
dd matrix such that |E[Y]||2 < 1. Suppose ||Y |2 < R for some fixed scalar R > 1. Let Y1, ..., Yy,
be independent copies of Y (i.e., independently sampled matrix with the same distribution as Y ). For
any i € (0, 1), we have

1 m
B = 3V~ Bl > ) < 24 exp(—mp?/4R).
=1

A.3 NOTATIONS

Table 4: Summary of notations

Definition of Notations

w the model parameter
d the dimension of model parameters
z the training sample

n the sample size
B the batch sample size

l the loss function

D

DD’ the neighboring datasets
€dp the privacy budget for differential privacy
Er the privacy budget for preserving traces
Odp the noise multiplier for differential privacy
Oy the noise multiplier for preserving traces
Vi k-dimensional the random projection vector
K the variance-related positive constant
VL(w;) k-dimensional the random projection vector
T the iterations of training
Nt the learning rate in ¢ iteration
0 the heavy tail index
p the ratio of heavy tail
AL the empirical trace of the sample
5\? the population trace for dividing heavy tail or light body
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B CONVERGENCE OF HEAVY-TAILED DPSGD

Theorem B.1 (Convergence of Heavy-tailed DPSGD). Under Assumptions 3.1 and 3.2, let w; be
the iterate produced by Algorithm DPSGD with T’ = @(m) T>1 andn = ﬁ Define
og

1
63, = my TIEE LW g — Land K < Gay, then ¢ = max (4K log”(VT), %22(1/5)).
If0 = L and K > 6qp, then ¢ = max (4Klog9(\/f),39K10g%(2/5))_ Ifo >

L1, then ¢ =
3
max (4K log? (VT), 20K log’ (2/0)). For any § € (0,1), with probability 1 — 8, we have

3 Lo (/66 (T/8) loa®
%ZIHiII{HVLS(Wt)H% IVLs(we)|3} < (O)(d log* (1'/6)log(1T'/0) log (\/T))’

] (ne)%

where 10g(T/8) := log™*>(®0=1 (1/5),

Proof. We consider two cases: VLg(w;) < ¢/2 and VLg(w;) > ¢/2. To simplify notation, we
omit the subscript of privacy parameters throughout, such as €qp,.

We first consider the case VLg(w;) < ¢/2.

1
LS(Wt+1) - LS(Wt) < <Wt+1 — Wy, VLS(Wt)> + §5||Wt+1 - WtH2 (12)
1
< —mi(8: + G VEs(we)) + 580 |18, + Gl?
= (8 — Ei[g] + Ei[g,] — VLs(wWi), VLs(wWe)) — ne(Ce, VLs(Wy))

VLI + S A I + 3B + B (s, o
= —1(8; — Bi[g:), VLs(We)) — i (Be[g,] — VLs(We), VLs (W) — 0e(Ce, Vs (We))

1 _ 1 —
= e[ VLs(wo)|* + 58zl + 5Bz lIC ] + Bni (&, o)

Considering all T iterations, we get

T T
Yl VLs(wo)|? < Ls(wi) = Ls(ws) + %577 c® + Z SBNGI* + Zﬂm 8 Gt)

t=1 t=1 t=1
Eq.1 Eq.2
T T
—Zm G, VLs(wy)) Z g, — Ei[g,). VLs(W1)) Z (Ei[g,] — VLs(wy), VLs(w))
Eq.3 Eq.4 Eq.5

13)

For Eq.1, Eq.2 and Eq.3, since (; ~ N(0,coq4plq), according to sub-Gaussian properties and
Lemma A.2, with probability at least 1 — §, we have

T

T
Z SO NG* < 28Kelog(2/8) Y _n?
t=1

)—‘

T
Tc?B? log (2/9) Z 9
————)

< 2Bmaed (14)
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Also, with probability at least 1 — J, we get

T
DB (8 G < Z B llg MG
t=1

~

< 3" 2BcK/elog? (2/8)}

t=1

P T
<28 /eszdM Z 2. (15)
ne

Due to VLg(w;) < ¢/2, for the term — ZtT=1 1 (Ce, VLg(wy)), with probability at least 1 — J, we
have

T T
= (G, VEs(we)) <Y mel| Gl Vs (wi)|
t=1 =1
T
<3 2eK Velog? (2/8)n,
t=1
i 2Blog( 2/(5 a
<2\/em 5 Z (16)
Since E;[—n, (g, — E¢[8,], VLs(w,))] = 0, the sequence (—n; (g, — [ ., VLg(wy)),t € N)isa
martingale difference sequence. Applying Lemma A.4, we define & = —n:(g, — E:[g,], VLs(w:))
and have
&l < me(8ill2 + 1Ec[&,]12) IV Ls (we)ll2 < mec. (17)

Applying E;[(&; — Ei&)?] < E¢[€2], we have

T
D E(& - Ei&y)? Z tllg, — Eelg I3V Ls (we)|3]
t=1 t=1
T
<4c®y | VLs(wo)ll3- (18)
t=1
Then, with probability 1 — d, we obtain

T 2T 2 2 2
Z& < pic thl ZtﬂvaS(Wt)”Q + nc 105(1/5). (19)
t

Next, to bound term Eq.5, we have

T
> m(Bi[g,] — VLs(wi), VLs(wi)) < Zﬁt |Ei[g,] — VLs(wy)|3 + Zm [V Ls(we)|l3-
t 1

Setting a; = g, |,>c and by = HHgt_VLS(Wt)H2>%’ for term ||E,[g,] — VLs(wy)||2, we have
IE:[g:] — VLs(wi)ll2 = [|Ee[(8; — gt)au]ll2
c
= [[Be[(ge (7= — Dadlll2
I8¢l

< Et[n(gt(@ -

Ei(lllgell2 — clac]

Eillllgellz = [V Ls(wi)l|2]at]
< Et[lllgt — VLs(wi)|[2]a:]
< Eiflllge — VLs(We)ll2|b:]

< \/Edlllg: — VLs(wo)lBEb2. 20)
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Applying Lemma A.6, we get E¢[||g; — VLg(wy)||3] < 2K?T(260 + 1). Then, for term E;b7, with
sub-Weibull properties and probability 1 — § we have

Eb} = P(lg: — VLs(wi)ll2 > 5) < 2exp(~(;7)¥) @

So, we get formula.(20) as

VEdlg — VIs(we) [3ED < 2\/K2F(29 + Dexp(—(772))- (22)
Thus, for Eq.5, with probability 1 — T'6 we finally obtain
T
D ne(Eelg] — VLs(we), VLs(wy))
— i |
< 2K°T(20 + 1) ;meXp (4K )?) ZmIIVLs(Wt)Hg (23)

Combining Eq.1-5 with the inequality (10), with probability 1 — 46 — 1T'6, we have

T T T
1 Tc?B?log?(2/6)
2 2 2
;UtHVLS(Wt)HQ < Lg(w1) — Ls(ws) + ; 55771:0 +2Pmae dT z::
T T
2Blog(2/9) 2Blog(2/5 2log (1/68
+28y/emyTd DB/ / Z +24/emyTd 2280 ;ge( [ 5, 4 e o8 (1/9) Opg( /%)
=1 t=1
4pc® 3o M|V Ls(we) 3 3
n ¢ 177i62 N2 4 9R2r (20 4 1)exp(— )7) Znt—i— ZlntHVLS(Wt)Hz
t=1 t
(24)
Setting p = 15, T = @(m) and n; = \F,we have
1< 9 1.5 d%chng%(Q/é)
1 > mllVLs(we)ll3 < Ls(wi) — Ls(ws) + 38¢ +20mae —
t=1
di®Blog?(2/5 1647 log? (1/6
+2B\/em2w\/oﬁgf(/)JrZ,/echzBlogé@M) 0 46\/0%4( /9)
+2K2T(20 + 1)exp(—(&)%)ﬁ. (25)
Eq.6

Then, we pay attention to term Eq.6. If ¢ — 0, then exp(—(3 K) ) — 1 and v/T will dominate term
Eq.6. We know that in classical DPSGD, a small c is regarded as the clipping threshold guide, which
will cause the variance term Eq.6 to dominate the entire bound. For this, we will provide guidance on
the clipping values of DPSGD under the heavy-tailed assumption.

Let exp(—(&)%) f’ then we have ¢ > 4K log?(v/T). So, we obtain

dzc2B? log (2/0)

ne

T
> il VLs(wi)[13 < 4(Ls(w1) — Ls(ws)) + 286> + 83mae
=1

64dic? log% (1/6)
Ve

d%c2Blog%(2/§)

+ 8B \/emz N + 8y/emac? Blog? (2/6) + +8K2T(20+ 1).

(26)
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Multiplying % on both sides, we get

d3c2B?log? (2/5)

T
\% S IV Ls (w3 < % <4<Ls<wl> — Ls(ws)) + 266 + 8mae
t=1

ne

dic®Blog?(2/6 L 64d7 2 logd (1/6
+88+/emq \/?% (2/9) + 8y/emac?Blog? (2/6) + \/% (1/9)

Taking ¢ = 4K log?(v/T), due to T > 1, we achieve

1 & , _ A(Ls(wi) — Lg(wg)) = 8K2I'(260 + 1)
ﬁ;ntHVLS(Wt)HQ < \/T + \/T
16K210g% (v'T) log(2/5) d? B2 log? (2/6)
+ Wi <2B + SBmzeT

+85\/em2d43%05>n:(2/5> + 8/emzBlog™*(2/5) +

log® (vT) log(1/8) di log3 <1/5>

VT

log® (VT) log(1/)d log? (1 < /6)
N

Dueto £ 571, [VLs(we)|3 < <= S{, el VLs(wy)

IN

O(

)

ﬁ

< of

).

%, we have

T 1. 26 2
1 dilog® (v/T)logi (1/6)
= VLs(w)||2 <O ,
T ; IVLs(wi)ll5 < O e )
with probability 1 — 7§ — 44.
By substitution, with probability 1 — §, we get
T 1 20 5
1 dlog® (v/T)log® (T/6
L3 VL (w3 < o( e VD oeTT/0),
et (ne)2

Secondly, we consider the case VLg(w;) > ¢/2.
1
Ls(wWer1) = Ls(wi) < (Weps — wy, VLs(We)) + 5 B[ wegr — well3

_ 1 _
< 8+ G Vs (W) + 5 80|18, + Gz

| ——
Eq.7 Eq.8

N

+ 8K?T'(20 + 1)) .

27)

64d7% log (1/5)

(28)

(29)

(30)

&1V

We have discussed term Eq.8 in the above case, so we focus on Eq.7 here. Setting s;” = Ig,||o>c and

5 = ljgyfla<e-

— (8 + G, VLg(wy))

c _
= =1 Hg%ﬁ si + g5y, VLs(Wy)) — i (Ce, VDs(Wy)).

Applying Lemma A.5 to term —; (85" ¥V Lg(wy)), we have

llg: H

enesy [[VLs(wy)ll2 n 8cnillgr — VLs(we)ll2
3 3

T

TSt VEs(w) < -
t

e = s )IVLs(wi)lla |, 8enellge = VLs (W)

= 3 3

(32)

(33)

)
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For term —;(g:s; , VLs(w;)), we obtain

—mi(ges; , VLs(wy)) = —nesy (8 — VLs(wy), VLs(wi)) + [|[VLs(we)|3)
< —mesy (—llge — VLS(Wt)||2||VLS(Wt)||2 + IVLs(w)|3)

< millge = VLs(wi)ll2[VLs(we)ll2 — 77fo IVLs(wy)ll2

C —
< mellge = VLs(Wo)ll2lVLs(we)llz = gmsy [VLs(we)ll2. - G4)

According to Lemma A.1, with probability at least 1 — J, we have

lge = VLs(wi)ll2 < Klog”(2/9), (35)
then we get
—ne(gesy s VLs(wi)) < Klog®(2/6)|VLs(we)|l2 — 77t8t [VLs(we)ll2, (36)
and
c ene(1 — s )|[|[VLs(w 8cn, K log? (2/6
By < DIV Es(wls | SonKlog’2/8) o
¢l 3 3
Using Lemma A.2 to term — Zthl 1:(Ct, VLg(wy)), with probability at least 1 — §, we have
a c¢Blog(2/4) d
—> ne(C, VLs(wy)) < 4/emyTd—— == > el VLs(we) 2. (38)
t=1 t=1

So, combining formula.(35), formula.(37) and formula.(38) with term Eq.7, with probability at least
1 —26 — T6, we obtain

T

T
- Zm@ + ¢, VLs(wy)) < — Z [VLs(we)ll2 + Z

t=1 t=1 t=1

ey 8en, K log” (2/6)

3

T

T
cBlog(2/6
+ K10g(2/0) S mlIVLs (wo)l + 4/emnTd B S L
t=1 t=1

” T
19 Blog(2/0
<3 YT L) + (5 K g (2/0) + 4/emaTd ) S 9 L)
t=1

t=1
(39)

2 2
Next, considering all T iterations and term Eq.8 with &ﬁp = chggp = mg%gg(l/é) and

probability 1 — 46 — T'0, we have

19 , d
(g - §K10g0(2/5) — 4y/ebaplog? (1/6)) > mil|VLs(wi)lla < Ls(wi1) — Ls(ws)
t=1
22 T
+ (2Bmae ch B log (2/0) +25\/70 Blog 2/6) 1 Z (40)
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If o = % and K > &qp, let & > 2 Klog?(2/6), ie. ¢ > 39K log?(2/d), taking ¢ =
ne 1
7@)(\/@) and 7, = —=, we have

T
3
VL —)(L —L
;m“ s(wi)ll2 < Klogh (2/6)( s(wi) — Ls(ws))
32? L2 (ZBmzech2B2log (2/5) ©opJamaTal Blos2/9) Blog (2/6) 1 C)
Klog?(2/5) "3
Lg(wyi) — Lg(ws) + Qﬁe&gp log(2/0) + 2Bc/ebap logé (2/6) + %BKQ log(2/4)

LK log® (2/6)
3(Ls(w1) — Ls(ws))
Klog (2/9)

IN

+ 6BeK log? (2/8) + 68/elog? (2/5)+3,3( 9" k1o og? (2/9).
41)

Thus, with probability 1 — 46 — T3, we have

T T 1 1 1 1
1 1 log2(1/0) log2(1/6)d7 log®(1/6)
— E VLg(w < — E VLg(w <0 =0 ,
thl || S( t)”Q— \/Tt:lntH S( t)HQ— ( \/T ) ( \/7’% )
implying that with probability 1 — §, we have
T
1 di log (T/96)
l L <o /9 42
72 IVEs(will < 0522, @)
1
. . . 191log? (1/8)K
If§ =1 and K < 6qp, thatis, ¢ > —5-2/2% thus there exists T = @(m) T >1and

N = ﬁ that we obtain

T
1
tz::lntHVLS(Wt)\b < m(LS(WI) — Ls(ws))

S 1nt (2 ch232 log (2/6) 42 C Blog 2/5) 1 2)
* Jerulogt (173 N i ‘
R —

Vedaplog? (1/6)
% (266&31) log(2/8) + 28+v/e€Gap log? (2/0) + 2—72&3&31) 1og(2/6))
" Vebaplogh (170) 2
< Ls(wi) — Ls(ws)
Klog (2/6)

(Ls(w1) — Ls(ws))

+28eK log? (2/5) + 28/elog? (2/5) + B (2;) Klog}(2/5).  (43)

Therefore, with probability 1 — 45 — T'0, we have

log? (1/8)d7 log? (1/6)
\ﬁ

LI
fZHVLS(Wf,)HQS@( ):

then, with probability 1 — J, we have

di log? (T/95)
ne

| T
T D IVLs(wi)ll2 < O )- (44)

t=1
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If 6 > J, then term log”(2/6) dominates the left-hand inequality, ie. 12Klog’(2/6) >

4\/eGap log%(l/é). Let § > 2OKlog (2/0), T = O( )and 1, = \F’ we obtain

(1/5)

T

3
;nt”VLS(Wt)H? < W(LS(Wl) — Lg(ws))

3N 2 ( Tc2B21og?(2/6) c Blog *Blog(2/0) , 1 2)
4 2et=l (g d——— 5= + 26 em
Klog’(2/5) fmae p 3

3(Ls(wi) — Ls(ws)) | 192
ST Kodys Tk log?(2/8) + 1908K log? (2/8) + 38(20)° K log” (2/5).

(45)

Consequently, with probability 1 — d, we have

= ET: IV Ls(we)2 < @(log (T/8)d* log* (T/9)

T & e ) (40)

Integrating the above results, when V Lg(w;) > ¢/2 we have

dt log?t 1 (T/5)

e ) (47)

T

1

T Z [V Ls(we)ll2 < O(
=1

with probability 1 — § and 6 > 1

To sum up, covering the two cases, we ultimately come to the conclusion with probability 1 — 4,

_ ne — 1
T =0( dlog(l/é)),Tzl,andnt—ﬁ
T 1. gyl 1. 99 s
1 , d log?t1(T/§ di log® (vV/T)log® (T/6
LS wmin (VL) . [V Ls(w0) 3} < O T/ | ofiloe (VT) o8 (T/0),
T (ne)2 (ne)2
o (d% log® (T/6) (log® (T /5) + log® (VT)) )
B (ne)z
di log® (T/6)log(T/8) log?® (VT
<0 g (T/0)] (l/) g™ ( )), 48)
(ne)2
where log(T/6) = log™™®=Y(1/5).  1f 6 = 1 and K < Gap, then
c = max(4Kloga(ﬁ),%;(w). If ¢ = L and K > 6q4p, then c

max (ZJIKloge(\/T)7 39K log%(2/6)). If 0 > 1, then ¢ = max (Zlelogg(\/T)7 20K log? ( /6)).
O

The proof of Theorem 4.1 is completed.

10
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C PRIVACY GUARANTEE

We provide the complete privacy guarantee proof of Theorem 5.1 for our differential private mecha-
nism M’: SubsampleoTraceSorting (TS)oGradientPerturbation (GP). The specific proof process is as
follows, and our proof comprehensively encompasses mechanism M

* TraceSorting: We prove that TraceSorting is (€, 0t )-DP.

* TraceSortingoGradientPerturbation: We prove that based on the results of TraceSort-
ing, with two different clipping threshold, the unified composition of TraceSorting and
GradientPerturbation is (e, + €qp, d)-DP, where 6 = ¢, + dap.

* SubsampleoTraceSortingoGradientPerturbation: We prove that, under the premise of
subsampling, the privacy amplification effect remains valid for our composition mechanism.

(1) Firstly, we show the TS with Gaussian noise here is (€, dt, )-DP and follow the proof of Report
Noisy Argmax (RNA) in Claim 3.9 Dwork et al. (2014) to clarify that.

Proof. Our trace sorting is to choose traces ranked from 1 to pB. To prove that this process satisfies
differential privacy (DP), we need to demonstrate that the method of Report i-th Noisy Argmax for
any i € Z* and i € (0,m] is (€, 6, )-DP, where m is sample size. Fix the neighboring datasets
D = D" U {a}. Let \, respectively X', denote the vector of traces when the dataset is D, respectively
D’. We have discussed the default Lo sensitivity is 1 and use two properties:

1. Monotonicity of Traces. For all j € [m], \; > )\;-;
2. Lipschitz Property. For all j € [m], 1 + )\;- > Aj.

Fix any ¢ € [m]. We will bound from above and below the ratio of the probabilities that i is selected
with D and with D’. Fix r*, a set from Gauss(1/e;,)™ % used for all the noisy traces greater than

—1°
the i-th trace. Defines r_;, a set from Gauss(1/e;,)*~! used for all the noisy traces less than the i-th

trace. We will argue for each r_; = r*, Ur~, independently. We use the notation P[i | £] to mean
the probability that the output of the Report Noisy Max algorithm is ¢, conditioned on &.
We first argue that P[i | D,r",] < efPli | D', r~,] + 0. Define

r*=min: X\, +r; > N+ Vj€arg(rZ;).
Ti

Note that, having fixed r_,, 4 will be the output (the i-th argmax noisy trace) when the dataset is D if
and only if r; > r*. We have, for all j € arg(r:i):
i+t > Aj 1
S (LN F 2N > N b 2Ny
= A+ (rF 4 1) >)\;-+rj.

Thus, if r; > r* + 1, then the i-th trace will be the i-th maximum on one side when the dataset is D’
and the noise vector is (r;, 7_,). The probabilities below are over the choice of r; ~ Gauss(1/ey,),
then with probability 1 — dy,:
Plr; > 1+7r"] > e “Plr; > r*| = e P | D,r_}]
=Pli| D' rZ,] >Plr; >1+7r"] > e Plr; >r*| =e Pl | D,r_,],

which, after multiplying through by ef, and adding probability ¢ for P[r* — r; > 1] < 6, yields
what we wanted to show:

Pli| D,r=,) < e Pli| D', r=,] + bt
Then, we argue that P[i | D,r",] < e§,P[i | D’,r",] + &;,. Define

r*=max: A\ +r; <\ +r; Vj€ arg(TJ—rz’)‘
7

11
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Note that, having fixed r;, i will be the output (the i-th argmax noisy trace) when the dataset is D if
and only if ; < r*. We have, for all j € arg(rfi):
N +rt< /\j +r;
SN+ <At <X < (1) 4y
= A4 (rF—1) <A;+rj.
Thus, if r; < r* — 1, then the ¢- th trace will be the i-th maximum on the other side when the dataset is

D’ and the noise vector is (;,7",). The probabilities below are over the choice of r; ~ Gauss(1 /e, ),
with probability 1 — d,, and we have:

Plr; <r* —1] > e “Plr; <7r*] = e “P[i | D,rT}]
=Pl | D\ rt]>Pr <r*—1]>e P <r*] =e Pl | D,r",].

After multiplying through by e, and addlng probability d;, for Plr; — r* > —1] < §, we get:
Pli| D,r2) < e Pli| D', rEy] + 6

Overall, combing the both cases with d;, = 26, we have

e (Pli | D', r L]+ Pli| D' rZy)) + 0w > Pli| D,rl) +Pli | D,rZ)]

eBli | D',r_i] + 6 > Bli | D,r_],

more precisely, we can explicitly bound d;, to (O)( ) by refering to Zhu & Wang (2020).

Using the same approach, we can prove that

e P[i | D,r_g] + +8 > Pli | D', r_s).

Thus, TraceSorting with Gaussian noise satisfies (€, ¢, )-DP.

(2) Secondly, we prove the unified composition of TraceSortingoGradientPerturbation is (e, +
€dp, 0)-DP. Based on the results of TraceSorting, we employ two different clipping thresholds for
GradientPerturbation.

Proof. We define the clipping threshold vector c for per-sample gradient by TraceSorting, for example,
with B = 3 and p = 1/3, if heavy tailed indicator A = [1, 0, 0] then ¢ = [c1, ¢z, ¢c2].
P[M (D) = Y] = P[TraceSorting=index i« AND GP|D]
oo
= / P[i| D, r_;] - P[GP with heavy tailed samples i|dr

BeD

/ / [i|D,r_;] Z g; +¢;¢;) =Y|c|drd¢

/ / 1D, 7] - PLF(D) = Y] - PIC = ¢;¢;/ Bldrd¢ = *,

where r ~ Gauss(1/e,) and ( ~ Gauss(1/eqp). We define f(-) = GradientDiscent and Af =
| £(D) = f(D)||2 = §(pBc1 + (1 — p)Beg) = pey + (1 — p)ea. With 1 — (8 + dap), we have
BeD'

* 7/ / exp(eq)P[i| D', r_;] Z g; +¢;¢;) =Y|c|drd¢

= /00 /00 exp(eq)P[i| D, r_;] - P[f(D') + ¢;¢;/B =Y + Afl|c)drd¢

oo

/ exp(en P -] IF(D) = V] PIC = 6,/ = AfildrC

oo

IA

/ - / explea)P[i| D', r_i] - I[f(D') = Y] - expleap)P[C = e;¢;/ Blc]drdc

oo

< exp(€tr + €ap)P[M (D) = Y],

12
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where we have taken into account the randomness of ¢ through r with A, then the first inequality
comes from TraceSorting satisfying DP, and the penultimate inequality is derived from the basic
Gaussian-based DP mechanism. Thus, define § = dy; + d4p, TraceSortingoGradientPerturbation is
(€tr + €ap,0)-DP. O

(3) Thirdly, we provide the proof that privacy amplification with subsampling still holds with the
mechanism M: TraceSortingoGradientPerturbation.

Proof. We use B C {1,...,n} to denote the identities of the B-subsampled samples from D =
{#1,...,2n}. Note that the randomness of M’ includes both the randomness of the random sample B
and the random coins of M. Let D (or D) be a subsample from D (or D’). Let Y be an arbitrary
output range. For convenience, define ¢ = B/n.

To show (g(e“=T¢» — 1), ¢5)-DP, we have to bound the ratio with D’ = D U i

PIM'(D)=Y]—q¢6 _¢P[M(Dp) =Y |i€ B+ —-qPM(Dp)=Y|i¢ B]—q6
PM'(D") = Y] qP[M(Dp) =Y |i€ Bl + (1 - qP[M(Dp) =Y [ i ¢ B

etrtedp _ . ..
by ed(¢ ?=1). For convenience, define the quantities:

C =P[M(Dg) =Y |ic B
C'=P[M(D);) =Y |i€ B
E=PM(Dp) =Y |i¢ B|=B[M(Dy) =Y | i ¢ B]

‘We can rewrite the ratio as:
PIM'(D)=Y]-q6 qC+(1—q)E —qd
PM'(D') =Y] o qC' + (1-qFE

Now we use the fact that, by (¢, +€dp, §)-DP, C' < e T¢de min{C’, E}+4. The rest s a calculation:

qC + (1= q)E — g6 < g(e™ " min{C", E} +6) + (1 — q)E — ¢6
= q(min{C’, E} + (e“**e — )min{C’", E} +6)+ (1 —q)E — ¢6
< q(min{C’", E} + (ef*t» — 1)min{C’, E} +6) + (1 — q)E — ¢
< q(C" + (e —1)(qC" + (1= q)E) +8) + (1 = q)E — ¢d
< q(C" + (e —1)(qC" + (1 = q)E) +68) + (1 — q)E
< (L+ g™ —1))(qC" + (1 — q) B).

Thus, we have:

P[M'(D) = Y] — ¢6

curteap PM(D) = Y]
Py =v] =T D oy =y

PM(D") =Y]’

and we can derive the simpler conclusion (O(gey + geqp), O(gd))-DP for mechanism M’, i.e
SubsampleoTraceSortingoGradientPerturbation is (O(geqr + geap ), O(5))-DP. Furthermore, accord-
ing to RenyiDP Mironov (2017) and tCDP Bun et al. (2018), we can calculate the corresponding noise

. \/Tlog(1/s . .. . . .
multiplier oty ap = @(%‘g(/)) with € = €, €qp for the composition of iterations in model
training. O

To sum up, Theorem 5.1 is proven.

13
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D SUBSPACE SKEWING FOR IDENTIFICATION

Theorem D.1 (Subspace Skewing for Identification). Assume that the empirical second moment
matrix M = Vj, VkT € RIX4 with VkT Vi, = Ik approximates the population second moment matrix

M = ViViT = Evna[ViViTL A = (VT ge(20)&T (2:) Vi) and N = tr(VT g (z)&7 (i) Vi),
for any gradient §;(z;) that satisfies ||g;(z;)||2 = 1, (¥ ~ N(0, 02,), with probability 1 — 6,, — 4,
we have

4log (24/,,) , mav/Blog? (1/6,)

R E y

N

Proof. For simplicity, we abbreviate g;(z;) as g;. Due to the Fact.1, VIV, = Tand VTV, = I, we
omit subscripts of expectation and have

AL — AN = (Vi gegl Vi) — (Vi g8] V)|
= IV &ll3 — 1V 2]
= [IIVaVi"&l13 — VA Vi &3]
< IViVi'g: — ViVi &3
< IViVi = ViVl I el (49)
To bound E||V;, VI — Vi V7|12, we need to bound the gap between the sum of the random positive
semidefinite matrix M := V;V;T = 1 5% w07 and the expectation M := V;, V;I' = E[V;,V/].

Due to ||v;]|2 = 1, we can easily get
1 1 &
1212 =1 > vl < z > llviv! 2
i=1 i=1

L
— T, T
= SUPg g p=1 7, E T Vv T
i=1

k
1
= SUD,. oy 3 D (i)
=1

k
> llzlalloillz
=1

<

==

(50
Thus, |M||2 < 1and |EM]||2 = ||M - P(M)]|2 < 1 because of P(M) < 1.
Then, according to Ahlswede-Winter Inequality with R = 1 and m = k, we have for any p € (0,1)

N —ku?
P(IM = N> > 1) < 2 exp(—15), )

where d is dimension of gradients. The inequality shows that the bounded spectral norm of random
matrix || M]||, concentrates around its expectation with high probability 1 — 2d - exp(—ku?/4).

Since ||M||2 € [0,1] and |[EM |5 € [0,1], | M — M ||, is always bounded by 1. Therefore, for x> 1,
|[M — M]|2 > u holds with probability 0. So that for any p > 0, we have

N log 2d
B(|[M = M2 > 2/ ="=p) < exp(—p?). (52)

Based on the inequality above, with probability 1 — 4,,,, we have

log? (2d/0,,)
N

| M — M|y < 2 (53)

14
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Next, considering that we have implicitly normalized the term ||&; |3 by the threshold 1, the upper
bound of ||g;||3 is 1. As a result, we obtain

I = A< VeV = VT 3 3
< ViVl = VaViT|13

< ||M - M|}
< %ﬁwm) (54)

with probability 1 — d,,.

Due to the shared random subspace of per-sample gradient, the exposed trace may pose potential
privacy risks. Thus, we add the noise that satisfies differential privacy to the trace A%, i.e. A!Y, + (I*.
The upper bound of the trace for per-sample gradient is limited to 1, because we normalize perisample
gradient in advance. So, the sensitivity in differential privacy can be regarded as 1, which in fact
means (f* ~ N(0,021;). Then, applying Gaussian properties, with probability 1 — &,, — &, we
have

IAFG = A G < A = AL+ 16

4log (2d /0., 1
< o8 CUon) 4 o 10} 2/510). (55)
Regarding to oy, = —2Y——8/% VTBlog(l/é), we take T' as Bt to maintain consistency with the

nétr /dlog(1/6)

context and have

4log (24/0,) mavBlog (1/6)
k d%,/netr

_ 4log (2d/3,,) | myV/Blog* (1/d)

- k dz

A = A G <

b

where the last inequality holds due to 7" > 1.

Intuitively, the conclusion tells us that, since /\ﬁf'i is a constant, the scale o, [l; of noise added is actually
small compared to the noise o4,l4 added to gradients, where the latter has a tricky dependence on the

4log(2d/ém)
k

dimension space d. Concretely, comparing the first term , we observe that in the second

1
%, the model parameter d >> k, we concerned in private learning and coupled

with noise scale, is in the denominator, which is far better than the factor log(d) in the numerator of
4log (2d/Sm)
k

term

the first term. Therefore the term will dominate the error of subspace skewing, and we
can control this part of the error by adopting a larger k.

In conclusion, for the per-sample trace, there is a high probability 1 — 4/, where 8!, = 0., + Strs
that we can accurately identify heavy-tailed samples within a finite and minor error dependent on the
factor O().

O

The proof of Theorem 5.2 is completed.

15
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E CONVERGENCE OF DISCRIMINATIVE CLIPPING

Theorem E.1 (Convergence of Discriminative Clipping). Under Assumptions 3.1, 3.2 and 3.3, let
w be the iterate produced by Algorithm Discriminative Clipping DPSGD withT' = @(m)
og

T>1andn = i. Define 1og(T/8) = log™™>(®0=1(1/5), 63, = mgw a=2if

0=1/2,a= (49)29 2ifo € (1/2,1] and a = (2291 +2)I'(20 +1) + QF(# if0 > 1, for any
6 € (0,1), with probability 1 — §, then we have:

(i). In the heavy tail region (c = c1):

d* log? (T/(S)log(T/(S) log?® (VT)
(ne)?

T
1 .
7 2 min {[VLs(wi)|2, [VLs(wi)[3} < O
1 1
()10 = 5 and K < Gay, then c; = max (4Klogf(@),%§2“/‘”). 2) 16 =1
and K > Gqp, then ¢; = max (4K log? (VT), 33v/2aK log? (2/6)). (3) If 0 > L, then ¢ =
max (492K log? (VT), 17K log9(2/(5)).

(ii). In the light body region (c = c3):

L3 wrin {19 L o) o [V L o) [} < @ L1082/ IV,

t=1 (ne)

Nl

(1) If K < 6ap, then ¢; = max (2v/2aK log? (vVT), %gj(l/‘”) (2) If K > Gap, then
o = max (2v2aK log% (VT),33v2aK log% (2/9)).

Proof. We review two cases in Discriminative Clipping DPSGD: VLg(w;) < ¢/2 and VLg(w;) >
¢/2. To simplify notation, we write eq, as €, omitting the subscript throughout.

Firstly, in the case VLg(w;) < ¢/2:

Ls(winn) — Ls(w) < (wern — wi, VEs(w) + 3 Bllwea — w?
< —n (8, — E¢[8,], VLs(wy)) — ne(Ee[g,] — VLS(Wt) VLgs(w¢)) —ne(G, VLs(Wy))

1 _ _
=l VLs(wo)I* + 5 8m; & * + 5677?\\Ct||2 + Bni (8, o)
Applying the properties of Gaussian tails and Lemma A.2 to (;, Lemma A.4 to term Zthl (g, —
E.[g,], VLs(w;)), with probability 1 — 40, we have

T T

T
1 Tc?B?log?(2/6)
;WtHVLS(Wt)Hg < Lg(wi) — Ls(ws) + Z 5@7?02 + 25m28dT z::
c?Blog(2/6) c?Blog(2/d clog (1/8
1 25/ B1o8C) Zt+2\/7 GITUE S (/)
t=1
4pc? VLs(w
LS 1;“(':2 sw)ll Zm E([E,) — VLs(wi), VLs(w)) . (56)
t
Eq.9
We will consider a truncated version of term Eq.9 in the following. Similarly,
T
> m(Bi[g,] — VLs(wi), VLs(wi)) < ZTlt |Ei[g,] — VLs(wy)|3 + Zm [V Ls(we)|l3-
=1

16
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For term [|[E¢[g,] — VLs(w:)l|2, we also define a; = Ijg,,>c and by = Ijg, vLs(w,)|.>¢» and
have

18] — VLs(wo)llz = |E:l(E, — go)arlll
< Etm(gt(w)atnﬂ
< Eflllgll2 — |VLs(wa)ola]

< Eiflllge = VLs(we)|[2[b¢]

< VEdllg: — VLs(wo)|BIEb. (57)

Due to E[g; — VLg(w;)] = 0, applying Lemma A.7 and A.8 with

m=1

sup {v(L,n)} = aK?
n€(0,1]

nl(x)

1

aK?

Tmax =
1
ct € [5,

1
5"

In the light body region, i.e. £ > Zpax, We have
P(llge — VLs(wy)|l2 > z) < exp(—cenl (z)) + exp(—1(z))
1
< exp(=71(2)) + exp(~1(z))

’[7:

1
< 2exp(—71(x)). (58)
Then, in the heavy tail region, i.e. 0 < x < T ax, the inequality
z? Toax (1)
P(|lge — VLs(wt)[l2 > 2) < exp(—5——) + mexp(—— 2"~
' ! 20(Zmax, 1) NV(Lmax; 1)
2
T
< 2exp(————
B eXp( 2U(zmaxa77)
22

holds.
Therefore, when 0 < x < x,.x, We have the follow-up truncated conclusions:

If6 = %, Va > 0 and a = 2, we have the following inequality with probability at least 1 — §
lgr = VLs(wi)ll2 < 2K log? (2/9).
If 0 € (3,1], leta = (40)*"€2, we have the following inequality with probability at least 1 — &

lge — VLs(wi)ll2 < v2e(46)" K log? (2/).

F0 > 1, leta = (22041 4 2)T(20 + 1) + ZECD e have the following inequality with
probability at least 1 — ¢

230T(360 4 1)
3

g — VELs(woll> < ﬁ(zml +2)0(20+1) + K log* (2/9).

17
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When z > 2y, let I(z) = (z/K)#, V0 € (3, 1], with probability at least 1 — 4, then we have

lge = VLs(wi)llz < 4°K log” (2/6).

Apply the truncated corollary above, when 0 < < xy,«, We have

E[llg: — VLs(wi)|2] < V20K (60)

and with probability 1 — §,

Cc

2v/2aK

where a = 2if 0 = 1/2, a = (40)%¢2 if § € (1/2,1] and a = (2261 4 2)[(20 + 1) + 2 LG0+D
if 6 > 1.

)%) (61)

&
Eib; = P(lge — VLs(wi)ll2 > 5) < 2exp(—(

When & > xy,ax, the inequalities
Ei(llge — VLs(wo)2] < 4°K (62)

and

1 1
Eb} = B(lg: — VLs(wi)l2 > 5) < 2exp(~ (572)) (63)

hold with probability 1 — 6, where 6 > 1.
Thus, with probability 1 — T'§, we get

T T 1 T
;ma&[@t] — VLs(wt), VLs(wy)) < 2ak° ;mexp(—(2 \/;LGK)Q) +5 ;ntuws(wau%,
(64)

when 0 < < Tmax.

With probability 1 — T'd, we obtain

T T T
— 1 C |1 1
S n{Edlg] — VLs(we), VLs(wn)) < 47K 3 mexp(— (o)) + 3 S VEs(wo)l3
t=1 t=1 t=1
(65)
when = > Tpax.
By setting p = 1—16, T = @(\/ﬁ) and n; = ﬁ with probability 1 — 46 — 7', we have
og
1 & 9 1.5 dz 2 B2 log%(2/5)
£ 2o VLSl < L) = Es(ws) + 556+ 2mae =
+ zﬁm—diCQB log* (2/9) , 2. /emac® Blog®(2/6) + 16d+c? o (1/9)
2 \/ne 2 & V/ne
T
¢
20K? exp(—(——=——)?), if0 <2z < Zmax,
;m PG ) <z <
+Eq.10 (66)

T
1 ¢
429K2 (=
; mexp(— (5

1 .
4 )9)3 ifx Z Tmax-

Let the term Eq.10 < %, and we have ¢ > 2v/2aK log%(\/f) if0 < 2 < Zyax and ¢ >

492K 1og9(\/T) if £ > Tmax.

18
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In the light body region that 0 < x < @,y by taking co = ¢ = 2v/2aK log% (\/T) we achieve

i tIVLs(we)|3 < 4(Ls(wi) — Ls(ws)) | 2aK>

VT 4 VT T
8aK?log(v/T)log(2/5) di log# (2/6)
+ T (26—F8ﬁnmeB2(~ﬂu:)2
%Sﬂyﬂ”n2d4lgk5%;%2/6)FSVﬁﬂnzBlog_;(2/5)%64di%3%i(1/6)>
log(v'T) log(1/8) d log? (1/6)
=0T Ve
§®(log(\ﬁ)c\l4ﬁ Z(1/5)) 67)

In the heavy tail region that 2 > Zpax, by taking ¢; = ¢ = 4°2K log? (v/T') we achieve

L 4(Ls(wi) — Lg(ws))  2aK2
g 1|V Ls(we)||3 < 7 7
420+1 1620 (/T) log(2/6) ,,d%1ogT(2/8) .,
+ JT <2[3 + 88moeB (T)

di Blog~%(2/5)

, 64d1 log® (1/5
48y o 8 e Blog (2/0) + W )>

V/ne
log® (V'T) log(1/5) . dt log™ (1/8)

<O )

VT V/ne
20 1. 3
- @Xlog (Vif)dzjog (1/5)). 68)

Secondly, we pay extra attention to the bound in the case VLg(w;) > ¢/2.

1
Ls(Wit1) — Ls(wi) < (Wip1 — Wy, VLg(Wy)) + §5||Wt+1 - w3

_ 1 _
< (g + G, VLs(wy)) +§ﬁ77t2Hgt + G I3 (69)

Eq.11

We revisit term Eq.11 in the case and also set 5,7 = Lig,o>c and sy = Ijig,jjo<c-

—1:(8; + G, VLs(wy)) = < St + g5, VLs(wy)) — 1:(Ge, VLs(wy)). (70
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For term — Zthl n(gts; , VLs(wy)), we obtain
T T

= melgesy , VLs(Wi)) = = > mis; ({8 — VLs(wi), VLs(we)) + [|VLs(wy)[[3)
=1 =1

< _stt gt — VLs(wi), VLs(w)) stt IVLs(w)l3
t=1 tc lT

s - ;m%(& = VLs(we), VLs(we)) - 5 ;mS{HVLS(Wt)H%
T o

< —;ms[(gt = VLs(w¢), VLs(wy)) ~3 ;mSHWLS(Wt)H%-

Eq.12

(71)

Let consider the term Eq.12. Since E;[n:s; (g — VLs(w:), VLs(w;))] = 0, the sequence
(—mes; (gt —V Lg(wy), VLs(wy)),t € N) is a martingale difference sequence. In addition, the term

— VLg(wy) is a subW (0, K) random variable, thus we apply sub-Weibull Freedman inequality
with Lemma A.3 and concentration inequality with Lemma A.7 and A.8 to bound it.

In Lemma A.3, Define
o(L,n) = E[(X* - E[X])’I(X" <E[X]))] +E[(X" - E[X])®exp (n(X* — E[X]))I(X" > E[X])],

and make 3 = kv(L,n), then we have sup, . {kv(L,n)} = aZleKf based on
Lemma A.7 and A.8 in Bakhshizadeh et al. (2023) and obtain

<U {Zfl 2 kz and ZGKE 1 < 5}) < exp(—Akz + )\;B)
keN i=1
2

= exp(—Akz + kv(L, n)%) (72)

Subsequently, we define the inflection point Zyax = %a Zle K 22 and have

1. In the light body region where x > xyax, We choose L = kxr and A = %, that is
_ nl(kz)

TGy = vihesy = ko - Then the inequality achieves
2 n*I° (kx)
U {Z& > kx and ZaKZ 1 < B} < exp(—nl(kx) + v(L,n)W)
keN =1
I(k
< exp(-n(kr)(1 —v(L, )5 "2)))
< exp(—ne, I (k)
1
< exp(—5nl(kz)), (73)
where ¢, = 1 — W and the last inequality holds due to ¢, > 3.
2. In the heavy tail region where * < Zyax, We choose L = kxpax and A = U(f ) <
% — ”IéL). Then, we get

ka? ka?
<kLeJN { ;gz = firand ZGKE L= 6}> = eXp(_U(Lm) * 2v(L,77))

kx?

2v(L,n)

< exp(— ). (74)
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Implementing the above inferences and propositions with

& = ne(gt — VLs(wy), VLs(wy))

— > msi (g — VLs(wy), VLs(W))

i=1

Ki 1 = K| VLs(wy)l|2

my = KG
k=T
n=1/2
Ifo = Va > 0 and a = 2, when & < x5 We have the following inequality with probability at

least 1 )

T

— > " msy (g — VLs(wi), VLs(w,)) < v/2T0(L,7) log? (1/6)

t=1

T

QQZKf log? (1/5)

t=1

IN

T
<2, |3 K2 VLs(w,)|3log? (1/9)

t=1

T

<2KG,| Y n}log?(1/0), (75)
t=1
when & > Zyax, with I(T2) = (Tz/ Y., K;)?, we have
T T
_ 11 1
= sy (g — VLs(Wi), VLg(wy)) < 42 T > Kilog?(1/6)
t=1 t=1
KG ,
< 24§;—j£:7h10g5(1/5). (76)

If € (3,1, leta = (40)*€2, when & < @yax we have the following inequality with probability at
least 1 — &

T T

= " msi (g — VLs(wi), VLs(wi)) < 4|20y K7 log?(1/6)
t=1 t=1

<V2(40)°eKG Z” log? (1/6), (77)

=1
when & > iy, let I(Tx) = (Tz/ 3, K;)7, V0 € (3, 1], then we have

T 9 T
D g Vis(w), Vis(w) < 7 3 Kilog! (1)

t=1

49K

Zm@lw (78)
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If0 > 1,leta = (220+1 + 2)I'(20 + 1) + %, when 2 < 2. We have the following
inequality with probability at least 1 — 36

T
QaZKf log%(l/é)

t=1

- stt_ (gt — VLs(w¢), VLg(wy)) <

230T(36 4 1)
3

< \/2(229+1 +2)T(20+ 1) + KG .| 2 log?(1/0), (79)

t=1

when 2 > Zpay, let I(Ta) = (Tz/ Y1, Ki)#, V0 > 1, then we have

T T
_ 40 1
_ E NSy (8 — VLg(wi), VLg(wy)) < T ;:1 Kylog2(1/6)

t=1

PKG &
< —— > _mlog’(1/0). (80)

t=1

To continue the proof, employing Lemma A.5 in term —n; {78t | 57,V Ls(w;)) and covering all T

iterations, we have

Z

lgt Hz

T + T B
st, VLs(wy)) < _ e s IIVEs(We)llz | 8¢y mellge — VLs(Wi)ll2

— 3 3
T _
e (1= 5 )[[VLs(we) |2
- 3
16 32,y millge — VLs (W) [ol| VLs (wi)
+ 3 . 81)
With the truncated corollaries above, we have
1. If 0 < z < xyax, with probability at least 1 — 35
T _
1- VL
S (Bt (o)) < — et L= 5DV Lsowo)l
2"\ g[I, 3
2K log? (2/0), ifg =1,
T 1
16 el VEs(Wollz | v/2e(40)° K log? (2/9), ifo e (3,1],
3
2301(30 + 1
\/2(220+1 +2)T(20 + 1) + #Klogéﬂ/d) if0 > 1.
(82)
2. If x > zpax and 0 > 1 with probability at least 1 — 39
~ g ey (1= s)|[VELs(wi)|l2
_ Z <|| T e ,VLS(wt)> < — — 3
1 L
+ 6215:1 nt”v S(Wt)||249K10g0(2/6) (83)

3

Then, according to Lemma A.1, combining the truncated results of — Zle 1:(8es; , VLg(wy)) and
— S (B Teols s, VLs(wy)), we have the inequality:
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1. If 0 < z < xyax, With probability at least 1 — 36 — T

et el VLs(we)2
3

2KG\[SL, n?log* (1/6), ito =1,

T
= > me(g,, VLs(wr)) < —
t=1

T 1 .
N V2(40)9e KG\/>,_ n? log? (1/6), if 0 € (3,1],
230T(30 + 1) a ,
2(22041 £ 2)0(20 4+ 1) + ————KG | > n?log?(1/5) iff > 1.
t=1
2K log? (2/5), if6 =3,
16X ml VEs (w2 ) v/2e(46)° K log? (2/5), itoe (L1,

3

230T(30 4 1)

\/2(229+1 + 220 +1) + Klog?(2/8) if6 > 1.

3

(84)
2. If & > &pax and 0 > 1, with probability at least 1 — 36 — T'§
T T T
¢ n||VLg(w 1 KG
_Znt<gt7VLS(Wt)> < — Zt-l ]tH S( t)HQ + Znt10g0(1/5)
t=1 3 T t=1
16" L

3

Therefore, we refer to formula.(12) and formula.(13), and apply Lemma A.2 due to ¢, ~ N(0, cogply).
Then, to simplify the notation, we define 63, = dc*oj . With 63, = mgw and
probability 1 — 65 — 79, if 0 < z < xyax, We have

c 16 )

(3 — 5 ok log? (2/0) — 4v/ebap log* (1/8)) 3 mil| VLs(wi)ll2 < Ls(wi) — Ls(ws)

Te2B?log?(2/5) 2B log(2/4) 1 )
—|—(2,6m2dc og(/ +25\/7c og/ Z

(86)
if ¢ < Tmax, We have
c 16 , )
(3 - 5K log”(2/6) — 4v/e6aplog? (1/6)) > mil|VLs(wy)ll2 < Ls(w1) — Ls(ws)
t=1
Tc2B2%1o 2/0) 2Blo (2/9) 1 L
+ (2maca LTIy fer e Blos(2/0) 3
n2e? P
87

where a = 2if 0 = 1/2, a = (40)¢? if § € (1/2,1] and a = (220+1 4 2)[(20 + 1) 4 2 LE0+D
if 6 > 1.

Afterwards,
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1. In case of light body, when 0 < = < Zpax and 6 > 1:

If K > Gqp, let § > 23 \/2aKlog (2/6), T = @(w) and n; = \F’ we obtain

r 3 8V2aKG\/ Y21 1} log? (1/9)
;ntHVLs(Wt)HQ < —\/%K log? (20) (Ls(w1) — Ls(wg)) + N log% 2/9)
3N n? - Tc232log (2/6) 2B10g *Blog(2/0) 1 52
" RaK log? (2/9) (2’8 2ed Ve T3’ )
< 3s(w) = Ls(ws)) 3\/%KG10%‘5(1/5)
T V2aK log? (2/5) V2aK log? (2/6)
| 6Bea® K log(2/9) 65\[\@Klog (2/6) 35(33\/%K10g%(2/5))2 58)
V2aK 1og%(2/5) V2aK log? (2/6) 2v2aK log? (2/8)

Therefore, with probability at least 1 — 6 — 7', we have
T
1 di log (1/9)
— VL <O(——=">),
7 22 IVEs(wl < 02225
then, with probability 1 — §, we have

T 3 %
L3 9L (w2 < oL T,

2 < e (89)

If K < 6qp, let § > 9y/ebqp log%(l/d), that is, ¢ > 27\/edqp 1og%(1/6), thus there exists
— _ ne _ 1 .
T =0 dlog(l/a))’ T > 1landn, = = that we obtain

T 1 \/QaKG\/Zlentzlog%(l/é)
IV Ls(we)|ls € ———————(Ls(w1) — Ls(w :

2 sl ey o) e e )
23:1772

2 P2 2
+ ==L <25erdTCBlog(2/5+2B\/7 Blog /) 1, 02>
Vebaplog?(1/6) +3

LS(Wl) Ls(ws) V2aKG KD ) @ ) )
\[Udplog (2/9) \[Udp + 2BeK log? (2/5)-1—26\[1 g2 (2/5)+ﬂ K log? (2/5).

(90)
Therefore, with probability 1 — 65 — 70, we have
lzT:HVL (wi)|l2 <O M)
T t:1 S t)2 = \/ﬁ ;
then, with probability 1 — §, we have
log (7'/9)
= VLs( <O(——————= 91
tzlll s(wi)l2 < ( \/E )- On

2. In case of heavy tail, when = > Ty ax:
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If0 =3 and K > Gap, let & > ‘5‘3\/2aKlog (2/6), T = O(

- 1
(1/5)) and 7y = 7 We
obtain
a 3 3V2aK G\ Y[, 7 log? (1/9)
Do mllVLs(w)ls € ——————(Ls(w1) - Ls(ws)) + T
=1 V2aK log?(2/9) V2aK log? (2/6)
Tc*B?log”(2 c*Blog(2 1
3Zt 177t (26m2€d C Og ( /6 +2B\/7 Og /6) - 02>
\/ﬁKlog (2/9) 2
< 3(Ls(wW1) = Ls(ws)) n 3v2aK G log? (1/6)
- \/%Klog%(Z/é) V2aK log%(2/5)
| 68ea®K?log(2/6) | 65/ev2aK log? (2/6) | 36(33v20K log? (2/6))? ©2)
V2aK log? (2/6) V2aK log? (2/5) 2v2aK log? (2/6)
Therefore, with probability at least 1 — 66 — T, we have
1 < d¥ log1(1/6)
=Y IIVLs(wi)ll2 < O(——="=),
T Ve
then, with probability 1 — J, we have
1 & di log®(T/5)
72 IVLs(wo)ll2 < O(——="). (93)
T2 Ve
If§ =1 and K < 6qp, thatis, c > %g;(w thus there exists T = Q(——2-), T > 1
dlog(1/8)
and 7, = ﬁ that we obtain
T 1 V2aK G\ 1, n? log? (1/0)
> il VLg(wi)ll2 € —————(Ls(w1) — Ls(ws)) + - T
=1 Vebap log(1/9) Vebap log?(1/6)
Zthl n;

2 2
N ! <2ﬁm2 ch B? log (2/9) +25\/7 Blog (2/6) 1 Be >
Vedaplog?(1/0) n? 2

LS(W1) Ls(Ws) V20K G K logk - @ ) )
S e logl@)s) | Vesay T Peklogt (2/0) T 2B elog? $(2/6) + p5 - K log* (2/0).

94
Therefore, with probability 1 — 65 — T'd, we have
1« d¥ log1(1/6)
T tz:; [VLs(we)l2 < @(T)v
then, with probability 1 — J, we have
1 & dt log? (T/6)
T ; [VLs (w2 < Q(T) (95)
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If 6 > 1, then term log (2/6) dominates the inequality. Let & > T Klog’(2/8), T =
@(m) and 7, = \F, we obtain

T 3 3V2aK G/ S n7log?(1/6)
;UtHVLS(Wt”b < m(LS(WI) — Lg(ws)) + V2aK 108" (2/5)

3N n? < Tc*B2log?(2/6) 2310g Blog(2/6) 1 )
+ —\/%K 1og9(2/6) 2[3m26d— + 264/ em 2[30

< 3(Ls(wy) — Ls(ws))

+3G + %BK log? (2/6) + 1368 K log? (2/6) + 38(17)%K log? (2/6).

V2aK log?(2/6)
(96)
As a result, with probability 1 — §, we have
T
1 log?(T/8)d3 log ¥ (T/9)
7 2 IVLs(we)ll2 < O ) O7)
T P \Vne
Consequently, integrate the above results on the condition that VLg(wy) > ¢/2.
For light body, we have
T
1 di log (T/9)
= 2 IVLs(wo)ll> < O(——="), (98)
T P Vne
For heavy tail, we have
T 1 o+1
1 d1log’"1(T/é
72 IV Es(wl < 0(= % 2, 99)

\/ne
with probability 1 — § and § > 1.

In a word, covering the two cases, we ultimately come to the conclusion with probability 1 — 4,
T = @(\/#w),T >landn = %:

1. In the heavy tail region:

T 1. g4l 1. 9 5
1 ) dilog’ " 1(T/§ di log®® (v/T)log*(T/56
> min { [V Ls(w) | [VLs(w) 3} < O AU AR sSCEVES I
ot (ne)2 (ne)2
@(d% log ¥ (T/5)(log®(T/8) + log® (VT) log(T/5)) )
8 (n)®
di log (T/6)lo log?® (VT
< o(d 1o i /)(On()l/(;) og (f)% (100)
€)2

where log(T/8) = logmax(o’e_l)(Tl/é). If # = 1 and K < 6gp, then
¢ = max (492Klog9(ﬁ),%g;(w). If 6 = % and K > &gp, then
¢ = max (42K 1og?(VT),33v2aK log?(2/8)).  If § > L, then ¢ =

max (4°2K log? (VT), 17K log? (2/9)).
2. In the light body region:

d* log1(T/5) d log(v/T) log (T/5)

=3 min {[VLs(wi)z, [V Ls (w3} < O

0 ;
= mor T (ne)? )
@(d% log* (7/6) (log* (7/9) + log(v/T) Ioa(T/4)) )
= (ne)%
) @(d% log# (T/8) log(v/T) ) (101)

- (ne)?
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where log(T/6) = log™™®=U(7/5).  1f 6 = 1 and K < Gap, then
¢y = max (2\/ 2aK loge(\/f), %‘W). If 0 = % and K > Gqp,
then ¢z = max (2\/2aKlog6(\/T)733\/2aK10g%(2/5)). If 6 > 1, then ¢ =

max (2v2aK log’ (VT), 17K log?(2/9)).
O

The proof of Theorem 5.3 is completed.
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F UNIFORM BOUND FOR DISCRIMINATIVE CLIPPING DPSGD

Theorem F.1 (Uniform Bound for Discriminative Clipping DPSGD). Under Assumptions 3.1, 3.2
and 3.3, combining Theorem 2 and Theorem 3, for any §' € (0, 1), with probability 1 — &', we have

d* log* (T/8)log(T/8) log™ (V/T)

T
%Zmin{HVLs(Wt)Hm||VLS(Wt)||§} <p*O( (ne)? )
t=1
+(1—p)« o(Liloe! (iﬁillog(ﬁ) )

where §' = 6!, + 6, 1og(T'/8) = log™*>*0=Y(T/§) and p is ratio of heavy-tailed samples.

Proof. We combine the subspace skewing error (Theorem 5.2) with the optimization bound of
Discriminative Clipping DPSGD (Theorem 5.3) in this section to align with our algorithm outline.
We have already discussed the error of traces in previous chapters and considered the condition of
additional noise that satisfies DP, obtaining an upper bound on the error that depends on the factor
@(%) This conclusion means that, under the high probability guarantee of 1 — 4, we can accurately
identify the trace of the per-sample gradient with minimal error, and classify gradients into the light
body and heavy tail based on the metric.

Specifically, based on statistical characteristics, approximately 5% -10% of the data will fall into
the tail part. Thus, we select the top p% samples in the trace ranking as the tailed samples, where
p € [5%,10%)]. Although a subsampling strategy is used, uniform sampling does not change the
proportion of tail samples in the batch. Furthermore, based on the relationship between trace and
variance, the pB-th of sorted trace )\ir’p can be seen as the inflection point x,,,x of distribution
defined in truncated theories A.7 and A.8, which corresponds to the empirical sample results with
theoretical population variance and the approximation error has bounded in Theorem 5.2. Therefore,
in discriminative clipping DPSGD, we can accurately partition the sample into the heavy-tailed
convergence bound with a high probability of (1 — 4/,,) * p, and exactly induce the sample to the
bound of light bodies with a high probability of (1 — ¢/,,) * (1 — p), while there is a discrimination
error with probability ¢/ . Accordingly, we have

T
1 .
Culer, e2) = > min {|[VLs(wi)l2, [VLs(we)3}

t=1

= (1=10,,) *p* Crait(c1) + (1 = 8,,) * (1 = p) * Cuoay(c2) + 07, * [Crait(€1) — Chody (c2)].
(102)

where Ciai(c1) means the convergence bound of 1 Zthl min {[|VLgs(wy)]l2, [[VLs(w)|13}

when AT > AP e g 1°g%<T/5)(15g)(i/5)IOgQQ‘m)
ne)2

) 1.5
+ S min {[VLs (1)l [V Ls(wn)[§} when 0 < A5 < AP e, Q(ES I/ 0V
with ¢; = 4°2K log? (VT) and ¢ = 2v/2aK log? (VT).

If6 = %, then Ciail(c1) = Chody(c2) and 6,,, — 0, thus we have

d* log1 (T/6)1log(V'T)

(ne)’

, Chody(c2) denotes the bound of

Culct, c2) = Crait(cr) = O( ). (103)

Ifo > %, then Ciaii(c1) > Chody(c2), and we need to proof that Cyair(c1) > Cy(c1, c2), ie.

Crail(c1) > Culcr, c2)
> (1—=10,,) *p* Crani(c1) + (1 = 0,) * (1 — p) * Choay(c2) + 01, * |Crait(c1) — Chody(c2)]-
By transposition, we have

(1= 08;,)(1 = p) * Crair(c1) + 6, * Coody(ca) > (1= 37,) % (1 = p) * Crody(c2)-
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Then, we have

Opm ,
(1—=6)x(1— p)cbody(CQ)a (104)

Gtail(cl) > Gbody (02) -

5’ ..
due to = 2 m=p > 0, it is proved that Ciaj(c1) > Cy(c, c2).
From another perspective, for C,(c1, ¢2), with probability 1 — ¢/, we have

Culer,c2) = p* Cpait(€1) + *(1 — p) * Chody (c2). (105)
In other words, for the formula.(102), we define &' = ¢/, + &. Then, with probability 1 — §’, we have

d* log? (T/5)log(T/6) log™ (VT)

T
%Zmin{HVLs(Wt)Hm||VLS(Wt)||§} <p*0( (ne)? )
t=1 €)2
o p o log4((j;/€(;)élog(\/f)) (106)
where 1og(T/6) = log™®(®0=D (/).
O

The proof of Theorem 5.4 is completed.

29



Under review as a conference paper at ICLR 2025

G SUPPLEMENTAL EXPERIMENTS

G.1 IMPLEMENTATION DETAILS AND CODEBASE

All experiments are conducted on a server with an Intel(R) Xeon(R) E5-2640 v4 CPU at 2.40GHz
and a NVIDIA Tesla P40 GPU running on Ubuntu. By default, we uniformly set subspace dimension
k = 200, € = €4, + €qp With € = €qp, p = 10% and sub-Weibull index 6 = 2 for any datasets. In
particular, we use the LDAM Cao et al. (2019) loss function for heavy-tailed tasks.

1.

MNIST: MNIST has ten categories, 60,000 training samples and 10.000 testing samples.
We construct a two-layer CNN network and replace the BatchNorm of the convolutional
layer with GroupNorm. We set 40 epochs, 128 batchsize, 0.1 small clipping threshold, 1
large clipping threshold, and 1 learning rate.

. FMNIST: FMNIST has ten categories, 60,000 training samples and 10.000 testing samples.

we use the same two-layer CNN architecture, and the other hyperparameters are the same as
MNIST.

. CIFARI10: CIFARI10 has 50,000 training samples and 10,000 testing. We set 50 epoch,

256 batchsize, 0.1 small clipping threshold and 1 large clipping threshold with model Sim-
CLRvV2 Tramer & Boneh (2021) pre-trained by unlabeled ImageNet. We refer the code for
pre-trained SImCLRv2 to https://github.com/ftramer/Handcrafted-DP.

. CIFAR10-HT: CIFAR10-HT contains 32x32 pixel 12,406 training data and 10,000 testing

data, and the proportion of 10 classes in training data is as follows: [0:5000, 1:2997,
2:1796, 3:1077, 4:645, 5:387, 6:232, 7:139, 8:83, 9:50]. We train CIFAR10-HT on model
ResNeXt-29 Xie et al. (2017) pre-trained by CIFAR100 with the same parameters as
CIFAR10. We can see pre-trained ResNeXt in https://github.com/ftramer/
Handcrafted-DP and CIFAR10-HT with LDAM-DRW loss function in https://
github.com/kaidic/LDAM-DRW.

. ImageNette: ImageNette is a 10-subclass set of ImageNet and contains 9469 training

examples and 3925 testing examples. We train on model ResNet-9 He et al. (2016) without
pre-train and set 1000 batchsize, 0.15 small clipping threshold, 1.5 large clipping threshold
and 0.0001 learning rate with 50 runs.

. ImageNette-HT: We construct the heavy-tailed version of ImageNette by the method in Cao

et al. (2019). ImageNette-HT contains 2345 trainging data and 3925 testing data, which is
difficult to train, and proportion of 10 classes in training data follows: [0:946, 1:567, 2:340,
3:204, 4:122, 5:73, 6:43, 7:26, 8:15, 9:9]. The other settings are the same as ImageNette.
Our ResNet-9 refersto https://github.com/cbenitez81/Resnet 9/ with 2.5M
network parameters.

. E2E: We have conducted experiments on transform-based NLP tasks for the dataset E2E

with BLEU metric and GPT-2 model, which generates natural language from tabular data
in the catering industry. We adopt the DPAdam optimizer and use the same settings as ?,
where small clipping threshold ce = 0.1 and large clipping threshold ¢; = 10 * c5.

Moreover, we open our source code and implementation details for discriminative clipping on the
following link: https://anonymous.4open.science/r/DC-DPSGD-N-25C9/.
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G.2 EFFECTS OF PARAMETERS ON TEST ACCURACY

Due to space limitations, we place the remaining ablation study on MNIST, FMNIST, ImageNette
and ImageNette-HT in Table 5 and Table 6. We acknowledge that since ImageNette-HT has only
2,345 training data, which is one-fifth of ImageNette, it is difficult to support the convergence of the
model. In the future, we will improve this aspect in our work.

Table 5: Effects of parameters on test accuracy with MNIST and FMNIST.

Subspace-k €qr + Edp sub-Weibull-6
None\ 100 \ 150 \ 200 2+6 \ 4+4 \ 6+2 172 \ 1 \ 2

MNIST | 98.16 | 98.48 | 98.66 | 98.72 | 98.78 | 98.72 | 98.42 | 98.61 | 98.69 | 98.72
FMNIST | 85.78 | 87.61 | 87.71 | 87.80 | 87.70 | 87.80 | 87.26 | 87.40 | 87.55 | 87.80

Dataset

Table 6: Effects of parameters on test accuracy with ImageNette and ImageNette-HT.

Subspace-k €r + Edp sub-Weibull-6
None\ 100 \ 150 \ 200 2+6 \ 4+4 \ 6+2 172 \ 1 \ 2

ImageNette | 66.08 | 68.34 | 69.00 | 69.29 | 68.54 | 69.29 | 68.12 | 67.91 | 68.87 | 69.29
ImageNette-HT | 29.33 | 31.44 | 33.17 | 33.70 | 3425 | 33.70 | 31.13 | 33.05 | 33.37 | 33.70

Dataset

To investigate the effect of p, we have added a set of new experiments by varying p € [1%, 20%)].
The results are presented in Table 7. We observe that the test accuracy is minimally affected when
p is less than 10%, but shows a negative impact at around 20%. We believe that the proportion of
heavy-tailed samples aligns with statistical expectations. Assigning larger clipping thresholds to more
light-body samples introduces more noise, while conservatively estimating heavy-tails does not fully
exploit the algorithm’s potential.

Table 7: Effects of parameter on p.

‘ Heavy tail ratio-p
‘ 20  10% 5% 2% 1%

ImageNette ‘ 66.82 69.29 68.44 6845 68.75

Dataset
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