
A Additional details and definitions

Throughout the appendices, we use square brackets, rather than braces, to denote composite bias
models: this is to emphasize that the transformers are ordered, and that alternate orderings often
result in distinct bias sets.

Filtering composite bias models. Filtering a composite bias model requires us to apply filter
piece-wise, i.e., [MISSg1m , FLIPg2l , FAKEg3k ](T )φ = [MISSg1∧φm , FLIPg2l , FAKEg3k ](Tφ).

pra for FAKE. Given ci samples in T with label i, we use ki = min(k, ci) and then define

prai (FAKEk(T )) =

[
ci − ki
|T | − ki

,
ci

|T | −
∑
j 6=i kj

]
(11)

For the edge case where ci = |T | and ci 6 k for any i, we define praj (T ) = [0, 1] for all j ∈ [1, n]. A
similar edge case applies, when necessary, to the composite definition.

Optimizing pra when g looks at the label. If g conditions on the label, then we can improve the
precision of pra by defining each component individually. Suppose g(x, y) = y ∈ S ∧ g′(x), where
S ⊂ {1, · · · , n} and g′ is a predicate that only conditions on features.

For MISSgm, we define

prai (MISSgm) =



[
ci
|T | ,

ci+m
|T |+m

]
if i ∈ S and |S| = 1[

ci
|T |+m ,

ci+m
|T |+m

]
if i ∈ S and |S| ≥ 2[

ci
|T |+m ,

ci
|T |

]
else

(12)

For FLIPgl , we use lai = min(l, |{(x, y) ∈ T | y = i ∧ g(x, y)}|) and lbi = min(l, |{(x, y) ∈ T |
y 6= i ∧ g(x, y)}|). Then, we define

prai (FLIPgl ) =



[
ci−lai

|T | ,
ci
|T |

]
if i ∈ S and |S| = 1[

ci−lai

|T | ,
ci+lbi
|T |

]
if i ∈ S and |S| ≥ 2[

ci
|T | ,

ci+lbi
|T |

]
else

(13)

For FAKEgk, we use kai = min(k, |{(x, y) ∈ T | y = i ∧ g(x, y)}|) and kbi = min(k, |{(x, y) ∈ T |
y 6= i ∧ g(x, y)}|). Then, we define

prai (FAKEgk) =



[
ci−kai

|T |−kai
, ci|T |

]
if i ∈ S and |S| = 1[

ci−kai

|T |−k ,
ci

|T |−kbi

]
if i ∈ S and |S| ≥ 2[

ci
|T | ,

ci
|T |−kbi

]
else

(14)

We prove that the above definitions are sound and precise in Appendix D. If desired, the above
definitions can be pieced together to provide a more precise definition for composite bias models.
However, we limit ourselves to just the singleton transformers because notation becomes very messy,
as we have to keep track of many variables indicating how many data elements satisfy the various
conditions.

pra for composite bias models with multiple versions of the same transformer. If a bias model
contains multiple instances of the same transformer, e.g., B = [FLIPg1l1 , FLIPg2l2 ], we can combine
everything into a single transformer. Formally, given

B = [MISS
g′1
m1 , . . . ,MISS

g′j
mj , FLIP

g′j+1

l1
, . . . , FLIP

g′j+p

lp
, FAKE

g′j+p+1

k1
, . . . , FAKE

g′j+p+q

kq
] (15)

we define
m = m1 + . . .+mj
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g1 = g′1 ∨ · · · ∨ g′j
li = min(l1 + . . .+ lp, | ∪i∈[1,p] Tgj+i(x,y)∧y=i|)

g2 = g′j+1 ∨ · · · ∨ g′j+p
ki = min(k1 + . . .+ kp, | ∪i∈[1,q] Tgj+p+i(x,y)∧y=i|)

and
g3 = g′j+p+1 ∨ · · · ∨ g′j+p+1

Then, we can use the formula shown in Equation 8 to compute pra. We show in Appendix C that
these definitions are sound.

Size (size). We define size(MISSgm) = [|T |, |T | + m], size(FLIPgl ) = [|T |, |T |], and size(FAKEgk) =
[|T | − k, |T |]. Putting this all together, we have size([MISSg1m , FLIPg2l , FAKEg3k ]) = [|T | − k, |T |+m].

B Proof of optimal composition of transformers

As stated in § 3, when composing transformers we want to apply them in an order that results in
the largest composite bias model. To illustrate the concept of composite bias models’ relative size,
consider B = [MISSg11 , FLIPg21 ] and B′ = [FLIPg21 ,MISSg11 ] where g1 ,(gender=female ∧ label=1)
and g2 ,(gender=female). I.e., B adds one data point subject to g1 and then flips the label of one
data point subject to g2, whereas B′ performs these two operations in the opposite order. Under B,
we can use MISS to add the data point (x, y) = 〈gender=female,label=1〉 and then use FLIP to change
y to 0. However, under B′, we cannot alter the point that MISS adds, so B and B′ are not equivalent.
In this case, B can construct every dataset that B′ can construct (but not vice-versa), so we write
B′ ⊂ B and say that B is larger than B′.

First we consider the case when there are multiple transformers of the same type.
Theorem 3. The bias models B1 = [MISSg1m1

,MISSg2m2
] and B2 = [MISSg2m2

,MISSg1m1
] are equivalent

(and likewise for FAKE and FLIP, as long as no FLIP predicate conditions on the label).

Proof. Missing data. The choice of what missing data to add has no bearing on what is already in
(or not in) the dataset. Thus we can add m1 elements that satisfy g1 followed by m2 elements that
satisfy g2, or do the operators in the reverse order, but the end result is the same.

Label-flipping. Suppose B = [FLIPg1l1 , FLIPg2l2 ], where g1 and g2 do not condition on the label. We
want to show that B is equivalent to B′ = [FLIPg2l2 , FLIPg1l1 ].

Consider an arbitrary T ′ ∈ B(T ). Each data point in T ′ is either (1) untouched by FLIPg1l1 and FLIPg2l2 ,
(2) flipped only by FLIPg1l1 , (3) flipped only by FLIPg2l2 , or (4) flipped by both FLIPg1l1 and FLIPg2l2 . If (1),
clearly this is obtainable by B′ since we did nothing. If (2), then since the data point is untouched by
FLIPg2l2 , the data point can be flipped uninterrupted by FLIPg1l1 (similarly for (3)). If (4), then – since
neither g1 nor g2 conditions on the label nor specifies what the new label can be – we can still flip the
label twice and end up with the same configuration. The same arguments hold had we started with
T ′′ ∈ B′. Therefore, B and B′ are equivalent.

Fake data. The argument for fake data is similar.

We can extend the proof of Theorem 3 to arbitrarily many transformers of the same type.

Note that if FLIP conditions on the label, this proof does not hold. To continue with the terminology
from the proof, if gi ,(label=a), then applying FLIP

gj
lj

first to some element (x, a) yields (x, a′),
which may no longer eligible to be flipped by FLIPgili .

Next, we show that there is an optimal way to compose transformers of different types. We define
optimal as largest, that is, some B′ is optimal compared to B if B ⊆ B′. In other words, this notation
says that every dataset created by B can also be created by B′. For the next theorem and its proof we
assume there is only one instance of each transformer type; however, in conjunction with Theorem 3
we can extend it to include multiple instances of the same transformer type.
Theorem 4. B = [MISS, FLIP, FAKE] is the optimal order to apply the transformers MISS, FLIP, and
FAKE (i.e., any other ordering B′ of these transformers will satisfy B′ ⊆ B).
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Proof. We will show that other orderings of MISS, FLIP, FAKE do not produce any biased datasets
that do not also occur in [MISS, FLIP, FAKE]. For conciseness, we will write [MISS, FLIP, FAKE] as
OPT.

1. [MISS, FAKE, FLIP]: We consider the set of datasets S achieved after applying MISS, FAKE, and
then FLIP. Fix an arbitrary T ′ ∈ S. T ′ was constructed from T by some sequence of adding,
removing, and flipping data points. We have these categories for (potential) data points in T ′: (1)
untouched data points, (2) added data points, (3) added then removed data points, (4) added then
flipped data points, (5) removed data points, and (6) flipped data points. (1), (2), (5), and (6) apply
single (or no) operators, so clearly are also attainable through OPT. MISS occurs before both FLIP
and FAKE in OPT, so (3) and (4) are attainable, as well.

2. [FLIP,MISS, FAKE]: We consider the set of datasets S achieved after applying FLIP, MISS, and then
FAKE. Fix an arbitrary T ′ ∈ S. T ′ was constructed from T by some sequence of flipping, adding, and
removing data points. We have these categories: (1) untouched data points, (2) flipped data points,
(3) flipped then removed data points, (4) added data points, (5) added then removed data points, and
(6) removed data points. (1), (2), (4), and (6) apply single (or no) operators, so clearly they are also
attainable through OPT. Since flipping and adding each come before removing in OPT, (3) and (5)
are obtainable as well.

3. [FLIP, FAKE,MISS]: We consider the set of datasets S achieved after applying FLIP, FAKE, and then
MISS. Fix an arbitrary T ′ ∈ S. T ′ was constructed from T by some sequence of flipping, removing,
and adding data points. We have these categories: (1) untouched data points, (2) flipped data points,
(3) flipped then removed data points, (4) removed data points, and (5) added data points. (1), (2), (4),
and (5) apply single (or no) operators, so clearly they are also attainable through OPT. Since flipping
comes before removing in OPT, (3) is obtainable as well.

4. [FAKE,MISS, FLIP]: We consider the set of datasets S achieved after applying FAKE, MISS, and
then FLIP. Fix an arbitrary T ′ ∈ S. T ′ was constructed from T by some sequence of removing,
adding, and flipping data points. We have these categories: (1) untouched data points, (2) removed
data points, (3) added data points, (4) added then flipped data points, and (5) added data points. (1),
(2), (4), and (5) apply single (or no) operators, so clearly they are also attainable through OPT. Since
flipping comes before removing in OPT, (3) is obtainable as well.

5. [FAKE, FLIP,MISS]: We consider the set of datasets S achieved after applying FAKE, FLIP, and
then MISS. Fix an arbitrary T ′ ∈ S. T ′ was constructed from T by some sequence of removing,
flipping, and adding data points. We have these categories: (1) untouched data points, (2) removed
data points, (3) flipped data points, and (4) added data points, Each of these apply single (or no)
operators, so clearly they are also attainable through OPT.

We were not able to construct a dataset not also in OPT through any other ordering of the operators,
therefore, OPT is optimal.

C Proofs of soundness

Proof of Theorem 4.2. pra is sound.

Proof. We show MISS as a simple example to illustrate our approach, and then we show the proof for
composite bias. We omit the proofs for FLIP and FAKE because they (like MISS) are special cases of
composite.

Missing data. Given a dataset T with n classes, suppose our bias set is MISSgm(T ). Furthermore,
suppose that ci samples in T have label i. We define mi ∈ [0,m] to be the number elements we add
with label i, and m′i =

∑
j 6=imj . Then, we can write the proportion of i’s as a function

F (mi,m
′
i) =

ci +mi

|T |+mi +m′i
(16)

The partial derivatives ofF have values δF
δmi

> 0 and δF
δm′

i
< 0 over the entire domain [0,m], therefore,

any conclusions we draw over R will also apply over the discrete integer domain. Therefore, to
minimize F we choosemi = 0 andm′i = m, and do the reverse to maximize F . Thus, Fmin = ci

|T |+m
and Fmax = ci+m

|T |+m . Since [Fmin, Fmax] ⊆ prai (MISSgm(T )), pra is sound.
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Composite. Given a dataset T with n classes, suppose that our bias model is B =
[MISSg1m , FLIPg2l , FAKEg3k ]. Furthermore, suppose that in T , ci samples have label i.

First, we consider how many elements we can add, flip, or remove of each label. Under MISS, we can
add m of label i for all i. Under FLIP, we can flip up to l labels from label i to some j 6= i, assuming
that there are at least l elements (x, y) that satisfy g2(x, y) and y = i. Similarly, the maximum
number of labels we can flip from any label j 6= i to i is bounded both by l and by the number of
elements that satisfy g2 and have label j. Note that the elements we can flip are not just limited to
T : we can also flip any of the newly-added m elements. Formally, we define lai = min(|{(x, y) ∈
T | y = i ∧ g2(x, y)}|+m, l), and lbi = min(|{(x, y) ∈ T | y 6= i ∧ g2(x, y)}|+m, l). Similarly,
under FAKE we must also consider the elements added by MISS and those flipped from j 6= i to
i by FLIP. Therefore, we define kai = min(|{(x, y) ∈ T | y = i ∧ g3(x, y)}| + m + lbi , k) and
kbi = min(|{(x, y) ∈ T | y 6= i ∧ g3(x, y)}|+m+ lai , k).

We will show that under the specified bias model, the proportion of i’s in the dataset is always
between (ci − lai − kai)/(|T | − kai +m) and (ci +m+ lbi)/(|T | − kbi +m).

Intuitively, we consider how to modify the proportion of i’s in T . This proportion decreases by (1)
flipping elements from class i to some class j 6= i, (2) removing elements of class i, and (3) adding
elements of a class other than i. Therefore, the fraction is minimized by doing (1), (2), and (3) as
much as the bias model allows.

Formally, let mi ∈ [0,m] be the number of elements added with label i, m′i ∈ [0,m] =
∑
j 6=imj ,

li ∈ [0, lai ] be the number of elements flipped from class i to any other class, l′i ∈ [0, lbi ] =
∑
j 6=i li,

ki ∈ [0, kai ] be the number of elements removed with label i, k′i ∈ [0, kbi ] =
∑
j 6=i ki.

Then, we can write the proportion of i’s as a function

F (mi,m
′
i, li, l

′
i, ki, k

′
i) =

ci +mi − li + l′i − ki
|T |+mi +m′i − ki − k′i

(17)

We consider the partial derivative of F with respect to each variable. For all input in the domain, we
have δF

δmi
> 0, δF

δm′
i

< 0, δFδli < 0, δFδl′i > 0, δFδki < 0, and δF
δk′i

> 0.

Note that each partial derivatives is monotone over all values in the domain. Thus, they are also
monotone over integers, so any conclusions we yield over the real numbers can be relaxed to integers,
as well. To minimize F , we will maximize each variable whose partial derivative is negative, and
minimize each variable whose partial derivative is positive. That is, we choose mi = 0, m′i = m,
li = lai , l

′
i = 0, ki = kai , and k′i = 0 to minimize F , yielding

Fmin =
ci − lai − kai
|T |+m− kai

Conversely, to maximize F we maximize each variable whose partial derivative is positive and
minimize each variable whose partial derivative is negative, yielding

Fmax =
ci +m+ lbi
|T |+m− kbi

[Fmin, Fmax] ⊆ prai (B(T ), therefore, pra is sound.

Multiple composite bias models. Suppose

B = [MISS
g′1
m1 , . . . ,MISS

g′j
mj , FLIP

g′j+1

l1
, . . . , FLIP

g′j+p

lp
, FAKE

g′j+p+1

k1
, . . . , FAKE

g′j+p+q

kq
]

and
B′ =

[
MISS

∨
i∈[1,j] gi∑
i∈[1,j]mi

, FLIP

∨
i∈[j+1,j+p] gi∑
i∈[1,p] li

, FAKE

∨
i∈[j+p+1,j+p+q] gi∑
i∈[1,q] ki

]
We want to show that if (x, y) ∈ T ∪ T ′ is altered by B, it can be altered by B′ (in other words, we
want to show that B ⊆ B′).
Case 1: (x, y) was added by a transformer MISSgimi

for i ∈ [1, j]. Therefore, gi(x) and

(
∨
i∈[1,j] gi)(x), as well, so x can be added by MISS

∨
i∈[1,j] gi∑
i∈[1,j]mi

.

17



Case 2: (x, y) ∈ T was flipped to (x, y′) ∈ T ′ by FLIP
gj+i

li
for i ∈ [1, p]. This means that gj+i(x), so

by extension, (
∨
i∈[j+1,j+p] gi)(x), which means that x’s label can be flipped by FLIP

∨
i∈[j+1,j+p] gi∑
i∈[1,p] li

.

Case 3: (x, y) ∈ T was removed by FLIP
gj+p+i

ki
for i ∈ [1, q]. This means that gj+p+i(x), and thus∨

i∈[j+p+1,j+p+q] gi(x). Therefore (x, y) can be removed by FAKE

∨
i∈[j+p+1,j+p+q] gi∑
i∈[1,q] ki

.

To conclude, any modification to T that we can make under B is also attainable under B′, therefore,
if B′ is sound, then B is sound, as well.

Proposition 1. Abstract filtering is sound.

Proof. To prove soundness for filtering, we need to show that T ′ ∈ B(T ) =⇒ T ′φ ∈ B(T )φ.

Missing data. Consider T ′ ∈ MISSgm(T ). Since T ′ ∈ MISSgm, we have T ′ = T ∪ S where
|S| 6 m and ∀(x, y) ∈ S.g(x, y). Therefore, T ′φ = Tφ ∪ Sφ. Since Sφ ⊆ S, then |Sφ| 6 m and
∀(x, y) ∈ Sφ.g(x, y). then Tφ ∪ Sφ ∈ MISSg∧φm , satisfying the claim.

Label flipping. Consider T ′ ∈ FLIPgl (T ). Since T ′ ∈ FLIPgl (T ), we know that T ′ = R ∪ S where
R ⊆ T , |S| 6 l, and T = R∪{(x, y) | (x, y′) ∈ S}. Additionally, we have (x, y) ∈ S =⇒ g(x, y).
Consider T ′φ = Rφ ∪ Sφ. Since R ⊆ T , then Rφ ⊆ Tφ. Since (x, y) ∈ S =⇒ (x, y′) ∈ T and
φ does not condition on the label, then (x, y) ∈ Sφ =⇒ (x, y′) ∈ Tφ. Since Sφ ⊆ S, we have
|Sφ| 6 l. In total, this means that Tφ ∈ FLIPgl (Tφ).

Fake data. See [16].

Composite. Suppose B = [MISSg1m , FLIPg2l , FAKEg3k ]. We want to show that B(T )φ ⊆ B′(Tφ),
where B′ = [MISSg1∧φm , FLIPg2l , FAKEg3k ]. Consider T ′ ∈ B(T ). Each (x, y) ∈ T ′ satisfies either (i)
(x, y) ∈ T , (ii), (x, y′) ∈ T (for y′ 6= y), or (iii) (x, y′) /∈ T . If (i), then x ∈ T ′φ =⇒ x ∈ Tφ, and
likewise for ¬φ. If (ii), x ∈ T ′φ =⇒ x ∈ Tφ (since φ ignores the label), and likewise for ¬φ. If (iii),
the x was added by MISS. x ∈ T ′φ =⇒ φ(x) =⇒ x can be added by MISSg1∧φm , and if x /∈ Tφ, this
means that x cannot be added by MISSg1∧φm . Finally, there is a fourth category of elements: those in
T \ T ′. If x ∈ T \ T ′, then x was removed by FAKE. If φ(x), then x can be removed from T to make
T ′, otherwise, x cannot be removed from T , so it must also be contained in T ′.

Thus we have shown that T ′φ can be constructed from Tφ using B′, therefore, filtering is sound.

Proposition 2. impa is sound

Proof. To show that impa is sound, we must show that T ′ ∈ B(T ) =⇒ imp(T ′) ∈ impa(B(T )).
By § 4.2, pr(T ′) ∈ pr(B(T )). It follows from interval arithmetic imp(T ′) ∈ impa(B(T )).

Proposition 3. size is sound.

Proof. Given a bias model B = [MISSg1m , FLIPg2l , FAKEg3k ] and a dataset T , we can write the size
of T ′ ∈ B(T ) as |T | − k′ + m′, where k′ ∈ [0, k] and m′ ∈ [0,m]. Clearly, |T | − k′ + m′ is
minimized by choosing k′ = k and m′ = 0, and maximized by choosing k′ = 0 and m′ = m. Since
|T | − k ∈ size(B) and |T |+m ∈ size(B), we see that size is sound.

Proposition 4. costa is sound.

Proof. We need to show that if T ′ ∈ B(T ) and φ ∈ Φ, then cost(T ′, φ) ∈ costa(B(T ), φ). By
Proposition 1, we know that T ′φ ∈ B(T )φ, which means that by Proposition 3, |T ′φ| ∈ size(B(T )φ),
and similarly we can derive that |T ′¬φ| ∈ size(B(T )¬φ). Additionally, by Proposition 2, we know
that imp(T ′φ) ∈ impa(B(T )φ) and imp(T ′¬φ) ∈ impa(B(T )¬φ). By the rules of interval arithmetic,
if a ∈ [a0, a1] and b ∈ [b0, b1], then ab ∈ [a0, a1]× [b0, b1] and a+ b ∈ [a0, a1] + [b0, b1]. Therefore
we can conclude that cost(T ′, φ) ∈ costa(B(T ), φ), i.e., costa is sound.

Proposition 5. splita is sound.
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Proof. We want to show that if T ′ ∈ B(T ), then split(T ′) ∈ splita(B(T )).

Suppose γ = split(T ′). Then, ∀φ ∈ Φ, cost(T ′, φ) ≥ cost(T ′, γ).

Define φ∗ such that lub = ub(cost(T, φ∗)), where ub takes the upper bound of an interval. Since
φ∗ ∈ Φ, cost(T ′, γ) 6 cost(T ′, φ∗). By Proposition 4, cost is sound, therefore cost(T ′, γ) ∈
costa(B(T ), γ) and cost(T ′, φ∗) ∈ costa(B(T ), φ∗). And thus we have lb(costa(B(T ), γ)) 6
ub(costa(B(T ), φ∗)) = lub. Thus, γ ∈ splita(B(T )).

Proof of Theorem 2.

Proof. Given Φa = splita(B(T )), if |infera(B(T ),Φa, x)| = 1, then we know

∃y.∀φ ∈ Φa.

{
if φ(x) then argmaxi pr

a
i (B(T )φ) = y

if ¬φ(x) then argmaxi pr
a
i (B(T )¬φ) = y

Given T ′ ∈ B(T ), we know from Proposition 5 that split(T ′) ∈ splita(T ) = Φa(T ). Therefore,
infer(T ′, split(T ′), x) = y, so the algorithm is robust on x. (Note that we defined B(T ) such that
T ∈ B(T ), therefore, the original prediction is also y.)

D Precision

Intuitively, an abstraction is precise if the abstraction cannot be improved. Formally, our abstraction
is precise iff, it is sound and given prai (B(T )) = [ai, bi], then for each i there is some T ′ ∈ B(T )
such that pri(T

′) = ai and some T ′′ ∈ B(T ) such that pri(T
′′) = bi.

Theorem 5. pra is precise for missing data, label-flipping, and fake data.

Proof. Missing data (non-targeted). In the proof of Theorem 4.2, we show that the minimum
proportion of i’s is ci

|T |+m and the maximum proportion of i’s is ci+m
|T |+m . Since these bounds are equal

to pra’s minimum and maximum, the interval is precise.

Proofs for label-flipping and fake data (non-targeted) similarly follow from Theorem 4.2.

Targeted. Next, we will show that the definitions of pra provided in Equations 12-14 are precise.
First, we must show that these definitions are sound (as soundness is a prerequisite for precision).

To show that Eq. (12) is sound, we need to consider three cases (we use S such that g(x, y) = y ∈
S ∧ g′(x)): first, i ∈ S and |S| = 1. In this case, we can add up to m elements of class i, and no
elements of class j 6= i. Therefore, the minimum proportion of i’s is the original proportion: ci

|T | , and
the maximum is ci+m

|T | . Second, i ∈ S and |S| ≥ 2. In this case, we can add elements with label i but
we can also add elements with label j 6= i. As such, the minimum proportion of i’s is achieved by
addingm elements with label j, and the maximum proportion of i’s is achieved by addingm elements
with label i. Therefore, the minimum proportion of i’s is ci

|T |+m and the maximum proportion of i’s
is ci+m
|T |+m .

Proofs of soundness for Equations 13 and 14 follow similarly.

To show precision, note that in the soundness proof we described exactly how to achieve the minimum
and maximum bounds of prai . As such, we have shown that the pra definition in Eq. (12) is precise.
(Similar conclusions can be drawn based on the proofs for label-flipping and fake data.)

pra is not precise for composite bias because the auxiliary variables lai , lbi , kai , and kbi are over-
approximate. As a motivating example, consider a bias model [MISS1, FLIPg2] over dataset T with
classes {0, 1} where c0 = 2, c1 = 5, and |{(x, y) ∈ T : g(x, y) ∧ i = 0}| = 1. By definition,
la0 = 2, yielding a minimum proportion of 0’s to be 2−2

7+2 = 0. However, the precise lower bound is
1
9 : to minimize the proportion of 0’s, we add 2 elements with label 1 and flip the element that satisfies
g from label 0 to label 1.
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Table 2: Certification rates of MNIST 1/7 binary for various bias models, using decision trees of
depth 2. The composite bias models show cumulative bias, e.g., 0.2% MISS + FAKE bias equates to
0.1% bias of each MISS and FAKE. Note that the scale for perturbation set size is slightly different
(larger) than that in Table 1.

Bias amount as a percentage of training set size

Bias type Dataset 0.05 0.1 0.2 0.4 0.7 1.0

MISS MNIST-1-7 binary 100.0 100.0 93.0 88.0 85.0 68.0

FLIP MNIST-1-7 binary 100.0 95.0 88.0 70.0 63.0 38.0

MISS + FAKE MNIST-1-7 binary 100.0 100.0 93.0 88.0 85.0 68.0

MISS + FLIP MNIST-1-7 binary 100.0 95.0 91.0 87.0 67.0 62.0

Perturbation set size: < 1010 < 10100 < 101000 < 1010000 > 1010000 infinite

Table 3: Time and memory requirements for certifying a single test sample under different FLIP bias
models on Adult Income with depth=2.

Poisoning Amount (%)
0.1 0.2 0.3 0.4 0.5 0.6

Time (s.) 0.60 73.9 210 810 1800 5200
Memory (GB) 0.01 0.8 3.6 9.7 21 60

E Additional experimental data

E.1 MNIST 1/7 Binary

We used MNIST 1/7 (the limitation of MNIST to just 1’s and 7’s, with training n=13,007, as has been
used in works including [16, 36]). We round each pixel to 0 or 1 (i.e., used a black-and-white image
rather than a grayscale one). The accuracy of MNIST 1/7 binary (97.4% at depth 2) is comparable to
that of MNIST 1/7, but the time and memory requirements on Antidote-P are much less.

Table 2 shows effectiveness data for MNIST 1/7 binary. We see that we are able to achieve high
robustness certification rates, despite incredibly large perturbation set sizes. Notable, for MISS0.1%,
we achieve 100% robustness even with a perturbation set size of over 103058, and for MISS1%, we
achieve 68% robustness with a perturbation set size larger than 1030460.

E.2 Performance

We performed experiments on an HTCondor system, allowing us to perform many experiments in
parallel. Each experiment ran robustness tests on a given bias model and dataset for between one
and 1000 test samples (depending on the bias model and dataset). We used a single CPU for each
experiment, and requested between 1 and 96GB of memory, depending on the bias model and dataset.

Bias model. Time and memory requirements increase exponentially as the amount of bias increases,
as shown in Table 3 for the Adult Income dataset under the FLIP bias model. Other datasets typically
required less than 100 ms per test sample. Additionally, bias models that yield lower certifiable
robustness for a given bias threshold have correspondingly larger time and memory requirements
(e.g., 810s and 9.7GB of memory to yield 34.8% robustness for FLIP0.4% as compared with 77s and
1.3GB of memory to yield 60.3% robustness for MISS0.4%).

Datasets. The size and complexity of the feature space is most influential in determining time and
memory requirements. Experiments on the Adult Income dataset were more resource-intensive than
those on Drug Consumption or COMPAS, a fact that can be explained by Adult Income having more
unique feature values than the other datasets (22,100 for Adult Income vs. 219 for Drug Consumption
and 53 for COMPAS). For each unique value of any feature, the algorithm checks an additional
predicate, which explains the additional time and memory needs.
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Table 4: Robustness certification rates of COMPAS and Drug-Consumption datasets under FLIP for
different decision-tree depths.

Poisoning
amount (%)

COMPAS Drug Consumption
depth 1 2 3 depth 1 2 3

0.10 71.5 51.5 34.0 94.5 83.8 8.5
0.20 47.8 27.7 23.9 94.5 55.9 4.5
0.50 9.3 2.5 0.7 85.1 27.5 0.5
1.00 3.0 0.7 0 7.1 0.8 0

Complexity of decision-tree algorithm. Increasing the depth of the decision tree not only requires
additional time to essentially re-run the algorithm at each internal node, but also leads to lower
certifiable-robustness rates, as shown in Table 4. This is because we must assume worst-case bias
in each node. Intuitively, a depth 2 tree with 0.1% bias may initially split the data into two children
nodes, each with 50% of the data. Our abstraction captures both the case where all bias occurs in the
left child, and the case when all bias occurs in the right child. Therefore, we end up with an effective
bias rate of 0.2% in either child, yielding lower robustness.

E.3 Additional experimental data

General data. Fig. 3 shows the certifiable robustness rates for each dataset and each main bias model
(MISS, FLIP, MISS + FAKE, and MISS + FLIP).
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Figure 3: Certifiable robustness (shown on y-axis as a percentage of test data) for various datasets
under different bias models.

Demographic data.

Fig. 4 shows robustness levels stratified by demographic groups on various bias models. We see
that COMPAS under MISS (Fig. 4b) displays similar robustness gaps to FLIP; namely, White people,
and particularly White women, are robust at a higher rate than Black people. Adult Income under
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Figure 4: Left to right: Certifiable robustness by demographic group on (a) Drug Consumption under
FLIP (NOTE: on this graph, the dark dotted line is all men, and the light dotted line is all women);
(b) COMPAS under MISS; (c) Adult Income under FLIPg where g , (gender = Female ∧ label =
negative); (d) Adult Income under MISS

Table 5: Number of elements with counterexamples to robustness after 10,000 iterations of random
testing from a subset of 100 test samples from COMPAS. All bias models are FLIP, and bias level
refers to number of affected elements as a percentage of training dataset size.

Bias level # of elements with counterexample

0.5 4
1.0 15
2.0 27
3.0 32

MISS (Fig. 4c) and under FLIPg where g , (gender = female ∧ label = negative) (Fig. 4d) behaves
similarly to Adult Income under FLIP (Fig. 2). That is, all demographic groups have roughly
comparable robustness rates. Drug consumption under FLIP (Fig. 4a) yields comparable robustness
rates between men and women (we do not graph robustness rates by racial group because the dataset
is over 91% White).

E.4 Additional details on random testing

On a random subset of 100 test elements from the COMPAS dataset, we tested 10,000 dataset
perturbations under FLIP0.5%, FLIP1%, FLIP2%, and FLIP3%. The number of elements for which
we found a counter-example to robustness (i.e., a dataset perturbation that resulted in a different
classification) is shown in Table 5. We see that we are able to find counterexamples to robustness for
a non-trivial portion of test samples. However, the gap between certified-robustness and proved-non-
robust rates is still wide (the gap ranges from 86.7% for FLIP0.5% to 68.0% for FLIP3%). As a result,
there are many test samples that we cannot prove robustness for, but cannot find counterexamples for
either. Future work to use a more precise abstract domain, or to better identify counterexamples to
robustness could help to narrow this gap.

Breaking down the results for FLIP3% further, we found counterexamples to robustness for 50% of
Black women, 37% of Black men, 29% of White women, and 27% of White men. Similarly, we
found more counter-examples to robustness for Black people using other bias models. The empirical
result of having more counterexamples for test instances representing Black people combined with
the fact that we are able to certify a smaller percentage of test instances representing Black people
(§ 5.2) suggests that the robustness differences are inherent to the data, rather than a property of the
abstraction.
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