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Abstract
In this paper, we examine the effectiveness of pre-
training for visuo-motor control tasks. We revisit
a simple Learning-from-Scratch (LfS) baseline
that incorporates data augmentation and a shallow
ConvNet, and find that this baseline is surprisingly
competitive with recent approaches (PVR, MVP,
R3M) that leverage frozen visual representations
trained on large-scale vision datasets – across a
variety of algorithms, task domains, and metrics
in simulation and on a real robot. Our results
demonstrate that these methods are hindered by a
significant domain gap between the pre-training
datasets and current benchmarks for visuo-motor
control, which is alleviated by finetuning. Based
on our findings, we provide recommendations
for future research in pre-training for control and
hope that our simple yet strong baseline will aid
in accurately benchmarking progress in this area.1

1. Introduction
Large-scale pre-training has delivered promising results
in computer vision (Doersch et al., 2015; He et al., 2020;
van den Oord et al., 2018; Alayrac et al., 2022) and natural
language processing (Devlin et al., 2019; Brown et al., 2020;
Radford et al., 2021; Chowdhery et al., 2022). Recent works
have extended the pre-training paradigm to visuo-motor
control by leveraging pre-trained visual representations for
policy learning (Parisi et al., 2022; Nair et al., 2022; Xiao
et al., 2022; Ze et al., 2022; Yuan et al., 2022). These works
train a visual representation using large out-of-domain vi-
sion datasets like ImageNet (Russakovsky et al., 2015) and
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Ego4D (Grauman et al., 2022), and freeze the vision model
weights for downstream policy learning. When compared
to simple Learning-from-Scratch (LfS) methods for visuo-
motor control, these works find that frozen pre-trained rep-
resentations help achieve higher sample efficiency and/or
asymptotic performance across various task domains.

However, there exists a rich body of work on strategies
to improve performance of LfS methods, such as auxil-
iary self-supervised representation learning (Srinivas et al.,
2020; Schwarzer et al., 2021) or using carefully curated
data augmentations (Laskin et al., 2020; Kostrikov et al.,
2021; Yarats et al., 2021; Raileanu et al., 2020; Hansen et al.,
2021). To gain a sharp understanding of the advantages of
visual pre-training for visuo-motor control, it is necessary
to establish strong LfS baselines.

Towards this end, we adopt the experimental setups of prior
works without modification, and implement strong LfS base-
lines that leverage shallow ConvNet encoders and random
shift data augmentation (Kostrikov et al., 2021; Yarats et al.,
2021). Surprisingly, we find that this modified LfS base-
line can achieve results competitive with prior works that
leverage frozen pre-trained visual representations. While
our contributions are incremental in nature, we believe that
our work contains must-know insights for anyone working
on pre-trained representations for visuo-motor control.

We evaluate our approach across a variety of task domains,
algorithm classes, and evaluation metrics. Specifically, we
examine 4 task domains (Adroit (Rajeswaran et al., 2018),
DMControl (Tassa et al., 2018), PixMC (Xiao et al., 2022),
and a real robot setup), 3 algorithm classes: imitation learn-
ing (behavior cloning), on-policy RL (PPO (Schulman et al.,
2017)), and off-policy RL (DrQ-v2 (Yarats et al., 2021)),
and multiple evaluation metrics including sample-efficiency,
asymptotic performance, visual robustness, and computa-
tional cost. To our surprise, our carefully designed LfS
baseline is found to be competitive with frozen pre-trained
representations across most settings and metrics, and in
some cases even outperforms them. At present, frozen pre-
trained representations are found to mostly be advantageous
in terms of computational cost.
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Figure 1. Pre-training vs. Learning-from-Scratch (LfS). Success rate (real robot, Adroit, PixMC) and normalized return (DMControl)
in each of the four task domains that we consider (aggregated across tasks). BC simulation results are averages of top-3 evaluations over
100 epochs (Parisi et al., 2022), and RL results are reported as a function of environment steps (Yarats et al., 2021; Xiao et al., 2022),
normalized to the interval (0, 1) as total steps differ between tasks. We evaluate strong yet simple LfS baselines (Yarats et al., 2021;
Hansen et al., 2021) and find them to be competitive with recent frozen pre-trained representations. Mean and 95% CIs over 5 seeds.

Real robot Adroit DMControl PixMC
Figure 2. Tasks. We consider challenging and diverse visuo-motor control tasks spanning 4 domains, from left to right: a real robot setup
(manipulation), Adroit (dexterous manipulation), DMControl (locomotion, manipulation), and PixMC (manipulation). Our experimental
setups in simulation are adopted from PVR, MVP, and R3M, and our real setup is similar to that of R3M. We consider a total of 17 tasks.

We remain optimistic that pre-trained representations will
play an important and increasingly larger role in visuo-
motor control as the paradigm matures. At the same time,
we believe that setting a simple yet strong baseline will help
accurately benchmark progress in this area. Based on our
empirical findings, we provide recommendations for future
research in pre-training for control. In particular, we conjec-
ture that current benchmark tasks are not well suited to reap
the benefits of pre-trained representations, since they do not
require any visual generalization. As the community builds
better benchmarks and harder tasks that require both visual
and policy generalization, we conjecture that pre-trained
representations will play an increasingly important role.
Additionally, our results indicate that current pre-trained
representations suffer from a substantial domain gap by pre-
training on large-scale real-world data and benchmarking
on predominantly simulated environments, which we find
can be alleviated with careful in-domain finetuning based on
our LfS insights. In the following sections, we detail each
method, experimental setup, and results, and conclude with
a broader discussion on the implications of our findings.

2. Methods
Comparing two paradigms fairly is difficult, and comparing
LfS with pre-trained representations is no exception. To
help narrow our scope, we focus on representative methods
from each paradigm: a simple Learning-from-Scratch (LfS)
method that uses a shallow ConvNet and data augmenta-
tion, as well as three frozen visual representations trained
on large-scale out-of-domain vision datasets (PVR (Parisi
et al., 2022), MVP (Xiao et al., 2022), R3M (Nair et al.,

Table 1. Overview of frozen pre-trained representations. We
summarize key design choices for each of the three pre-trained
representations proposed in prior work, as well as which algorithm
they considered in downstream tasks. Jitter denotes whether color
jitter augmentation was applied during pre-training; this detail
pertains to our visual robustness experiments in Section 4.

Pre-training Policy

Method Repr. Encoder Dataset Jitter Algo.

• PVR MoCo-v2 ResNet50 ImageNet ! BC
• MVP MAE ViT-S HOI % PPO
• R3M Multi-loss ResNet50 Ego4D % BC

2022)). These three visual representations were proposed
concurrently and represent the present state-of-the-art in pre-
training for visuo-motor control. We choose to freeze the
pre-trained representations to be consistent with their origi-
nal formulations. The three pre-trained representations that
we consider have been shown to outperform common rep-
resentations such as supervised learning and MoCo-v2 (He
et al., 2020) pre-training on ImageNet (Russakovsky et al.,
2015). In the following, we provide a more detailed de-
scription of each pre-trained representation, as well as our
proposed LfS baseline. See Table 1 for an overview of the
three pre-trained representations that we consider.

• PVR investigates the efficacy of frozen pre-trained rep-
resentations for Behavior Cloning (BC) in a variety of con-
trol tasks, and proposes a variant of Momentum Contrast
(MoCo-v2; (He et al., 2020)) that fuses features from mul-
tiple layers. Specifically, the PVR model is a MoCo-v2
representation with a ResNet50 (He et al., 2015) backbone
trained on ImageNet (Russakovsky et al., 2015), with inter-
mediate layers fused together with final output features via a
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Reach Pick
Figure 3. Real robot tasks. Sample trajectories for each of the two real robot tasks that we consider, reach and pick. Visualizations
correspond to raw RGB observations at key frames. Actual episode length is 50. Trajectories are generated using • LfS (+aug) with 10 and
20 demonstrations, respectively, collected by a human teleoperator. We evaluate methods on 20 trials per task and across 2 random seeds.

second finetuning stage. Combining features from early and
later layers of the network encourages the PVR model to
retain spatial granularity as well as scene-level semantic in-
formation. The PVR representation is trained on individual
frames without leveraging temporal-sequential information.
During pre-training, PVR applies random crop, horizontal
flip, gray-scale, and color jitter augmentations. We use the
publicly available PVR model in our experiments.

• MVP concurrently studies the efficacy of frozen pre-
trained representations for on-policy RL using Proximal
Policy Optimization (PPO; (Schulman et al., 2017)), and
propose to train a Masked Autoencoder (He et al., 2022)
visual representation on individual frames from a large
(700K frames) human interaction dataset (referred to as
HOI) sourced from multiple existing datasets. Concretely,
the MVP model uses a Vision Transformer (ViT; (Doso-
vitskiy et al., 2021)) backbone that partitions frames into
16 × 16 patches. The MVP representation is trained on
individual frames without leveraging temporal-sequential
information. The parameter count of the MVP encoder (ViT-
S; 22M) is comparable to that of PVR and R3M. During
pre-training, MVP applies random crop and horizontal flip
augmentations. We use the publicly available MVP model
in our experiments2.

• R3M proposes to pre-train a ResNet50 backbone using a
combination of time-contrastive learning (Sermanet et al.,
2016), video-language alignment, and L1 regularization that
encourages sparse and compact representations, on 3,500
hours of human interaction video data from the Ego4D
dataset (Grauman et al., 2022). In contrast to PVR and
MVP, R3M does leverage the temporal-sequential nature of
video data. During pre-training, R3M only applies random
crop augmentations. We use the publicly available R3M
model in our experiments.

We evaluate these three pre-trained representations – PVR,
MVP, and R3M – against our simple yet strong LfS baseline
that uses data augmentation and a shallow ConvNet encoder.
To demonstrate the importance of data augmentation in

2We acknowledge that a newer set of MVP models have been
released concurrently with our work. While improved downstream
task performance can be anticipated for the new models, we expect
our main conclusions to remain unchanged.

representation learning for control, we include two LfS
baselines – with and without use of data augmentation –
which we describe in the following.

• LfS (no aug) uses a shallow ConvNet encoder that con-
sists of 4-6 layers (depending on the experimental setup
in which it is applied) of 2D-convolutions with ReLU ac-
tivations. Each of our three encoder implementations are
adopted from prior work and are widely accepted by the
RL community. Specifically, the LfS encoder in our BC
experiments is identical to that of PVR (Parisi et al., 2022),
the LfS encoder that we use for off-policy RL is equivalent
to that of Yarats et al. (2019); Srinivas et al. (2020); Laskin
et al. (2020); Kostrikov et al. (2021); Yarats et al. (2021),
and our on-policy RL LfS baseline is identical to that of
Hansen et al. (2022a).

• LfS (+aug) uses an architecture identical to that of •LfS.
However, it is well documented in literature on visual RL
that use of data augmentation is critical to the performance
and visual robustness of LfS (Laskin et al., 2020; Kostrikov
et al., 2021; Yarats et al., 2021; Hansen & Wang, 2021;
Raileanu et al., 2020; Hansen et al., 2021; Yuan et al., 2022).
To accurately reflect progress in LfS approaches, our main
point of comparison is a LfS method that uses random shift
augmentation (Kostrikov et al., 2021) in addition to its shal-
low ConvNet encoder, which has demonstrated strong em-
pirical performance on a variety of task domains. As our
experiments reveal, use of data augmentation is also sur-
prisingly effective for learning behavior cloning policies,
although it is not commonly used in this setting.

The reader is referred to our respective experimental setups
in Section 3 for a per-algorithm description of our proposed
LfS baselines.

3. Experimental setup
We propose a set of strong LfS baselines that span 3 classes
of algorithms: imitation learning (behavior cloning), on-
policy RL (PPO (Schulman et al., 2017)), and off-policy
RL (DrQ-v2 (Yarats et al., 2021)), and consider a total
of 17 tasks across 4 domains: Adroit (Rajeswaran et al.,
2018) (dexterous manipulation; 2 tasks × 2 views), DMCon-
trol (Tassa et al., 2018) (locomotion and control; 5 tasks),
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PixMC (Xiao et al., 2022) (robotic manipulation; 8 tasks),
and a real robot setup (robotic manipulation; 2 tasks). Figure
2 shows sample tasks from each domain; see Appendix A
for a detailed description of all tasks. Sample trajectories for
each of the two real robot tasks are shown in Figure 3. Impor-
tantly, we do not propose a new benchmark for pre-trained
representations, but rather base our experiments on the pub-
lic implementations of PVR, MVP, and DrQ-v2, and meticu-
lously follow their respective experimental setups. We make
no changes to hyperparameters. This strict experimental
setup ensures that pre-trained representations are evaluated
in favorable conditions (for which they were originally pro-
posed). Our code is available at https://github.com/
gemcollector/learning-from-scratch. We provide
the full details of our experimental setup in the appendices,
and summarize it as follows:

− Behavior Cloning (BC). We consider two simulation
domains – Adroit and DMControl – used in PVR, in addi-
tion to our real robot setup. Observations are 256 × 256
RGB images (center-cropped to 224 × 224) with no ac-
cess to proprioceptive information. In simulation, policies
are trained with BC on 100 demonstrations per task; we
use the exact demonstration dataset that PVR used3, i.e.,
Adroit demonstrations are generated by oracle (state-based)
DAPG (Rajeswaran et al., 2018) policies, and DMControl
demonstrations are generated by oracle DDPG (Lillicrap
et al., 2016) policies. We use 10-20 demonstrations in the
real world depending on the task, but otherwise follow the
same experimental setup as in simulation. The original LfS
baseline in PVR uses a shallow ConvNet encoder; we refer
to this baseline simply as •LfS. Our improved LfS base-
line additionally uses random shift augmentation (Kostrikov
et al., 2021; Yarats et al., 2021) during learning, and we
refer to this baseline as •LfS (+aug). Data augmentation is
relatively underexplored in BC literature, but we find that it
works surprisingly well. In addition to PVR, we also com-
pare with frozen MVP and R3M representations. Consistent
with the experimental setup in PVR, we measure the policy
performance with success rate in the case of Adroit (and
our real setup), and episode return in DMControl. Policies
are evaluated every two epochs for a total of 100 epochs in
simulation, and we report the average performance over the
3 best epochs over the course of learning. We find that 1
epoch is sufficient for our real robot experiments, where we
evaluate for 20 trials per method per task, across 2 random
seeds.

− On-policy RL. We reproduce the results of MVP on their
proposed PixMC robotic manipulation benchmark. Obser-
vations are 224 × 224 RGB images and also include pro-
prioceptive information. The original LfS baseline uses a

3While the demonstration dataset used in PVR is not publicly
available, the authors kindly provided us with the demonstrations
in response to our private inquiry. We thank the authors for that.

Table 2. Behavior Cloning: LfS vs. frozen pre-trained visual
representations. Success rate (Adroit, real robot) and unnor-
malized return (DMControl) of LfS and the best result obtained
with a pre-trained representation, i.e., for each task we report
max{PVR,MVP,R3M}. A well-designed LfS method is compet-
itive with frozen pre-trained representations across all tasks.

Method • LfS • LfS Best
Task (no aug) (+aug) pre-training

Adroit
Pen 22.0±4.0 74.8±5.0 81.3±4.0

Relocate 16.9±3.5 51.4±7.7 47.5±2.6

DMControl
Finger Spin 647.6±6.9 661.4±22.6 698.5±8.4

Reacher Easy 261.3±27.6 657.4±44.3 615±27.0

Cheetah Run 469.8±30.0 448.9±56.4 557.6±18.4

Walker Stand 699.0±65.0 875.5±20.4 818.2±19.4

Walker Walk 699.4±15.2 791.6±17.8 788.0±10.2

Real robot
Reach 80.0±0.0 85.0±5.0 90.0±10.0

Pick 25.0±5.0 55.0±5.0 35.0±15.0

small ViT (Dosovitskiy et al., 2021) encoder. We propose
two improved LfS baselines for this setting: (1) an LfS
baseline that uses a shallow ConvNet encoder and no data
augmentation, referred to as •LfS, and (2) an LfS baseline
that additionally applies random shift augmentation in critic
learning, referred to as •LfS (+aug). Following prior work
(Hansen et al., 2021; Raileanu et al., 2020), we do not aug-
ment value targets. In addition to (frozen) MVP, we also
compare with frozen PVR and R3M representations. Fol-
lowing the setup in MVP, we use the success rate of the
policy as the metric for comparison.

− Off-policy RL. We reproduce the results of the state-of-
the-art LfS method DrQ-v2 on the same DMControl tasks
as used in PVR. Observations are 84×84 RGB images with
no access to proprioceptive information; we upsample obser-
vations to 224×224 when using pre-trained representations.
DrQ-v2 uses a shallow ConvNet encoder and random shift
augmentation by default, and we refer to this baseline as
•LfS (+aug). We compare DrQ-v2 to two alternatives: (1)
not using data augmentation (simply denoted •LfS), and
(2) removing data augmentation and additionally replacing
the LfS encoder with a frozen pre-trained representation,
denoted by their representation names (PVR, R3M, MVP)
respectively. Following prior work on DMControl, we use
(normalized) return as the metric for comparison.

4. Results
In this section, we present a clear summary of our key
experimental results, and defer deeper discussion on the
implications of these findings (along with practical guidance
for practitioners) to Section 5. Our results are as follows:
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Figure 4. PixMC benchmark. Success rate of PPO (Schulman et al., 2017) agents on the 8 robotic manipulation tasks from PixMC (Xiao
et al., 2022). Our proposed LfS baseline performs comparably to the frozen pre-trained visual representations on most tasks. Notably, we
also observe that no single pre-trained representation is consistently better across all tasks. Results are averaged across 5 seeds.

(a) Randomized colors. (b) Video backgrounds.
Figure 5. Evaluation of robustness. We quantify robustness to visual changes on two test domains from DMControl Generalization
Benchmark (Hansen & Wang, 2021): randomized colors of agent, floor, and background, and dynamic video backgrounds sourced
from out-of-domain data, corresponding to the color hard and video easy test domains from the proposed benchmark. Sample
environments are visualized. Note that a domain gap remains between augmented observations and test environments.

− Performance comparison. Our proposed Learning-
from-Scratch (LfS) baselines are competitive with (and in
some cases outperform) recent frozen pre-trained represen-
tations for visuo-motor control across a variety of algo-
rithms and domains in both simulation and the real world;
see Figure 1 and Table 2. This indicates that, while pre-
trained representations have the potential to replace the LfS
paradigm in the future, under the set of most widely used
metrics, they have yet to exceed the representational power
of a well-designed LfS method on standard benchmarks for
visuo-motor control. This conclusion appears to generalize
to real robot tasks with simple visuals.

− No free lunch – yet. Our results indicate that the ef-
ficacy of a frozen pre-trained representation is both task-
dependent (see Figure 4) and algorithm-dependent (see Fig-
ure 1): on average, •MVP outperforms other pre-trained
representations on PixMC for which it was originally pro-
posed, but performs comparably worse on the two other
domains, Adroit and DMControl. However, even within
a visually consistent benchmark (PixMC), no single rep-
resentation convincingly comes out on top across tasks,
as evidenced by Figure 4. In contrast, our proposed •LfS
(+aug) method produces consistently strong results across
all settings, presumably due to learning from task-specific
data; this hypothesis is supported by our finetuning results,
which we return to later.

− Visual robustness. To probe representations for visual
robustness, we evaluate trained agents on the DMControl
Generalization Benchmark (Hansen & Wang, 2021). In this
evaluation, agents are trained on the original training envi-
ronments with no visual variation, and transferred zero-shot
to test environments with visual changes. We consider two
types of visual changes: (i) random colors where the colors
of agent, background, and floor are randomized, and (ii)
video backgrounds where the background is replaced with a
dynamically changing texture from out-of-domain videos;
see Figure 5 (Appendix) for a visualization of these test
environments. Our robustness results are shown in Figure 6.
We find that use of data augmentation is critical to the ro-
bustness of learned visual representations – both when LfS
and when using frozen pre-trained representations. Notably
– in their original formulations – PVR uses color jitter during
pre-training whereas MVP and R3M do not. We compare ro-
bustness of these pre-trained representations with LfS using
both •random shift augmentation and additionally •color
jitter. We find that (1) pre-trained representations that do
not use color jitter augmentation during pre-training (•MVP,
•R3M) are not more robust than their LfS counterpart to
visual changes, but (2) strong augmentations such as •color
jitter improves robustness of both LfS and pre-trained repre-
sentations (•PVR; applied during pre-training) significantly.
For completeness, we also evaluate LfS with a different
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Figure 6. Robustness to visual changes. Normalized return of methods when transferred to environments with visual changes from the
DMControl Generalization Benchmark (Hansen & Wang, 2021). We consider two visual changes: randomized colors of agent and scene,
as well as dynamic video backgrounds. Following our previous setup, BC results are averages of top-3 evaluations over 100 epochs, and
final evaluations are reported for RL results. Mean and 95% confidence intervals over 5 seeds and 4 tasks; we omit Reacher Easy since it
does not support video backgrounds. LfS with strong augmentation is surprisingly robust compared to frozen pre-trained representations.
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Figure 7. Improving robustness of frozen pre-trained represen-
tations with strong augmentation. Normalized return of methods
when transferred to environments with visual changes from the
DMControl Generalization Benchmark (Hansen & Wang, 2021).
We report results both with and without additional •color jitter
(strong) augmentation during policy learning, and find that apply-
ing strong augmentation with a frozen representation is ineffective.
Mean and 95% confidence intervals over 5 seeds and 4 tasks; we
omit Reacher Easy since it does not support video backgrounds.

choice of strong augmentation: •random overlay that inter-
polates between observations and randomly sampled images
from an out-of-domain dataset, popularized by Hansen &
Wang (2021); results are shown in Table 3. Consistent with
prior work, we find that choice of augmentation influences
robustness to different visual changes, but that either choice
beats the best pre-trained representation that we consider.

− Finetuning a pretrained representation. To help
narrow the scope of our comparison, our study primarily
considers frozen visual representations following their orig-
inal proposals, i.e., neither PVR, MVP, or R3M finetune
their representations on in-domain data. However, there is
some existing evidence that in-domain finetuning of pre-
trained representations can be beneficial (Wang et al., 2022;
Ze et al., 2022; Xu et al., 2022). For completeness, we
also conduct a set of finetuning experiments, where pre-
trained representations (•PVR, •MVP, •R3M) are finetuned
on demonstration data from Adroit using the task-centric
behavior cloning objective. Results for this experiment are
shown in Table 5. Interestingly, we find that finetuned repre-
sentations can improve over both their frozen counterparts
and our •LfS (+aug) approach, but only when also using

Table 3. Choice of augmentation matters. Mean normalized re-
turn of BC policies when transferred to environments with visual
changes from the DMControl Generalization Benchmark (Hansen
& Wang, 2021). We here consider LfS with two distinct choices of
strong data augmentation: color jitter as in Figure 6, and random
overlay originally proposed by Hansen & Wang (2021); these aug-
mentations are in addition to random image shifts. For complete-
ness, we also include our best result obtained with a pre-trained
representation, i.e., we report max{PVR,MVP,R3M}.

Method • LfS • LfS Best
Test set (jitter) (overlay) pre-training

Random colors 53.1±1.6 39.3±0.2 37.2±0.9

Video background 33.0±3.2 46.6±1.3 9.2±5.8

data augmentation (random shift) during finetuning. This
observation indicates that data augmentation is critical to
performance when learning on a small (by comparison) in-
domain dataset, regardless of whether the representation
is learned from scratch or finetuned. We are – to the best
of our knowledge – the first to make this observation, and
conjecture that this discrepancy in performance is due to
a domain gap between out-of-domain training data and in-
domain data. Given that our finetuning experiments are in
simulation whereas the pre-training data consists of real-
world images, we dub this phenomenon the real-to-sim gap.
However, our real robot results also indicate that this gap
persists to some extent even when evaluating in the real
world. Lastly, we also find that ResNet-based representa-
tions (•PVR, •R3M) are easier to finetune than ViT (•MVP),
presumably due to known optimization challenges in ViTs
(Dosovitskiy et al., 2021; Chen et al., 2021; Hansen et al.,
2021). We consider frozen visual representations in the re-
mainder of our experiments, but provide further discussion
on the potential implications of this observation in Section
5.

− Data efficiency. A common argument in favor of
(frozen) pre-trained representations is that they might re-
quire less task-specific data to learn a good policy (Parisi
et al., 2022; Xiao et al., 2022; Nair et al., 2022). To test
this hypothesis, we train BC policies with a variable num-
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Table 4. Wall-time of methods learning from scratch vs. using a pre-trained visual representation. For the latter, we report
min{PVR,MVP,R3M} for a fair comparison. While LfS generally leads to better downstream task performance, using a frozen
pre-trained representation can reduce computational cost substantially, especially during the training process. ↓ Lower is better.

Behavior Cloning Reinforcement Learning
Training (s/iteration) Inference (s/episode) s/1k frames s/iteration

Method\Setting Adroit DMControl Adroit DMControl DrQ-v2 PPO

• LfS (+aug) 0.263 0.270 1.61 3.81 10.20 19.40
Fastest pre-training 0.003 0.006 2.66 11.00 13.00 11.90

Table 5. Finetuning pre-trained representations with BC. Suc-
cess rate for each method across 5 seeds and all Adroit tasks.
Finetuned denotes whether a representation has been finetuned
on task data, and data aug denotes whether random image shift
augmentation is applied during finetuning. We find that finetuning
ResNet-based representations (PVR, R3M) on task data improves
over frozen representations and even outperforms LfS (+aug), but
only when using data augmentation during finetuning. We are – to
the best of our knowledge – the first to make this observation.

Method Finetuned Data aug Success (%) Change

• PVR % % 52.9±2.1 −
! % 50.5±7.7 −2.4

! ! 65.0±0.0 +12.1

• MVP % % 44.0±2.2 −
! % 18.7±1.9 −25.3

! ! 31.1±2.7 −12.9

• R3M % % 64.0±2.8 −
! % 55.5±8.9 −8.5

! ! 80.5±2.1 +16.5

• LfS ! % 19.4±3.8 −
• LfS (+aug) ! ! 63.1±6.4 +43.7

ber of demonstrations (10, 25, 100) for both our improved
LfS baseline and the three frozen pre-trained representa-
tions; following the experimental setup of PVR, we use 100
demonstrations in the remainder of our BC experiments.
We report the results of this experiment in Figure 8. Our
results indicate that a larger number of demonstrations (100)
generally favors LfS methods, whereas frozen pre-trained
representations fare marginally better in the very low-data
regime (10). However, policy performance degrades quickly
with a decrease in available demonstrations, which suggests
that the primary performance bottleneck is in policy learning
rather than visual representation learning. As discussed in
Section 5, this may in part be due to current benchmarks be-
ing visually simple. We predict that this observation might
not continue to hold true as new simulation benchmarks
with more complex visuals are developed.

− Computational cost. Our results so far have focused on
downstream task performance, i.e., success rate or return
in various settings. However, frozen pre-trained representa-
tions already demonstrate significant gains along an often-
neglected axis: wall-time. Training and inference speeds
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Figure 8. Data efficiency. Normalized return of behavior cloning
policies as a function of the number of demonstrations. Results are
averaged across all of our DMControl tasks and 3 seeds. We find
that a larger amount of demonstrations (100) favors LfS, whereas
pre-trained representations fare better in the very low-data regime.

are shown in Table 4. We find that BC policy updates are at
least an order of magnitude faster using frozen pre-trained
representations compared to LfS, as we can embed and
cache features for the entire dataset in a few forward passes.
However, inference speed generally favors LfS due to their
smaller visual backbones, which is particularly important
for real robot applications. Since RL training interleaves
learning and inference (data collection), wall-times are more
balanced in this setting. We do not factor in the cost of learn-
ing a pre-trained representation, since it is a one-time cost,
and the representations can be reused across tasks.

5. Discussion
We have shown that a carefully designed LfS baseline is
competitive with frozen pre-trained representations across a
variety of algorithm classes, domains, and metrics. While
this is the current conclusion, we remain optimistic that
results will be skewed in favor of pre-trained representa-
tions as the paradigm matures. At present, we find that the
main benefit of a frozen pre-trained representation is the
reduced training cost that comes with its universality – a
single representation can be reused across tasks. Achieving
a performance edge while maintaining universality will thus
be critical to the adoption of this new paradigm. Our experi-
ments indicate that pre-trained representations benefit from
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finetuning on task-specific data (when coupled with use of
data augmentation), combining elements of pre-training and
LfS. However, finetuning large visual backbones presents
optimization challenges (e.g., catastrophical forgetting and
instability), and can be costly. In the following, we share
our vision for the future of pre-training research for con-
trol, which we hope can inspire further research in the area.
However, we remark that this vision – while being informed
by findings in this work – is ultimately a conjecture.

− A benchmark perspective. Our first conjecture is that
current benchmark tasks are not well suited to reap the bene-
fits of pre-trained representations. Historically, the majority
of visual RL benchmarks have been repurposed from exist-
ing environments that were originally proposed for RL from
ground-truth (state) information, with little emphasis on vi-
sual complexity, variation, and realism. Furthermore, there
have historically been strong emphasis on single-task learn-
ing, where limited semantic information is required. In such
(visually) simple settings, it is perhaps not surprising that
learning a representation from scratch on in-domain data
is sufficient and oftentimes better than a general-purpose
representation trained solely on out-of-domain ImageNet
or human interaction data. We predict that pre-trained rep-
resentations (frozen and finetuned alike) will fare better as
new benchmarks with these properties – visual complexity,
variation, realism, and multi-task learning – are developed.
To this end, we view evaluation of policies in the real world
– such as those shown in Figure 3 – as a step in the right di-
rection. However, most contemporary real robot setups (for
which ours is no exception) still leave much to be desired
in terms of visual complexity and variation compared to the
diversity of the pre-training data leveraged in research on
pre-trained representations for control.

− A domain gap perspective. Our second conjecture is di-
rectly informed by our experiments. We observe that, while
LfS consistently outperforms current frozen pre-trained rep-
resentations, finetuning on in-domain data (with the addition
of data augmentation) results in representations that achieve
better downstream task performance and are more robust
to visual variations compared to their frozen counterparts
and in some cases even LfS. This important result suggests
that this discrepancy is due to a large domain gap between
pre-training data and in-domain data. Given that current
pre-trained representations are learned from out-of-domain
ImageNet or human interaction data (i.e., real-world data)
and predominantly tested in simulated robot environments
(distinctly different domains), it is perhaps not surprising
that finetuning representations on a small amount of in-
domain data can lead to markedly better downstream task
performance. We dub this domain gap the real-to-sim gap,
although we empirically find that the problem persists to
some extent even in real robot experiments. We recommend
future work to either (1) pre-train on data that better reflect

the data distribution of downstream tasks (e.g., by training
on simulation data or real-world robot data, or by evaluat-
ing policies in real world scenes that more closely match
those present in existing pre-training datasets), or (2) fine-
tune on a small in-domain dataset using, e.g., a task-centric
objective such as BC (if demonstrations are available) or
RL (online interaction). While addressing the domain gap
by collecting a new dataset for pre-training can be costly,
it is relatively easy to finetune current models on a small
in-domain dataset; this is reminiscent to the current trend
of aligning large language models by finetuning on small
curated datasets (Taori et al., 2023). Lastly, our experiments
demonstrate that data augmentation is absolutely critical
to learning strong, robust representations in all stages of
training. To the best of our knowledge, we are the first
work on pre-trained representations for control to make this
discovery. In comparison to the refined training recipes in
computer vision literature, training recipes for visuo-motor
control are still relatively underexplored. We predict that
– as pre-processing and data augmentation training recipes
for visuo-motor control mature – we will see a series of
increasingly robust pre-trained representations emerge. We
encourage further research in all of these directions, and
hope that our LfS baselines will help accurately benchmark
progress in this area.

6. Related Work
Pre-training. Representation learning via supervised/self-
supervised/unsupervised pre-training on large-scale datasets
has emerged as a powerful paradigm in areas such as com-
puter vision (Doersch et al., 2015; He et al., 2020; van den
Oord et al., 2018; Alayrac et al., 2022) and natural lan-
guage processing (Devlin et al., 2019; Brown et al., 2020;
Radford et al., 2021; Chowdhery et al., 2022), where large
datasets are available. While pre-trained representations
can be finetuned to solve various downstream tasks, it may
be prohibitively expensive to do so, and representations are
therefore commonly used as-is, i.e., with frozen weights. We
reflect on recent progress and challenges when leveraging
pre-trained visual representations for control, which is an
emerging and comparably underexplored application area
of such representations.

Pre-trained representations for control. Multiple works
have explored learning control policies with visual represen-
tations pre-trained on large external datasets (Shah & Kumar,
2021; Parisi et al., 2022; Nair et al., 2022; Xiao et al., 2022;
Wang et al., 2022; Ze et al., 2022; Yuan et al., 2022; Xu
et al., 2022; Brohan et al., 2022). In particular, PVR (Parisi
et al., 2022) and R3M (Nair et al., 2022) propose to learn
policies by behavior cloning using pre-trained representa-
tions; PVR fuses features from several layers of a ResNet50
learned by MoCo-v2 (He et al., 2020), and R3M (Nair et al.,
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2022) learns a representation using a time-contrastive ob-
jective on ego-centric human videos. MVP (Xiao et al.,
2022) learns a policy with PPO (Schulman et al., 2017) and
uses a pre-trained visual encoder for feature extraction in
addition to proprioceptive state information; the pre-trained
representation is an MAE (He et al., 2022) trained on frames
from diverse human videos. We show that our improved
LfS baseline remains competitive with (frozen) pre-trained
representations, but also find that an equally carefully de-
signed finetuning procedure of pre-trained representations
can outperform LfS in some cases.

Data augmentation in RL. Numerous recent studies
demonstrate the effectiveness of data augmentation in visual
RL (Lee et al., 2019; Laskin et al., 2020; Raileanu et al.,
2020; Kostrikov et al., 2021; Yarats et al., 2021; Hansen &
Wang, 2021; Hansen et al., 2021; Ma et al., 2022; Hansen
et al., 2022b). For example, Lee et al. (2019); Hansen
& Wang (2021) show that strong data augmentation can
greatly improve the visual robustness and generalization
of RL policies. Domain randomization (Tobin et al., 2017;
Pinto et al., 2017), a closely related idea, has similarly been
shown to improve generalization and sim-to-real transfer.
Laskin et al. (2020) conducts a comprehensive study on data
augmentations for RL, and finds that random crops can lead
to significant gains in both sample-efficiency and asymp-
totic performance. Finally, Kostrikov et al. (2021); Yarats
et al. (2021) propose a simple random shift augmentation
that further improves over random crop augmentation in
the context of visual off-policy RL; we apply this augmen-
tation in all of our •LfS (+aug) experiments. Our study
confirms the observations of prior work, and shows that the
resulting LfS baselines remain competitive with frozen pre-
trained representations trained on large-scale out-of-domain
datasets.

7. Conclusion
To conclude, we reiterate the main takeaways of our study:

− A carefully designed LfS approach remains competitive
with frozen pre-trained representations across a variety of
algorithms, task domains, and evaluation metrics.

− At this time, no single frozen pre-trained representation
is consistently better across all tasks.

− Finetuning pre-trained representations on task-specific
data leads to significant improvements in performance
(when also using data augmentation during finetuning), even
surpassing the performance of •LfS (+aug) in some cases.

− LfS with strong data augmentation (•color jitter) out-
performs frozen pre-trained representations by a large mar-
gin on visual robustness benchmarks. However, adding
strong data augmentation to pre-training and policy learning
pipelines consistently improves their robustness.

− Pre-trained representations fare slightly better than LfS
approaches in the very low-data regime, but our experiments
indicate that policy learning might be a bigger bottleneck
when data is limited.

− Using frozen pre-trained representations can lead to sig-
nificant improvements in training wall-time, at the expense
of slower inference compared to our smaller LfS backbones.
Since RL training interleaves learning and inference (data
collection), wall-times are more balanced in this setting.

− We remain optimistic about the future of pre-trained
representations for visuo-motor control, and hope that
our strong LfS baselines will help accurately benchmark
progress in the area.
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A. Task Descriptions
We conduct experiments on three different task domains in simulation – Adroit (Rajeswaran et al., 2018), DMControl
(Tassa et al., 2018), and PixMC (Xiao et al., 2022)– used in prior work on pre-training for visuo-motor control, as well as
a real robot setup. PVR (Parisi et al., 2022) experiments with Adroit and DMControl, MVP (Xiao et al., 2022) proposed
the PixMC benchmark, and R3M (Nair et al., 2022) experiments with Adroit (among others). To make our study more
self-contained, we include a detailed description of each task below.

A.1. Adroit

Following PVR, we consider two tasks from the Adroit domain: pen and relocate, which represent the two most challenging
tasks from this task domain. The two Adroit tasks are goal-conditioned dexterous manipulation tasks with goals rendered
visually in a 3D scene, as shown in Figure 2 (left). The robot hand has 24 degrees of freedom (DoF). We describe each task
as follows:

• Pen (A ∈ R18). A blue pen is initialized in the palm of the dexterous robot hand. The task is to reorient the pen in-hand
to bring it to a desired orientation, which is visualized as a transparent pen floating next to the hand. The agent controls
all joints but its wrist is locked and cannot move in 3D space.

• Relocate (A ∈ R21). A blue ball is initialized at a random location on a table. The task is to pick up the ball using
the dexterous robot hand, and move it to a desired (randomly selected) location in 3D space, which is visualized as a
transparent green ball. The agent controls all joints, as well as the wrist which can move freely in 3D space.

We refer to Rajeswaran et al. (2018) for additional task details.

A.2. DMControl

Following PVR, we consider five tasks from the DMControl suite: Finger Spin, Reacher Easy, Cheetah Run, Walker Stand,
and Walker Walk, which represent continuous control tasks of varying difficulty. These tasks vary in embodiment, objective,
action space, and reward type. Two of the DMControl tasks (Finger Spin and Walker Walk) are visualized in Figure 2 (center
left). We describe each task as follows:

• Finger Spin (A ∈ R2). A simple manipulation task with a planar 3 DoF finger. The task is to continuously spin a
free-floating body at high velocity. There is a positive reward of +1 for each timestep that the body is spinning and 0
otherwise.

• Reacher Easy (A ∈ R2). A simple manipulation task with a planar 3 DoF finger. The task is to move the fingertip to a
randomly selected location in 2D space. There is a positive reward of +1 for each timestep that the fingertip is near the
target and 0 otherwise.

• Cheetah Run (A ∈ R6). A locomotion task with a planar cheetah embodiment. The task is to run forward at high
velocity until the end of the episode. There is a dense (shaped) reward that varies with forward velocity and positioning
of joints.

• Walker Stand (A ∈ R6). A locomotion task with a planar Walker embodiment. The task is to stand up until the end of
the episode. There is a dense (shaped) reward that varies with the positioning of joints.

• Walker Walk (A ∈ R6). A locomotion task with a planar Walker embodiment. The task is to walk forward at medium
velocity until the end of the episode. There is a dense (shaped) reward that varies with forward velocity and positioning
of joints.

We refer to Tassa et al. (2018) for additional task details.

A.3. PixMC

Following MVP, we consider all eight tasks from the proposed PixMC benchmark. These tasks consist of four robot
manipulation tasks (Cabinet, Pick, Move, and Reach) across two 7-DoF robots (Franka Emika and Kuka LBR iiwa) that use
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a mounted parallel jaw gripper and multi-finger hand, respectively. Observations are captured by a wrist-mounted camera.
Besides embodiment and action space, these tasks also vary in interaction type and difficulty, and there is variability in
objects and locations between each episode. Two of the PixMC tasks (Kuka Pick and Franka Move) are shown in Figure 2
(center right). We describe each task as follows:

• Reach (Franka: A ∈ R9, Kuka: A ∈ R23). A simple manipulation task. The task is to reach a randomly selected
location in 3D space with the end-effector. There is a dense (shaped) reward.

• Cabinet (Franka: A ∈ R9, Kuka: A ∈ R23). A complex articulated object manipulation task. The task is open the top
drawer of a free-standing cabinet. There is a dense (shaped) reward.

• Pick (Franka: A ∈ R9, Kuka: A ∈ R23). An object manipulation task. The task is to pick up a randomly initialized
object from the table, and hold it above a certain height threshold. There is a dense (shaped) reward.

• Move (Franka: A ∈ R9, Kuka: A ∈ R23). An object manipulation task. The task is to move a randomly initialized
object to a different location. There is a dense (shaped) reward.

We refer to Xiao et al. (2022) for additional task details.

A.4. Real robot

In addition to our three simulation domains, we also consider two manipulation tasks on a real robot: reach and pick, which
resemble the two PixMC tasks of the same name. Our experimental setup roughly mimics that of R3M. The agent controls a
7-DoF xArm 7 robot with a jaw gripper using positional control, and visual observations are captured by a static third-person
Intel RealSense camera. We randomize object configuration between each episode. To minimize human bias in evaluation,
we use a manually designed success detector to determine whether a given trial is successful. The two real robot tasks are
visualized in Figure 2 (right). We describe each task as follows:

• Reach (A ∈ R3). A blue target is initialized at a random location within the robot workspace. The task is to move the
end-effector (grasping a red object) to the target location. This task is therefore goal-conditioned. The agent controls
the end-effector using positional control and its gripper is locked. We evaluate success based on the distance between
the end-effector and goal at the end of a trial.

• Pick (A ∈ R4). A red octagonal prism is initialized at a random location within the robot workspace. The task is
to pick up the object using the gripper, and lift it above a predefined height threshold. The agent controls both the
end-effector and gripper using positional control. We evaluate success based on a binary threshold on the end-effector
height (assuming that the object is successfully grasped) at the end of a trial.

B. Implementation Details
We provide further implementation details on our improved LfS baselines in the following. For simplicity, we separate
the implementation details by algorithm class, but remark that all details not pertaining to the changes that we make
to the LfS baselines (shallow ConvNet encoder and data augmentation) are kept identical to prior work to ensure a
fair comparison, i.e., we do not modify the experimental setup nor hyperparameters. Our code is made available at
https://github.com/gemcollector/learning-from-scratch.

B.1. Behavior Cloning

We closely follow the implementation of PVR (Parisi et al., 2022) for our LfS baseline in both the Adroit, DMControl, and
real robot task domains. Specifically, the network consists of an encoder:

(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU()
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(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU()
(9): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(10): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): ReLU()
(12): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): ReLU()
(15): Flatten(start_dim=1, end_dim=-1)

and a policy head:

(0): Linear(in_features=Z, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=A, bias=True)

where Z and A denote the dimensionality of the encoder output and action space, respectively. As in PVR, the encoder
encodes images in a stack individually and fuses features using Flare (Shang et al., 2021) in our simulation experiments.
In our real robot experiments, we find it sufficient to use a single frame. The policy has an additional 1D BatchNorm
layer at the beginning when using pre-trained representations. We apply random shift augmentation to inputs (a stack of
256 × 256 RGB images with no access to state information) using a padding of 12 to keep the padding-to-image ratio
consistent with its original proposal. All augmentations are applied to the stack consistently across time (if applicable). We
use 100 expert demonstrations for each task in simulation, and 10-20 demonstrations in the real world depending on the task
(reach: 10, pick: 20). Following PVR, demonstrations are collected using oracle (state-based) DAPG policies in Adroit
(Rajeswaran et al., 2018) and oracle DDPG (Lillicrap et al., 2016) policies in DMControl. We consider the same tasks as
PVR, but average Adroit results over two camera views to improve robustness of results (PVR only considers two tasks in
this domain). Results for individual views are shown in Figure 10. Our real robot demonstrations are collected via human
teleoperation. PVR did not conduct real-world experiments. Our key difference compared to the original LfS baseline in
PVR is the use of random shift augmentation; all other implementation details remain identical to the original paper.

B.2. On-Policy RL

We closely follow the implementation of MVP (Xiao et al., 2022). Observations are single 224× 224 RGB images and
also include proprioceptive state information. The original LfS baseline proposed in MVP uses a small ViT (Dosovitskiy
et al., 2021) encoder. We propose two improved LfS baselines for this setting: (1) an LfS baseline that uses a shallow
ConvNet encoder and no data augmentation, referred to as LfS, and (2) an LfS baseline that additionally applies random shift
augmentation to the input images, referred to as LfS (+aug). Our proposed LfS encoder for on-policy RL can be summarized
as:

(0): Conv2d(3, 32, kernel_size=(7, 7), stride=2)
(1): ReLU()
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=2)
(3): ReLU()
(4): Conv2d(32, 32, kernel_size=(3, 3), stride=2)
(5): ReLU()
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=2)
(7): ReLU()
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=2)
(9): ReLU()
(10): Conv2d(32, 32, kernel_size=(3, 3), stride=2)
(11): ReLU()

Following the MVP implementation, output feature maps are flattened and passed through a LayerNorm and linear projection:

x = encoder(x)
x = x.view(x.shape[0], -1)
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(a) No augmentation. (b) Random shift.

(c) Color jitter. (d) Random overlay.

Figure 9. Data augmentation. Visualization of all choices of data augmentation considered in this work. We adopt augmentation
hyperparameters from prior work without modification.

x = Linear(LayerNorm(x))

Meanwhile, following previous work on visual RL (Hansen et al., 2021; Yarats et al., 2021), we add an additional trunk
layer to the policy head:

(0): Linear(Z, Z)
(1): nn.LayerNorm(Z)
(2): nn.Tanh()

where Z denotes the dimensionality of image features concatenated with the proprioceptive state. We apply random shift
augmentation to inputs using a padding of 10 to keep the padding-to-image ratio consistent with its original proposal.
Following prior work (Hansen et al., 2021; Raileanu et al., 2020), we do not augment value targets. All other implementation
details are kept identical. As our results in Figure 1 reveal, data augmentation is not necessary for on-policy RL algorithms
such as PPO, and both of our two LfS baselines thus improve over the original baseline.

B.3. Off-Policy RL

We closely follow the implementation of DrQ-v2 (Yarats et al., 2021) – a state-of-the-art LfS method that uses random
shift augmentation – for our off-policy RL experiments. Observations are stacks of 84× 84 RGB images (3 frames) with
no access to state information. We denote this baseline as LfS (+aug) since it already employs augmentation by default,
and construct our LfS baseline by simply disabling augmentation in DrQ-v2. We make no changes to the architecture nor
hyperparameters, but list the encoder here for completeness:

(0): Conv2d(9, 32, kernel_size=(3, 3), stride=2)
(1): ReLU()
(2): Conv2d(32, 32, kernel_size=(3, 3), stride=1)
(3): ReLU()
(4): Conv2d(32, 32, kernel_size=(3, 3), stride=1)
(5): ReLU()
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=1)
(7): ReLU()

C. Data Augmentation
We consider three choices of data augmentation in this work: random image shift (Kostrikov et al., 2021; Yarats et al.,
2021), random color jitter, and random overlay (Hansen & Wang, 2021). Augmentations are visualized in Figure 9. As
in prior work, augmentations are applied consistently across time when using frame stacking. For completeness, we also
visualize sample environments from the two test domains from DMControl Generalization Benchmark (Hansen & Wang,
2021) in Figure 5, for which a sizable domain gap remains even after applying data augmentation to observations. In our RL
experiments on visual robustness (strong augmentation), we use the objective of Hansen et al. (2021) to stabilize training.
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(a) Results for individual views. (b) Near view. (c) Far view.

Figure 10. Results for individual camera views in Adroit. To improve reliability of our results, we report the average success rate over
two camera views for Adroit: Near (fixed) and Far (vil camera). PVR (Parisi et al., 2022) reports results for the Far view only. All
numbers are means across two tasks and 5 seeds. We find that pre-trained representations benefit more from the farther view, whereas LfS
benefits more from the near view.
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