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A Experimental Details

A.1 Density Functional Theory in Experiment[6.3]

For D4FT experiments, we choose 4-layer neural operators and train them for 2k epochs. The width
of Geo-FNO is 32, while FNO and NO’s is 64, for similar running time and parameter number. The
number of modes of all models is the number of atomic orbitals to align with NO, i.e., the number of
modes in NO is just the number of atomic orbitals in the molecule, which forms the orthogonal basis
set. The number of modes of Geo-FNO depends on the grid size for Geo-FNO, where the grid size is
small due to high-dimension, which is at most | Ngiq/2] + 1.

B Proof of Theory

B.1 Proof of Proposition [3.1]

Proof. (Proof of Proposition Consider all ¢, ¢’ € 12 with ¢; = (f, ¢i), ¢, = (f’, ¢;) for the input
functions f, f’, and also X¢; = (o(f), ¢:), 2c;, = (o (f'), ¢;) where o is the nonlinear activation in
the function space while ¥ is that in the coefficient space,

o 1/2 ~ 1/2
<Z 1% — Eéll%) =llo(f) =o(fMez < LIf = flle = L (Z llei = dll%) :
=0 =0
(N

using Parseval’s theorem. O

B.2 Proof of Theorem 3.1]

We denote A as the input space and Z as the input and label pair space.

Definition B.1. [29] For a metric space (S, p) and T C S we say that T C S is an e-cover of T, if
Vt € T, there 3t € T such that p(t, f) < €. The e-covering number of T is defined as:

N(e,T,p) = min{|T| : T is an € — cover of T'}. 3)

Definition B.2. [29] A learning algorithm Ais (K, €(-))-robust, for K € Nand €(-) : Z™ — R, if

Z can be partitioned into K disjoint sets, denoted by {Ck}le, such that the following holds for all
Sezn:

VseS,Vze ZNVk=1,...,K: ifs,z € Ck, then |l (As,s) — L (As,z)| < €(S). 9)

Lemma B.1. [29] If a learning algorithm A is (K, €(-) )-robust, then for any 6 > 0, with probability
at least 1 — § over an iid draw of n examples S = (z;)-_,, the following holds:

<E(S)+M\/2Kln2+2ln(1/6) a0)

)
n

E. [0 (As,2)] - % D U(As, )
i=1

where M is defined as follows: for all h € H and z € Z, the loss is upper bounded by M as
l(h,z) < M.

Lemma B.2. (Robustness of NO) Consider the NO given by equation (2) with the pa-
rameters {Bl,Wl}leo and its activation function o is 1-Lipschitz. Then, the mapping is

(./\/ (v/2, Al lL2) s Hlel (max {||By; + Will2, |Will2}) 'y)—robustfor all chosen ~ > 0.

Proof. Recall the layer of NO:

Cli = Xer, 1>1;
Cl1,< Nooter = (B1,<Npotee ¥ W1)CL<Nuoser>  Clt 1,5 Nonoier = WICL> Ny (11)
Vi = CL.i»

12



490 Since, the mapping X in the first line is 1-Lipschitz,

Nmodes o0

l l l l l l
[t —d™* | = Z HQ‘H - di_HHS + Z ||Ci+1 - di+1H§
1=0 = Nmodes
N, oo
< o~ B’L W 2010 dl 2 W 2 I dl 2 (12)
< Z 1B+ Willle; — dillz + [[Wl[3 Z lles — dill3
=0 1= Nmodes

< max {|| B + Willz, [Wil2}* ' - d'l[f

91 Consequently, the robustness of the Ith layer depends on max {||B;; + W||2, ||[W]|2} , while that
ag2  of the entire model will be HZL:() max {||B; + Will2, |[Will2} - O

493 Proof. (Proof of Theorem [3.1)) It immediately follows from Lemmas B.1 and B.2. O

494 B.3 Proof of Theorem 3.3

495 Proof. We consider a uniform grid over bounded regular domains. Thus, although the grid points are
496 not randomly chosen, the robustness bound still holds. We consider one layer of NO,

nwmmmﬂwﬂ—H/munammemwmwwywmwwm@wH

Niodes
= | D Builin, ¢i)lei(@) — ¢a(@’)] + Wiliu(a) — ()] ‘
i=0
Ninodes
< Z | Bit, ¢0) ||| os(x) — di(x”) | + Wil Jur () — wi(x’) |
=0 (13)
497 By induction, we obtain
[v(x) —v(z)]]
Ninodes
< |Br-1i{ir—1,p)llll¢i(x) — @i(2")|| + [Wr—1|llur—1(z) —ur—1(z)|| "
i=0

Niodes L—1 / L—1 -1
<> > ( II IIWkH) 1By, ¢a)llll i () — (@) + [T IWallll (=) — £,

i=0 [=0 \k=Il+1 =0

498 where f is the input and v is the output. Consequently, the Lipschitz constant of the output function v
499 can be bounded by:

Niodes

L-1 / L-1 L-1
Z < H Wk||> [ Bu,i{tu, ¢:)ILip(¢:) + H W ||Lip(f). (15)
1=0

=0 k=l+1 =0

500 O
s00 B.4 Proof of Theorem 3.2]
so2  Proof. (Proof of Theorem We consider the [th layer of the continuous NO,

wr(@) = [ KBz y)inly)dy + Wiin(z)

Ninodes

13



503 Denote the discretized version of the model with U; (), where

Vs () = / K(B1.z,y)0i(y)dy + WU (x)

Nmudm ~ ( 1 7)
= > Bi¢i(x) (/Uz(y)@(y)dy) + Wili(z),
i=0
504 where ] denotes the numerical integral. The difference is
mndex
U1 () — Upgr ( Z Byidi(x ((/ /) Ui(y)di(y dy)
Nmodes ) R (18)
> Busi@) ([ () - i) o)y ) +
i=0
Wl (ﬂl(:c) — Ul(il:)) .
505 Expand the function @;(x) — U;(x) by the orthogonal basis ¢;(x):
Nmodes
w1 (z) — U (2 Z By ,i¢i(x ((/ /) Ui(y)i(y )
(19)
> B+ woste) ([ () - ) sy,
i=1
s06 where we denote Bﬁ = 0 for i > Npyodes- Therefore,
Nmodes
lwis1 — Uigallre < Z | B1,i||2€gria (Neria) €func (Uz . ¢i) + max {[|By; + Will2, |Will2} [|lwi — Ul| 2.
i=0
(20)
507 For the first layer of the model:
Nmodes
lur — UrllL2 < Z | Bo.i||€grid (Neria) €func (f - ¢4) - 21
i=0

s08 By induction, we can derive the integral error for the entire model:

L L Nmodes
o= Vliz <> [ [ max{Bri + Whll2, W2} < > 11Buillzeria(Nesia)erune (Ul : du)) -

1=0 k=l i=0

509 O
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