
A Experimental Details461

A.1 Density Functional Theory in Experiment 6.3462

For D4FT experiments, we choose 4-layer neural operators and train them for 2k epochs. The width463

of Geo-FNO is 32, while FNO and NO’s is 64, for similar running time and parameter number. The464

number of modes of all models is the number of atomic orbitals to align with NO, i.e., the number of465

modes in NO is just the number of atomic orbitals in the molecule, which forms the orthogonal basis466

set. The number of modes of Geo-FNO depends on the grid size for Geo-FNO, where the grid size is467

small due to high-dimension, which is at most ⌊Ngrid/2⌋+ 1.468

B Proof of Theory469

B.1 Proof of Proposition 3.1470

Proof. (Proof of Proposition 3.1) Consider all c, c′ ∈ l2 with ci = ⟨f, ϕi⟩, c′i = ⟨f ′, ϕi⟩ for the input471

functions f, f ′, and also Σci = ⟨σ(f), ϕi⟩,Σc′i = ⟨σ(f ′), ϕi⟩ where σ is the nonlinear activation in472

the function space while Σ is that in the coefficient space,473 ( ∞∑
i=0

∥Σci − Σc′i∥22

)1/2

= ∥σ(f)− σ(f ′)∥L2 ≤ L∥f − f ′∥L2 = L

( ∞∑
i=0

∥ci − c′i∥22

)1/2

,

(7)
using Parseval’s theorem.474

B.2 Proof of Theorem 3.1475

We denote A as the input space and Z as the input and label pair space.476

Definition B.1. [29] For a metric space (S, ρ) and T ⊂ S we say that T̂ ⊂ S is an ϵ-cover of T , if477

∀t ∈ T , there ∃t̂ ∈ T̂ such that ρ(t, t̂) ≤ ϵ. The ϵ-covering number of T is defined as:478

N (ϵ, T, ρ) = min{|T̂ | : T̂ is an ϵ− cover of T}. (8)

Definition B.2. [29] A learning algorithm A is (K, ϵ(·))-robust, for K ∈ N and ϵ(·) : Zn 7→ R, if479

Z can be partitioned into K disjoint sets, denoted by {Ck}Kk=1, such that the following holds for all480

S ∈ Zn:481

∀s ∈ S, ∀z ∈ Z,∀k = 1, . . . ,K : if s, z ∈ Ck, then |ℓ (AS , s)− ℓ (AS , z)| ≤ ϵ(S). (9)

Lemma B.1. [29] If a learning algorithm A is (K, ϵ(·))-robust, then for any δ > 0, with probability482

at least 1− δ over an iid draw of n examples S = (zi)
n
i=1, the following holds:483 ∣∣∣∣∣Ez [ℓ (AS , z)]−

1

n

n∑
i=1

ℓ (AS , zi)

∣∣∣∣∣ ≤ ϵ(S) +M

√
2K ln 2 + 2 ln(1/δ)

n
, (10)

where M is defined as follows: for all h ∈ H and z ∈ Z , the loss is upper bounded by M as484

ℓ(h, z) ≤M .485

Lemma B.2. (Robustness of NO) Consider the NO given by equation (2) with the pa-486

rameters {Bl,W l}Ll=0 and its activation function σ is 1-Lipschitz. Then, the mapping is487 (
N (γ/2,A, ∥ · ∥L2) ,

∏L
l=1 (max {∥Bl,i +W l∥2, ∥W l∥2}) γ

)
-robust for all chosen γ > 0.488

Proof. Recall the layer of NO:489

ĉl,i = Σcl,i, l ≥ 1;

cl+1,≤Nmodes = (Bl,≤Nmodes +W l)ĉl,≤Nmodes , cl+1,>Nmodes = W lĉl,>Nmodes ;

vi = cL,i;

(11)
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Since, the mapping Σ in the first line is 1-Lipschitz,490

∥cl+1 − dl+1∥2l2 =

Nmodes∑
i=0

∥cl+1
i − dl+1

i ∥22 +
∞∑

i=Nmodes

∥cl+1
i − dl+1

i ∥22

≤
Nmodes∑
i=0

∥Bi
l +W l∥2∥cli − dli∥22 + ∥W l∥22

∞∑
i=Nmodes

∥cli − dli∥22

≤ max {∥Bl,i +W l∥2, ∥W l∥2}2 ∥cl − dl∥2l2

(12)

Consequently, the robustness of the lth layer depends on max {∥Bl,i +W l∥2, ∥W l∥2} , while that491

of the entire model will be
∏L

l=0 max {∥Bl,i +W l∥2, ∥W l∥2} .492

Proof. (Proof of Theorem 3.1) It immediately follows from Lemmas B.1 and B.2.493

B.3 Proof of Theorem 3.3494

Proof. We consider a uniform grid over bounded regular domains. Thus, although the grid points are495

not randomly chosen, the robustness bound still holds. We consider one layer of NO,496

∥ul+1(x)− ul+1(x
′)∥ =

∥∥∥∥∫ [K(Bl,x,y)−K(Bl,x
′,y)]ûl(y)dy +Wl[ûl(x)− ûl(x

′)]

∥∥∥∥
=

∥∥∥∥∥
Nmodes∑
i=0

Bl,i⟨ûl, ϕi⟩[ϕi(x)− ϕi(x
′)] +Wl[ûl(x)− ûl(x

′)]

∥∥∥∥∥
≤

Nmodes∑
i=0

∥Bl,i⟨ûl, ϕi⟩∥∥ϕi(x)− ϕi(x
′)∥+ ∥Wl∥∥ul(x)− ul(x

′)∥

(13)
By induction, we obtain497

∥v(x)− v(x′)∥

≤
Nmodes∑
i=0

∥BL−1,i⟨ûL−1, ϕi⟩∥∥ϕi(x)− ϕi(x
′)∥+ ∥WL−1∥∥uL−1(x)− uL−1(x

′)∥

≤
Nmodes∑
i=0

L−1∑
l=0

(
L−1∏

k=l+1

∥Wk∥

)
∥Bl,i⟨ûl, ϕi⟩∥∥ϕi(x)− ϕi(x

′)∥+
L−1∏
l=0

∥Wl∥∥f(x)− f(x′)∥,

(14)

where f is the input and v is the output. Consequently, the Lipschitz constant of the output function v498

can be bounded by:499

Nmodes∑
i=0

L−1∑
l=0

(
L−1∏

k=l+1

∥Wk∥

)
∥Bl,i⟨ûl, ϕi⟩∥Lip(ϕi) +

L−1∏
l=0

∥Wl∥Lip(f). (15)

500

B.4 Proof of Theorem 3.2501

Proof. (Proof of Theorem 3.2) We consider the lth layer of the continuous NO,502

ul+1(x) =

∫
K(Bl,x,y)ûl(y)dy +W lûl(x)

=

Nmodes∑
i=0

Bl,iϕi(x)

(∫
ûl(y)ϕi(y)dy

)
+W lûl(x).

(16)
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Denote the discretized version of the model with Ul(x), where503

Ul+1(x) =

∫̂
K(Bl,x,y)Ûl(y)dy +W lÛl(x)

=

Nmodes∑
i=0

Bl,iϕi(x)

(∫̂
Ûl(y)ϕi(y)dy

)
+W lÛl(x),

(17)

where
∫̂

denotes the numerical integral. The difference is504

ul+1(x)− Ul+1(x) =

Nmodes∑
i=0

Bl,iϕi(x)

((∫
−
∫̂ )

Ûl(y)ϕi(y)dy

)
+

Nmodes∑
i=0

Bl,iϕi(x)

(∫ (
ûl(y)− Ûl(y)

)
ϕi(y)dy

)
+

W l

(
ûl(x)− Ûl(x)

)
.

(18)

Expand the function ûl(x)− Ûl(x) by the orthogonal basis ϕi(x):505

ul+1(x)− Ul+1(x) =

Nmodes∑
i=0

Bl,iϕi(x)

((∫
−
∫̂ )

Ûl(y)ϕi(y)dy

)
+

∞∑
i=1

(Bl,i +W l)ϕi(x)

(∫ (
ûl(y)− Ûl(y)

)
ϕi(y)dy

)
,

(19)

where we denote Bl
i = 0 for i > Nmodes. Therefore,506

∥ul+1 − Ul+1∥L2 ≤
Nmodes∑
i=0

∥Bl,i∥2egrid(Ngrid)efunc

(
Ûl · ϕi

)
+max {∥Bl,i +W l∥2, ∥W l∥2} ∥ul − Ul∥L2 .

(20)
For the first layer of the model:507

∥u1 − U1∥L2 ≤
Nmodes∑
i=0

∥B0,i∥egrid(Ngrid)efunc (f · ϕi) . (21)

By induction, we can derive the integral error for the entire model:508

∥v − V ∥L2 ≤
L∑

l=0

L∏
k=l

max {∥Bk,i +W k∥2, ∥W k∥2}

(
Nmodes∑
i=0

∥Bl,i∥2egrid(Ngrid)efunc

(
Ûl · ϕi

))
.

(22)
509
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