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1. Introduction
High-resolution Scanning Transmission Electron

Microscopy-Electron Energy Loss Spectroscopy
(STEM EELS) provides rich chemical and electronic
information crucial for materials discovery [1, 2, 3].
However, when investigating novel battery materi-
als, standard reference spectra may be unavailable
or inapplicable due to differences in sample prepa-
ration and experimental conditions [4]. These
challenges are compounded by high noise levels
at the necessary resolutions, which can obscure
critical spectral features.
Conventional approaches rely heavily on refer-

ence databases that often do not match the newma-
terial or experimental setup [4]. The proposed unsu-
pervised machine learning workflow addresses this
gap by revealing latent, chemically meaningful fea-
tures without requiring labeled training data. By re-
ducing spectral dimensionality and grouping simi-
lar spectral signatures, it becomes possible to iden-
tify previously unknown phases or compositions.
This application of dimensionality reduction and
information-theoretic measures (such as mutual in-
formation) for direct chemical bonding insights is a
significant advancement in the field.
As a proof of concept, we apply this machine

learning workflow to characterize a novel sili-
con–carbon composite anode in ahigh-performance
battery. While graphite is the conventional anode
material, silicon has drawn attention for its approxi-
mately tenfold larger specific capacity [5, 6]. Despite
its advantages, the widespread adoption of silicon
has been hampered by significant volumetric expan-
sion during charge–discharge cycles [7, 8]. To miti-
gate this issue, silicon nanoparticles are embedded
in nanoporous amorphous carbon using advanced
synthesis methods [9]. However, the hierarchical
composition of these materials and the low signal-
to-noise ratio at individual raster pixels make phase
determination particularly challenging.

2. Methodology
Data Acquisition: STEM EELS spectra on the Car-

bon K-edge, Oxygen K-edge, and Silicon L-edge were
collected fromSiliconnanoparticles and amorphous
Carbon composite. The thickness contrast via low
loss EELS is shown in Figure 1a. Preprocessing:

Each elemental edge was individually background-
subtracted to remove thickness-dependent noise
from low-loss regions, shown in Figure 1b. A fur-
ther principal component analysis (PCA) was ap-
plied for noise reduction. Dimensionality Reduc-
tion: Uniform Manifold Approximation and Pro-
jection (UMAP) [10] was applied to each elemental
map to group pixels with similar spectral signatures,
shown in Figure 1c. K-Means clustering was applied
to identify classes of spectra in this latent represen-
tation. The spatial relationship of these classes are
visualized by labelling the pixels in the STEM EELS
image. Correlated Composition Identification: Mu-
tual information analysis was used to detect regions
with strong co-occurrences of chemical signals, sug-
gesting the presence of specific bonds. Validation:
Average spectra from each cluster were compared
to reference EELS data to confirm compositional as-
signments.

3. Discussion
Cluster Analysis: The UMAP clustering revealed

distinct compositional classes in the high-resolution
data, even under noisy conditions. Identification of
Chemical Bonds: Clusters exhibiting high mutual
information suggested the coexistence of specific
bonding environments, such as Si–C, Si–O, and el-
emental Si. Reference Comparison: Averaged clus-
ter spectra (vector-quantized by class) aligned well
with known EELS database references [11, 12, 13],
confirming the presence of SiC, SiO2, and pure Si.
Local Chemical Heterogeneity: The spatial distri-
bution of these classes revealed significant chemical
heterogeneity in the battery anode, which would be
difficult to ascertain using conventional, supervised
analysis.

4. Conclusion and implications
This work demonstrates that unsupervised ma-

chine learning methods, particularly dimensional-
ity reduction and mutual information analysis, can
uncover previously elusive compositional details in
novel battery materials. By bypassing the need for
comprehensive reference databases and effectively
mitigating noise inherent to high-resolution imag-
ing, this approach enables rapid identification of
new phases and bonding environments. The impli-
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Fig. 1: Unsupervised analysis pipeline for STEM-EELS data in a Silicon–Carbon Composite. (a) Raw STEM-
EELS spectral map, showing thickness contrast across the silicon–carbon composite anode region. (b) Ex-
ample spectra from the silicon L-edge, carbon K-edge, and oxygen K-edge after elemental feature selection
and principal component analysis (PCA) for noise reduction. (c) Latent-space embeddings (via UMAP) of
each edge, with k-means clustering, to reveal distinct spectral signatures that corresponds to different local
chemical environments. (d) Mutual information analysis quantifies correlations between clusters, confirm-
ing which chemical phases co-occur (e.g., Si–C, Si–O). (e) Spatial mapping of identified clusters highlights
localized compositional regions (e.g., SiC, SiO2, elemental Si), illustrating how the unsupervised approach
distinguishes heterogeneous chemical domains within the material. Scale bars are 100 nm.

cations extend beyond battery research to fields re-
quiring high-precision chemical characterization of
materials for which robust reference spectra are un-
available or incomplete, thereby accelerating mate-
rials discovery and optimization.
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