
A Societal Impacts

Machine learning models have become increasingly pervasive in society, from medicine [10, 67, 15]
and law [38] to entertainment[14, 9, 80]. Therefore, it is important that users of the technology
understand the factors underlying model predictions. To this end we propose SmoothHess for
quantifying the feature interactions affecting model output. Potential applications of our method are
widespread; SmoothHess may be used to find interactions influencing a model to predict whether
a customer will default on a credit loan or if a patient has melanoma. The deeper understanding
of the model gleaned from SmoothHess may be used to improve decision making. For instance, a
doctor may notice that the SmoothHess feature interactions between the pixels in an image of a lesion
don’t "make sense", indicating that the model should not be trusted and that a more granular human
assessment is required. However, such applications are highly sensitive and the cost of inaccurate
predictions, or, in this case, misinterpreted attributions, can be high. An inaccurate interpretation
can instill unwarranted trust, or mistrust, in a user. In the most extreme cases this may lead to
sub-optimal decision making such as the confident denial of a credit loan to a trustworthy customer
or misdiagnosis of a benign lesion as malignant.

In addition, it is important to note the challenges related to ensuring robust, stable, and trustworthy
explanations. In particular, recent works have uncovered issues related to the sensitivity of the
explainer to small changes in the input [5, 41], adversarial attacks [27, 20, 37], or hyperparameter
tuning [8]. Methods have been proposed that attempt to quantify explanation uncertainty [75, 69, 35],
however further challenges remain. Thus, as with all methods for explaining machine learning model
predictions, we recommend that SmoothHess is used in tandem with the careful consideration of
domain experts, who are best equipped to interpret interactions in the context of their field.

B Proof of Proposition 1

B.1 Preliminary

We make use of a Lemma from Lin et al. [49] in our proof below, which we relate here:
Lemma 3. (Lin et al. [49]) Denote x0 ∈ Rd, locally-Lipschitz continuous function h(z) : Rd → R,
covariance matrix Σ ∈ Rd×d, random vector z ∈ Rd distributed from z ∼ N (x0,Σ). If Ez[|h(z)|] <
∞, then

Ez[Σ
−1((z − x0)(z − x0)

T − Σ)Σ−1h(z)] = Ez[Σ
−1(z − x0)[∇zh(z)]

T] (13)

B.2 Main Result

Proposition 1. Given x0 ∈ Rd, L-Lipschitz continuous function g : Rd → R, covariance matrix Σ ∈
Rd×d and random vector δ ∈ Rd distributed from δ ∼ N (0,Σ) with density function qΣ : Rd → R,
then

Eδ[Σ
−1δ[∇xg(x0 + δ)]T] = ∇2

x[(g ∗ qΣ)(x0)] = ∇2
xhg,Σ(x0), (7)

where ∗ denotes convolution.

Proof. We define random vector z = x0 + δ ∈ Rd distributed from z ∼ N (x0,Σ), and for which
we denote the density function as pΣ. We begin by showing Ez[|g(z)|] = Eδ[|g(x0 + δ)|] < ∞. We
are given that g is L-Lipschitz, i.e. ∀a, b ∈ Rd

|g(a)− g(b)| ≤ L∥a− b∥2 (14)

for some L > 0.

Now, for any fixed δ ∈ Rd we have

|g(x0 + δ)| = |g(x0) + (g(x0 + δ)− g(x0))|
△ ineq.
≤ |g(x0)|+ |g(x0 + δ)− g(x0)|

Eq.14

≤ (15a)
|g(x0)|+ L∥x0 + δ − x0∥2 = |g(x0)|+ L∥δ∥2. (15b)

Thus, we may bound the expectation Eδ[|g(x0 + δ)|]:

Eδ[|g(x0 + δ)|] ≤ Eδ[|g(x0)|+ L∥δ∥2] = g(x0) + LEδ[∥δ∥2] < ∞. (16)

17

Here g(x0) < ∞ as it is a constant, and it may be seen that LEδ[∥δ∥2] < ∞ using a simple change
of variables. Defining β = Σ− 1

2 δ ∼ N (0, I) one may write Eδ[∥δ∥2] = Eβ [∥Σ
1
2 β∥2]. As a

straightforward consequence of Cauchy-Schwarz, for any fixed β, one may write

∥Σ 1
2 β∥2 ≤ ∥Σ 1

2 ∥F ∥β∥2 (17)

where ∥·∥F denotes the Frobenius norm. Noting that ∥β∥2 ∼ Xd we use Eq. (17) to see

Eβ [∥Σ
1
2 β∥2] ≤ Eβ [∥Σ

1
2 ∥F ∥β∥2] = ∥Σ 1

2 ∥FEβ [∥β∥2] = ∥Σ 1
2 ∥F

√
2
Γ((d+ 1)/2)

Γ(d/2)
< ∞ (18)

where Γ(·) denotes the Gamma function.

Next, we move the Hessian operator inside the integral.

∇2
x(g ∗ qΣ)(x0) = ∇2

x

∫
z∈Rd

g(z)qΣ(z − x0)dz =

∫
z∈Rd

g(z)∇2
xqΣ(z − x0)dz = (19a)∫

z∈Rd

g(z)∇x∇T
x qΣ(z − x0)dz =

∫
z∈Rd

g(z)(∇xqΣ(z − x0)(z − x0)
TΣ−1)dz = (19b)∫

z∈Rd

g(z)((∇x(z − x0)
TΣ−1)qΣ(z − x0) + (∇xqΣ(z − x0))(z − x0)

TΣ−1)dz = (19c)∫
z∈Rd

g(z)(−IΣ−1qΣ(z − x0) + (∇xqΣ(z − x0))(z − x0)
TΣ−1)dz = (19d)∫

z∈Rd

g(z)(−IΣ−1qΣ(z − x0) + qΣ(z − x0)Σ
−1(z − x0)(z − x0)

TΣ−1)dz = (19e)∫
z∈Rd

g(z)qΣ(z − x0)(−IΣ−1 +Σ−1(z − x0)(z − x0)
TΣ−1)dz = (19f)∫

z∈Rd

g(z)pΣ(z)(−IΣ−1 +Σ−1(z − x0)(z − x0)
TΣ−1)dz = (pΣ(z) = qΣ(z − x0)) (19g)

Ez[g(z)(−IΣ−1 +Σ−1(z − x0)(z − x0)
TΣ−1)] = (19h)

Ez[g(z)Σ
−1(−I + (z − x0)(z − x0)

TΣ−1)] = (19i)

Ez[g(z)Σ
−1(−Σ+ (z − x0)(z − x0)

T)Σ−1] = (19j)

Ez[Σ
−1((z − x0)(z − x0)

T − Σ)Σ−1g(z)] (19k)

Lemma 3 may be applied as g is Lipschitz, and thus locally-Lipschitz, and Ez[|g(z)|] < ∞, yielding

Ez[Σ
−1((z − x0)(z − x0)

T − Σ)Σ−1g(z)] = Ez[Σ
−1(z − x0)[∇zg(z)]

T] (20)

Using a change of variables from z to x0 + δ we write

Ez[Σ
−1(z − x0)[∇zg(z)]

T] = Eδ[Σ
−1δ[∇xg(x0 + δ)]T] (21)

which, when combined with Eq. (19) and Eq. (20), completes the proof

∇2
x(g ∗ qΣ)(x0) = Eδ[Σ

−1δ[∇xg(x0 + δ)]T]. (22)

C Proof of Theorem 1

We begin by establishing a result expressing the eigenvalues of the symmetrization of a rank 1 matrix
in closed form:

Lemma 4. Given x, y ∈ Rd denote A = xyT + yxT ∈ Rd×d. The following facts hold:

1. Matrix A will have the following eigenvalues

• It has d− 2 eigenvalues equal to 0

18

• The other two eigenvalues are denoted by λ+(A) and λ−(A) will have the following
form:

λ±(A) = xT y ± ∥x∥2∥y∥2 (23)

2. λ+(A) and λ−(A) are non-negative and non-positive respectively.

3. Given x and y are sampled from sub-gaussian distributions, then λ+(A) and λ−(A) are
sub-exponential random variables.

Proof. We divide the proof into three sections

1. We have rank(A) ≤ 2, A ∈ Sd. Therefore ∃Q = [e1|e2| . . . |ed] ∈ Rd×d s.t. QTQ =
QQT = I , the column vectors ei ∈ Rd are orthonormal and

A = QΛQT (24a)

QTAQ = Λ (24b)

where Λ = diag([λ1, λ2, 0, . . . , 0]) ∈ Rd×d. As eigenvalues are invariant to change of basis,
A has eigenvalues λ1 and λ2 and the other d− 2 eigenvalues are equal to 0.

It can be seen that span({x, y}) = span({e1, e2}). As span({e1, e2}) = C(A) this can be
shown by proving span({x, y}) = C(A). We know ∃zx ∈ Rd : zx ⊥ x and ∃zy ∈ Rd :
zy ⊥ y. Thus we have

Azx = (xyT + yxT)zx = xyT zx + yxT zx = x(yT zx) (25a)

Azy = (xyT + yxT)zy = xyT zy + yxT zy = y(xT zy). (25b)

From the above, we see that x, y ∈ C(A). We know rank(A) ≤ 2. If rank(A) = 2 we
have x ̸= y and thus span({x, y}) = C(A). If rank(A) = 1 we have x ̸= 0, y ̸= 0 and
still span({x, y}) = C(A). If rank(A) = 0 we have x = y = 0 and clearly span({x, y}) =
{0} = C(A).

As {ei}di=1 are orthonormal, we have that xT ej = yT ej = 0, ∀j > 2. We define

x̄ = QTx = (eT1 x, e
T
2 x, e

T
3 x, . . . , e

T
d x) = (eT1 x, e

T
2 x, 0, . . . , 0) ∈ Rd, (26a)

ȳ = QT y = (eT1 y, e
T
2 y, e

T
3 y, . . . , e

T
d y) = (eT1 y, e

T
2 y, 0, . . . , 0) ∈ Rd (26b)

We define Q2 = [e1|e2] ∈ Rd×2 and

x̃ = QT
2 x = (eT1 x, e

T
2 x) ∈ R2 (27a)

ỹ = QT
2 y = (eT1 y, e

T
2 y) ∈ R2 (27b)

We first show that ∥x̄∥2 and ∥ȳ∥2 are equal to ∥x∥2 and ∥y∥2 respectively:

∥x̄∥2 = ∥QTx∥2 =
√
(QTx)T (QTx) =

√
xTQQTx =

√
xT Ix = ∥x∥2 (28a)

∥ȳ∥2 = ∥QT y∥2 =
√

(QT y)T (QT y) =
√

yTQQT y =
√
yT Iy = ∥y∥2 (28b)

Next, we use Eq. (28) to show that ∥x̃∥2 and ∥ỹ∥2 are equal to ∥x∥2 and ∥y∥2 respectively:

∥x̃∥2 =
√

(eT1 x)
2 + (eT2 x)

2 = ∥x̄∥2 = ∥x∥2 (29a)

∥ỹ∥2 =
√

(eT1 y)
2 + (eT2 y)

2 = ∥ȳ∥2 = ∥y∥2 (29b)

We show an equality between inner products x̃T ỹ = xT y:

x̃T ỹ = (eT1 x)(e
T
1 y) + (eT2 x)(e

T
2 y) = x̄T ȳ = (QTx)TQT y = xTQQT y = (30a)

xT Iy = xT y (30b)

19

Now, one may write,

QT
2 AQ2 = diag([λ1, λ2]) (31a)

QT
2 (xy

T + yxT)Q2 = diag([λ1, λ2]) (31b)

QT
2 xy

TQ2 +QT
2 yx

TQ2 = diag([λ1, λ2]) (31c)

x̃ỹT + ỹx̃T = diag([λ1, λ2]). (31d)

The following facts hold as a result of Eq. (31d):

• λ1 = 2x̃1ỹ1
• λ2 = 2x̃2ỹ2
• x̃1ỹ2 + x̃2ỹ1 = 0

Now, we show

λ1 = x̃T ỹ + ∥x̃∥2∥ỹ∥2, λ2 = x̃T ỹ − ∥x̃∥2∥ỹ∥2 (32)

Which can be derived as such:

x̃T ỹ ± ∥x̃∥2∥ỹ∥2 = x̃1ỹ1 + x̃2ỹ2 ±
√
(x̃2

1 + x̃2
2)(ỹ

2
1 + ỹ22)

= x̃1ỹ1 + x̃2ỹ2 ±
√

(x̃1ỹ1 − x̃2ỹ2)2 = x̃1ỹ1 + x̃2ỹ2 ± |x̃1ỹ1 − x̃2ỹ2| = λ1 or λ2

(33)

where the second equality comes from the following:

(x̃1ỹ1 − x̃2ỹ2)
2 = (x̃1ỹ1)

2 − 2x̃1x̃2ỹ1ỹ2 + (x̃2ỹ2)
2

= (x̃1ỹ1)
2 − 2x̃1x̃2ỹ1ỹ2 + (x̃2ỹ2)

2 + (x̃1ỹ2 + x̃2ỹ1)
2

= (x̃1
2 + x̃2

2)(ỹ
2
1 + ỹ22).

(34)

Proving that Eq. (32) holds. Finally, we combine Eq. (29) and Eq. (30) with Eq. (32) to
express the eigenvalues of A as:

λ1 = xT y + ∥x∥2∥y∥2, λ2 = xT y − ∥x∥2∥y∥2 (35)

which we use to denote λ+(A) = λ1, λ
−(A) = λ2.

2. As |xT y| ≤ ∥x∥2∥y∥2, it follows that λ+(A) = xT y + ∥x∥2∥y∥2 ≥ 0 and λ−(A) =
xT y − ∥x∥2∥y∥2 ≤ 0.

3. We denote D = {1, . . . , d} It can be seen that xiyi is sub-exponential ∀i ∈ D , as a
sub-gaussian times a sub-gaussian is sub exponential. Thus, it follows that

xT y =

d∑
i=1

xiyi is a sub-exponential random variable, (36)

as the sum of sub-exponential random variables is sub-exponential. Further we see that
x2
i and y2i are sub-exponential as the square of a sub-gaussian is sub-exponential. As the

sum of sub-exponentials is sub-exponential we have that
∑d

i=1 x
2
i ,
∑d

i=1 y
2
i are both sub-

exponential random variables. As the square root of a sub-exponential is sub-gaussian we
have that

∥x∥2 =

√√√√ d∑
i=1

x2
i is a sub-gaussian random variable (37a)

∥y∥2 =

√√√√ d∑
i=1

y2i is a sub-gaussian random variable (37b)

As a sub-gaussian times a sub-gaussian is sub-exponential, from Eq. 37 we have that

∥x∥2∥y∥2 is a sub-exponential random variable . (38)

Now we see from Eq. and 36 Eq. 38 that both λ+(A) and λ−(A) are the sum of sub-
exponential random variables and thus are sub-exponential.

20

We now use the result of Lemma 4 to prove the sample complexity bounds for SmoothHess in
Theorem 1:

Theorem 1. Let f : Rd → R be a piece-wise linear function over a finite partition of
Rd. Let x0 ∈ Rd, and denote {δi}ni=1, a set of n i.i.d random vectors in Rd distributed
from δi ∼ N (0,Σ). Given Ĥn(x0, f,Σ) as in Eq. (8), for any fixed ε, γ ∈ (0, 1], given

n ≥ 4
ε2 [max((C+

√
d+

√
1
c+ log 4

γ)
2, (C−

√
d+

√
1
c− log 4

γ)
2)] then

P
(∥∥Ĥn −H

∥∥
2
> ε

)
≤ γ. (9)

where H = ∇2
x[(f ∗ qΣ)(x0)], C+, C−c+, c− > 0 are constants depending on the function f and

covariance Σ and qΣ : Rd → R is the density function of N (0,Σ).

Proof. As x0, f and Σ are fixed, we refer to Ĥn(f, x0,Σ) as Ĥn for brevity. We denote D =

{1, . . . , d}. We begin by explicitly expressing our estimator Ĥn in terms of δi and ∇xf(x0 + δi).
From Eq. (8) we have

H◦
n =

1

n

n∑
i=1

Σ−1δi[∇xf(x0 + δi)]
T (39a)

Ĥn =
1

2
H◦

n +
1

2
H◦T

n = (39b)

1

2

1

n

n∑
i=1

(Σ−1δi[∇xf(x0 + δi)]
T) +

1

2

1

n

n∑
i=1

(∇xf(x0 + δi)δ
T
i Σ

−1) (39c)

Now, we show the convergence of our estimator Ĥn:

Lemma 5. limn→∞ Ĥn = H

Proof. From Proposition 1 it is clear to see that limn→∞ H◦
n = H:

lim
n→∞

H◦
n = lim

n→∞

1

n

n∑
i=1

Σ−1δi[∇xf(x0 + δi)]
T = Eδ[Σ

−1δ[∇xf(x0 + δ)]T]
Prop 1
= H. (40)

Next, we show it is also the case that limn→∞ H◦T
n = H:

lim
n→∞

H◦T
n = lim

n→∞

1

n

n∑
i=1

∇xf(x0 + δi)δ
T
i Σ

−1 = (41a)

lim
n→∞

1

n

n∑
i=1

(Σ−1δi[∇xf(x0 + δi)]
T)T = (lim

n→∞

1

n

n∑
i=1

Σ−1δi[∇xf(x0 + δi)]
T)T = (41b)

(Eδ[Σ
−1δ[∇xf(x0 + δ)]T])T

Prop 1
= HT = H (Symmetry of Hessian) (41c)

Now, as we have limn→∞ H◦
n = limn→∞ H◦T

n = H , it follows that

lim
n→∞

Ĥn = lim
n→∞

1

2
H◦

n + lim
n→∞

1

2
H◦T

n =
1

2
H +

1

2
H = H (42)

We establish the following notation to be used below: given a fixed vector δ ∈ Rd one may construct
matrix Aδ ∈ Rd×d by:

Aδ =
1

2
(Σ−1δ[∇xf(x0 + δ)]T) +

1

2
(∇xf(x0 + δ)δTΣ−1) ∈ Rd×d (43)

21

It can be seen from Eq. 39 and Lemma 5 that H and Ĥn may be expressed in terms of matrices Aδ

and Aδi :

H = Eδ[Aδ], Ĥn =
1

n

n∑
i=1

Aδi (44)

Next, we establish that the random vectors Σ−1δ and ∇f(x0 + δ) are sub-gaussian:

Lemma 6. The random vectors Σ−1δ and ∇f(x0 + δ) are sub-gaussian.

Proof. As Σ−1δ is Gaussian it is sub-gaussian. Now, we show that ∇f(x0 + δ) is a sub-gaussian
random-vector. We have that f is piecewise-linear over a partition of Rd with finite cardinality L.
Let us denote this partition as Q = {Qi}Li=1, Qi ⊆ Rd, where, when restricted to a given Q ∈ Q we
have

f |Q(x) = VQx+AQ (45)

where VQ ∈ Rd, AQ ∈ R are the affine coefficients associated with the region Q. Then it is the
case that ∇f : Rd → R is a bounded function, where, aside from a set of measure 0, M ⊆ Rd (the
boundaries of regions Q) where ∇f is not defined, one has

∥∇f(x)∥2 ≤ max
Q∈Q

∥VQ∥2, ∀x ∈ Rd\M. (46)

Thus, ∇f(x0 + δ) is a bounded random vector and therefore is sub-gaussian.

Given the operators λ+, λ− : Rd×d → R as defined in the statement of Lemma 4 and fixed vector
δ ∈ Rd, we denote λ+

δ := λ+(Aδ), λ
−
δ := λ−(Aδ) and the corresponding unit eigenvectors as

v+δ ∈ Rd and v−δ ∈ Rd respectively. We denote random vectors w+
δ , w

−
δ ∈ Rd by

w+
δ =

√
λ+
δ v

+
δ , w−

δ =
√

−λ−
δ v

−
δ (47)

where
√
λ+
δ and v+δ are a random variable random vector pair coming from the same δ. An immediate

consequence of Lemma 6 is that w+
δ and w−

δ are sub-gaussian random vectors:

Lemma 7. w+
δ and w−

δ are sub-gaussian random-vectors

Proof. Using Lemma 4(3), Lemma 4(2) and Lemma 6 we see that that λ+
δ and −λ−

δ are non-negative

sub-exponential random variables and thus that
√

λ+
δ and

√
−λ−

δ are sub-gaussian random variables.

We may say w+
δ is a sub-gaussian random vector if ⟨w+

δ , z⟩ is a sub-gaussian random variable

∀z ∈ Rd. Let us fix arbitrary z ∈ Rd. As
√
λ+
δ is sub-gaussian we have

∃K1 > 0 s.t. P(|
√
λ+
δ | ≥ t) ≤ 2 exp(−t2/K2

1) ∀t ≥ 0 (48a)

Now, ∀t ≥ 0

P(|⟨w+
δ , z⟩| ≥ t) = P(|

√
λ+
δ ⟨v

+
δ , z⟩| ≥ t) = (49a)

P(|
√
λ+
δ | ≥ t/|⟨v+δ , z⟩|)

C-S, ∥v+
δ ∥2=1

≤ P(|
√
λ+
δ | ≥ t/∥z∥2) ≤ 2 exp(−(t2/∥z∥22K2

1)) (49b)

Thus defining K
(z)
1 := K1∥z∥2 we see that ∀t ≥ 0

P(|⟨w+
δ , z⟩| ≥ t) ≤ exp(−t2/(K

(z)
1)2). (50)

Thus ⟨w+
δ , z⟩ is sub-gaussian for arbitrary z ∈ Rd. Therefore, w+

δ is a sub-gaussian random-vector.
The same argument holds to show that w−

δ is a sub-gaussian random vector.

22

Given any fixed δ, it can be seen that

Aδ = w+
δ w

+T
δ − w−

δ w
−T
δ . (51)

Thus one may re-write H and Ĥn from Eq. 44 as:

H = Eδ[Aδ] = Eδ[w
+
δ w

+T
δ − w−

δ w
−T
δ], Ĥn =

1

n

n∑
i=1

Aδi =
1

n

n∑
i=1

w+
δi
w+T

δi
− w−

δi
w−T

δi
. (52)

Because {δi}ni=1 are i.i.d. random vectors and w+
δi
, w−

δi
are fully determined by δi, it follows that

{w+
δi
}ni=1 and {w−

δi
}ni=1 are both sets of i.i.d. random vectors.

We denote the following:

H+ = Eδ[w
+
δ w

+T
δ], H− = Eδ[w

−
δ w

−T
δ], (53a)

Ĥ+
n =

1

n

n∑
i=1

w+
δi
w+T

δi
, Ĥ−

n =
1

n

n∑
i=1

w−
δi
w−T

δi
(53b)

It can be seen from the RHS of Eq. (52) that

Ĥn = Ĥ+
n − Ĥ−

n . (54)

We now aim to decompose H in terms of H+, H−, in order to derive separate concentration bounds.
To this end, we prove the following lemma:

Lemma 8. H+ and H− exist.

Proof. Let us consider the random matrix w+
δ w

+T
δ ∈ Rd×d. As (w+

δ)k ∈ R is sub-gaussian ∀k ∈ D,
the element (w+

δ w
+T
δ)ij ∈ R is sub-exponential as the product of two sub-gaussian’s, ∀i, j ∈ D.

Thus, Eδ[(w
+
δ w

+T
δ)ij] exists ∀i, j ∈ D. The same argument can be made to show Eδ[(w

−
δ w

−T
δ)ij]

exists ∀i, j ∈ D.

In light of Lemma 8, the LHS of Eq. (52) may be decomposed as

H = Eδ[w
+
δ w

+T
δ − w−

δ w
−T
δ] = Eδ[w

+
δ w

+T
δ]− Eδ[w

−
δ w

−T
δ] = H+ −H−. (55)

Before deriving separate concentration bounds on Ĥ+
n and Ĥ−

n we note that

lim
n→∞

Ĥ+
n = Eδ[w

+
δ w

+T
δ], lim

n→∞
Ĥ−

n = Eδ[w
−
δ w

−T
δ]. (56)

Finally, we bound the deviation of Ĥ+
n and Ĥ−

n from their expectations. Let us fix ε, γ ∈ (0, 1].
From Eq. (55), and the fact that {w+

δi
}ni=1 is a set of i.i.d. sub-gaussian random vectors, Theorem

3.39, Remark 3.40 of Vershynin [87] may be applied, yielding: ∀t ≥ 0

P
(
∥Ĥ+

n −H+∥2 > max(ε+n , (ε
+
n)

2)

)
≤ 2 exp(−c+t2) (57)

where ε+n = C+
√
d√
n
+ t√

n
and C+, c+ > 0 are constants depending on the sub-gaussian norm of

w+
δi

. Let us select t =
√

log(4/γ)
c+ . Plugging into Eq. (57), we get

P
(
∥Ĥ+

n −H+∥2 > max(C+

√
d√
n
+

√
log(4/γ)

c+√
n

, (C+

√
d√
n
+

√
log(4/γ)

c+√
n

)2)

)
≤ γ

2
(58)

23

Let us consider n+ = 4
ε2 (C

+
√
d+

√
log(4/γ)

c+)2. One may see that

ε+n+ = C+

√
d√
n+

+

√
log(4/γ)

c+√
n+

= (59a)

C+ ε
√
d

2(C+
√
d+

√
log(4/γ)

c+)
+

ε
√

log(4/γ)
c+

2(C+
√
d+

√
log(4/γ)

c+)
= (59b)

ε

2

C+
√
d+

√
log(4/γ)

c+

C+
√
d+

√
log(4/γ)

c+

=
ε

2
(59c)

Thus, given n = n+ one has ε+n = max(ε2 , (
ε
2)

2) = ε
2 , because ε

2 < ε ≤ 1, and that

P
(
∥Ĥ+

n −H+∥2 >
ε

2

)
≤ γ

2
. (60)

In fact, because ε+n is monotonically decreasing in n, given n ≥ n+ Eq. (60) holds.

The same logic above may be used to show that there exists constants C−, c− > 0 depending on the

sub-gaussian norm of w−
δ such that, given n ≥ n− = 4

ε2 (C
−
√
d+

√
log(4/γ)

c−)2 one has

P
(
∥Ĥ−

n −H−∥2 >
ε

2

)
≤ γ

2
. (61)

Finally, we combine the two bounds from Eq. (61) and Eq. (60). Given n ≥ max(4
ε2 (C

+
√
d +√

log(4/γ)
c+)2, 4

ε2 (C
−
√
d+

√
log(4/γ)

c−)2) we have

P(∥Ĥn −H∥2 > ε) = P(∥Ĥ+
n − Ĥ−

n −H+ +H−∥2 > ε) = (Eq. (55)Eq. (54)) (62a)

P(∥(Ĥ+
n −H+)− (Ĥ−

n −H−)∥2 > ε) ≤ (62b)

P(∥(Ĥ+
n −H+)∥2 + ∥(Ĥ−

n −H−)∥2 > ε) ≤ (△− Ineq.) (62c)

P(∥Ĥ+
n −H+∥2 >

ε

2
∪ ∥Ĥ−

n −H−∥2 >
ε

2
) ≤ (62d)

P(∥Ĥ+
n −H+∥2 >

ε

2
) + P(∥Ĥ−

n −H−∥2 >
ε

2
) ≤ (Union bound) (62e)

γ

2
+

γ

2
= γ (Eq. (60)Eq. (61)) (62f)

D Implementation Details

D.1 Quadratic Optimization

Given a function f : Rd → R, point x0 ∈ Rd gradient Hessian pair G ∈ Rd, H ∈ Rd×d and a
magnitude constraint ε > 0, we aim to solve the following optimization:

min
∆∈Rd

f(x0) +GT (∆− x0) +
1

2
(∆− x0)

TH(∆− x0), s.t. ∥∆− x0∥2 ≤ ε, (63)

as f(x0) is constant, the problem above is equivalent to

min
δ∈Rd

GT δ +
1

2
δTHδ, s.t. ∥δ∥2 ≤ ε, (64)

where we have replaced ∆ − x0, which can be interpreted as the output after the attack with
δ = ∆− x0, the attack vector itself.

24

The optimization problem in Eq. (64) is non-convex as H is not guaranteed to be positive semi-
definite. However, as Slater’s constraint qualification is satisfied, i.e. ∃δ ∈ Rd s.t. ∥δ∥2 < ε, Eq. (64)
may be solved exactly[12]. Specifically, the solution may be obtained by solving an equivalent convex
optimization problem:

min
γ∈Rd,X∈Sd

tr(
1

2
HX) +GT γ, (65a)

s.t. tr(X)− ε2 ≤ 0, (65b)

[X, γ; γT , 1] ⪰ 0 (65c)

where Sd denotes the the set of symmetric matrices and ⪰ indicates the block matrix [X, γ; γT , 1] ∈
R(d+1)×(d+1) is constrained to be positive semi-definite.

However, the optimization in Eq. (65) is expensive to solve when d ≫ 0 as there are O(d2) variables.
For instance, MNIST and FMNIST have d2 ≈ 6.0 · 106 and CIFAR10 has d2 ≈ 108. Thus, before
converting Eq. (64) into Eq. (65), we elect to reduce the dimension of the optimization problem to
k ∈ N, k ≪ d.

Let us consider the eigendecomposition QΛQT = H . Here the columns of Q ∈ Rd×d are orthonor-
mal eigenvectors of H . Given the d eigenvalues {λ1, . . . , λd}, sorted such that i < j =⇒ |λi| ≥
|λj |, we have Λ = diag(λ1, . . . , λd). We remove the last d− k columns from Q and d− k columns
and rows from Λ to construct Q̃ ∈ Rd×k, Λ̃ ∈ Rk×k. Thus, we have a low-rank approximation of H:

H ≃ Q̃Λ̃Q̃T . (66)

Thus, Eq. (64) is approximately equivalent to another optimization which uses this low-rank approxi-
mation for H:

min
δ∈Rd

GT δ +
1

2
δT Q̃Λ̃Q̃T δ, s.t. ∥δ∥2 ≤ ε. (67)

Defining δ̃ = Q̃T δ ∈ Rk, Eq. (67) is approximately equivalent to

min
δ̃∈Rk

GT Q̃δ̃ +
1

2
δ̃T Λ̃δ̃, s.t. ∥δ̃∥2 ≤ ε, (68)

where the constraint is simplified to ∥δ̃∥2 ≤ ε from ∥Q̃δ̃∥2 ≤ ε as

∥Q̃δ̃∥2 = ((Q̃δ̃)T (Q̃δ̃))
1
2 = (δ̃T Q̃T Q̃δ̃)

1
2 = (δ̃T Q̃T Q̃δ̃)

1
2 = (δ̃T Iδ̃)

1
2 = ∥δ̃∥2. (69)

Finally, δ̃∗ ∈ Rk, the optimal solution to Eq. (68), is projected back to Rd yielding an approximate
solution to Eq. (67):

δ∗ = Q̃δ̃∗ ∈ Rd. (70)

Choosing k: The choice of k ∈ N is determined using a threshold hyperparameter T ∈ (0, 1]. Given
T , k is chosen to be the smallest number of (sorted) eigenvalues/eigenvectors which account for a
proportion of the total eigenvalue magnitude that is at least T :

k = argmin
k′

{k′ ∈ N :

k′∑
i=1

|λi| ≥ T

d∑
i=1

|λi|} (71)

For the values of T used for each dataset see App. E

D.1.1 Similarities and Differences with CASO/CAFO

Our quadratic optimization is closely connected to the CAFO/CASO explanation vectors proposed
by Singla et al. [74]. Both methods use optimizations to minimize a value outputted by the network,
and the CASO method also uses a second-order Taylor expansion in their objective. Additionally,
the proposed Smooth-CASO method is equivalent to an attack using SmoothGrad and SmoothHess
on the cross-entropy loss function (when their regularizers are set to 0), which admits higher order
derivatives.

25

However, there are some key differences. First, our optimization is meant for use with arbitrary
network outputs as opposed to just the loss, as is the case with CAFO/CASO. While the vanilla loss
Hessian modeled by Singla et al. [74] is proven to be positive semi-definite, this is not the case for
arbitrary functions which one may wish to attack. Thus methods to optimize non-convex quadratic
objectives, such as those outlined in App. D.1, are required. Second, our goal is not to generate an
explanatory feature importance vector for analysis, as is an important motivation for CAFO/CASO,
but to assess the quality of the gradient Hessian pair used to attack the function. For this reason, we
do not use sparsity constraints such as in Singla et al. [74], which are in part meant to improve the
interpretability of CAFO/CASO as explainers. Last we stress that the techniques used to find the
cross-entropy loss Hessian for CASO and Smooth-CASO cannot be used for internal neurons, logits
or regression valued output in ReLU networks, due to their piecewise-linearity.

D.2 SmoothHess

The SmoothHess estimation procedure, and the amortization with SmoothGrad estimation, is pre-
sented below in Algorithm 1. While empirically our SmoothHess estimator converges, we have
additionally found that reflecting each point δi in the perturbation set {δi}ni=1 about the origin to
create an augmented perturbation set {δi}ni=1 ∪ {−δi}ni=1 before estimation can result in faster
per-sample convergence.
Algorithm 1 Joint SmoothHess and SmoothGrad Estimation
Input : Sample of interest x ∈ Rd, Neural network indexed to output scalar of interest f : Rd → R, Covariance
Σ ∈ Rd×d, Batch size for gradient oracle calls n1 ∈ N, Number of batches n2 ∈ N.
Output : Ĥ an estimate of SmoothHess, Ĝ an estimate of SmoothGrad

Ĥ, Ĝ← torch.zeros(d,d), torch.zeros(d) \\ Ĥ ∈ Rd×d, Ĝ ∈ Rd

Σ−1 ← torch.inverse(Σ) \\ Σ−1 ∈ Rd×d, If Σ diagonal O(d), Else O(d3)

\\O(n1n2(W + d2)) , O(W) is complexity of one forward pass through f
for i = 1, . . . , n2 do

δ ← torch.normal(n1, 0,Σ) \\ δ ∈ Rn1×d

∇f(x+ δ)← torch.autograd(f, x+ δ) \\ ∇f(x+ δ) ∈ Rn1×d, O(n1W)

Âi ← torch.matmul(δ,∇f(x+ δ).T) \\ Âi ∈ Rd×d, O(n1d
2)

Ĥ ← Ĥ + Âi / n1n2 \\ O(n1d
2)

Ĝ← Ĝ+∇f(x+ δ).sum(dim = 0) / n1n2 \\ O(n1d)
end
Ĥ ← torch.matmul(Σ−1, Ĥ) \\ If Σ diagonal O(d2), Else O(d3)
Ĥ ← Ĥ + Ĥ.T \\ O(d2)

Return Ĥ, Ĝ

D.3 Alternative Covariance Matrices

While in this work we use isotropic covariance matrices of the form Σ = σ2I, σ > 0, SmoothHess
can be estimated using arbitrary positive definite covariance matrices Σ ∈ Rd×d. Such a covariance
matrix can be set according to the users preference, encoded using the fact that the eigenvectors of Σ
represent directions of interest and their corresponding eigenvalues represent levels of smoothing.

In the simplest case the user already has an orthornomal eigenvector basis in mind, a1, . . . , ad ∈ Rd

as well as desired levels of smoothing σ1, . . . , σd > 0. In this case Σ may be set by constructing
eigenvector and eigenvalue matrices Q = [a1| . . . |ad] ∈ Rd×d and Λ = diag(σ1, . . . , σd) ∈ Rd×d

and simply multiplying Σ = QΛQT .

Alternatively, the user may only have k < d orthonormal eigenvectors in mind, a1, . . . , ak ∈ Rd, for
which they wish to smooth at specific levels σ1, . . . , σk > 0. A procedure such as Gram-Schmidt
may be used to find ak+1, . . . , ad ∈ Rd which extends a1, . . . , ak to an orthonormal basis of Rd.
Again, the smoothing levels along the eigenvectors ak+1, . . . , ad may be chosen according to user
preference. For instance, one may select σk+1 = . . . = σd ≈ 0 if minimal smoothing is desired along
these directions. Just as above Σ may be set by constructing eigenvector and eigenvalue matrices
Q = [a1| . . . |ad] ∈ Rd×d and Λ = diag(σ1, . . . , σd) ∈ Rd×d and simply multiplying Σ = QΛQT .

26

E Experiment Setup

E.1 Datasets and Models

In this work we make use of six datasets, two synthetic datasets (Four Quadrants, Nested Interactions)
three benchmark datasets (MNIST, FMNIST, CIFAR10) and a real world medical dataset (Spirometry).
Below we describe these datasets and training details.

Four Quadrant. The Four Quadrant dataset consists of points x ∈ R2 sampled from the grid
[−2, 2] × [−2, 2] with a spacing of 0.008. A 6-layer fully connected ReLU network was trained
using RMSProp [83] on the Four Quadrant dataset achieving a final mean-squared-error of ≈ 1e-4.
Training lasted for 40, 000 iterations with a batch size of 128 and a starting learning rate of 1e-3
which was decayed by a factor of 1e-1 at iterations 5000, 10, 000 and 20, 000.

Nested Interactions. The Nested Interactions dataset consists of points x ∈ R2 sampled from the
grid [−2, 2]× [−2, 2] with a spacing of 0.008. A 6-layer fully connected ReLU network was trained
using RMSProp on the Nested Interactions dataset achieving a final mean-squared-error of ≈ 1e-1.
Training lasted for 200, 000 iterations with a batch size of 64 and a starting learning rate of 1e-3
which was decayed by a factor of 1e-1 at iterations 40, 000, 80, 000, 120, 000 and 160, 000. For more
details on Nested Interactions see App. F.3.

MNIST MNIST consists of 70,000 28x28 greyscale images, each corresponding with one of the
digits 0-9. There are 60, 000 and 10, 000 images in the pre-defined train and test sets respectively.
We further split the train set into 50, 000 images for training and 10, 000 for validation. A 5-layer
fully connected network with dimensions 500-300-250-250-250 was trained with stochastic gradient
descent for 30 epochs, with a batch size of 128 and a starting learning rate of 1e-2 which was decayed
by a factor of 1e-1 at iterations 4, 000 and 8, 000. Final accuracies of ≈ 100% (Train) ≈ 100% (Val)
and ≈ 98% (Test) were achieved. All images are flattened. For PMSE all methods were evaluated on
200 test points. For adversarial attacks all methods were evaluated on 400 test points. The threshold
for the quadratic optimization attack was set to T = 0.98.

FMNIST. FMNIST consists of 70,000 28x28 greyscale images, each corresponding with one of
10 articles of clothing. There are 60, 000 and 10, 000 images in the pre-defined train and test sets
respectively. We further split the train set into 50, 000 images for training and 10, 000 for validation.
Final accuracies of ≈ 93% (Train) ≈ 93% (Val) and ≈ 88% (Test) were achieved. The network and
training details are identical to that used for MNIST above. All images are flattened. For PMSE all
methods were evaluated on 200 test points. For adversarial attacks all methods were evaluated on
400 test points. The threshold for the quadratic optimization attack was set to T = 0.98.

CIFAR10 CIFAR10 consists of 60,000 3x32x32 RGB color images, each corresponding with
an animal or vehicle. There are 50,000 and 10,000 images in the pre-defined train and test sets
respectively. We further split the train set into 40, 000 images for training and 10, 000 for validation.
A ResNet-18 [32] was trained on CIFAR10 for 55 epochs using a batch size of 128. The first 5 epochs
were used for warmup with a starting learning rate of 1e-2 ending at 0.5. For the rest of training a
cosine decay schedule was used [52] decaying down to 1e-5 by the final epoch. Augmentations used
for training were (i) Random Horizontal Flip (p = 0.5) (ii) Color Jitter (p = 0.8) with brightness,
contrast and saturation values equal to 0.4 and hue value 0.1 (iii) Random Grayscale (p = 0.2). Final
accuracies of ≈ 85% (Train, Augmentations) ≈ 96% (Val, No Augmentations) and ≈ 90% (Test,
No Augmentations) were achieved. No augmentations were applied to the validation/test data when
evaluating explainers. For PMSE all methods were evaluated on 100 test points. For adversarial
attacks all methods were evaluated on 200 test points. The threshold for the quadratic optimization
attack was set to T = 0.8

Spirometry. The Spirometry dataset uses raw exhalation curves, measured in volume over time,
recorded during a spirometry exam. Each spirometry curve is measured in 10ms intervals, which
we downsample to 50ms intervals and limit to 15s in total length, resulting in 300 features. We use
the UK Biobank dataset, which is a large, population-based study conducted in the United Kingdom.
Participant statistics have been previously reported in Sudlow et al. [79]. The UK Biobank records
2-3 exhalation efforts for each participant, using a Vitalograph Pneumotrac 6800 device∗. If two
efforts are recorded as passing acceptability criteria and are also reproducible (≤ 5% difference in
Forced Vital Capacity (FVC) and Forced Expiratory Volume in 1 Second (FEV1)), then the third

∗https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Spirometry.pdf

27

Dataset MNIST FMNIST CIFAR10
Function Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓)
ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 1.1e-5 4.6e-5 1.8e-4 1.1e-5 4.6e-5 1.8e-4
SG [76] 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 1.1e-5 4.6e-5 1.8e-4 1.1e-5 4.6e-5 1.8e-4
SP H + G 400.0 200.0 95.0 400.0 200.0 100.0 350.0 160.0 75.0 360.0 190.0 95.0 11.5 6.0 3.5 11.0 6.0 4.0
SP G 390.0 200.0 100.0 400.0 200.0 100.0 390.0 180.0 95.0 360.0 190.0 95.0 14.0 8.0 4.0 16.0 7.0 4.0
SW (H + G) 190.0 95.0 55.0 190.0 95.0 50.0 170.0 80.0 45.0 170.0 90.0 45.0 8.5 8.5 8.5 11.0 11.0 11.0
SW G 190.0 95.0 55.0 190.0 95.0 50.0 180.0 100.0 65.0 170.0 90.0 50.0 8.5 8.5 8.5 11.0 11.0 11.0

Table 3: Selected values of σ2 and β, achieving the lowest average PMSE on on a held-out validation set.

effort is omitted. A common metric used to evaluate lung health is the Forced Expiratory Volume in
1 Second (FEV1), which is the maximum volume of air that can be expelled by the participant in 1
second [59]. Note that a participant’s FEV1 measurement is taken as the maximum FEV1 over all
recorded exhalation efforts during a single visit.

The spirometer automatically evaluates effort against a number of acceptability criteria. One such
criteria is the detection of coughing. In our experiment, we use a subset of exhalation efforts where
coughing was detected and train a CNN to predict the participant’s final FEV1 measurement. This
subset contains 8,721 samples, which we split into training (80%) and test (20%) partitions. We follow
the preprocessing in Hill et al. [36] to ensure that participants have at least one effort that passes
quality control where FEV1 can be measured. The trained CNN includes 10 convolution blocks. Each
block contains a 1-d convolution of kernel width 200 and 20 channels, batch normalization, dropout
(p=0.5), and skip connection. The model is trained using mean squared error (MSE), achieving 0.563
MSE on the train set and 0.547 MSE on the test set.

E.2 Hyperparameters

For ease of reading, we use the following notation below: [a : b : c] = {a, a + c, a + 2c, . . . , b −
2c, b − c} ⊆ R denotes the set of points between a (inclusive) and b (exclusive) at intervals of
size c. Here a and b are chosen such that a < b and (b − a) mod c = 0. An example is:
[0.1 : 1.0 : 0.1] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

E.2.1 PMSE

For each of the 18 combinations of dataset, function and neighborhood size ε the performance of
β and σ are validated on a held out set before selection. 200 validation points are used to choose
σ, β for MNIST and FMNIST and 50 validation points are used for CIFAR10. For SmoothHess
+ SmoothGrad and SmoothGrad only three values of σ are validated, based on the common sense
criterion σ = ε/

√
d: given neighborhood size ε and dataset with dimension d, σ is chosen from

σ ∈ {ε/2
√
d, 3ε/4

√
d, ε/

√
d}.

The following values of β are checked on a validation set:

MNIST and FMNIST β ∈ [0.1 : 1 : 0.1] ∪ [1 : 20 : 1] ∪ [20 : 95 : 5] ∪ [100 : 800 : 10]

CIFAR10: β ∈ [0.1 : 1 : 0.1] ∪ [1 : 20 : 0.5] ∪ [20 : 95 : 5] ∪ [100 : 800 : 10]

The values of σ for SH and SH + SG, and β for SP H + G and SP G which achieve the lowest PMSE

on the validation data are shown in Table 3. The results for SoftPlus β are interesting: (i) We see
that MNIST and FMNIST results, for both class logit and interior neuron, are consistent for fixed ε.
Further we see that CIFAR10 results between class logit and interior neuron are consistent for fixed
ε. (ii) The optimal value of β seems to be approximately proportional to the value of ε. While our
results in Table 1 show that SmoothHess is better at capturing local interactions than the SoftPlus
Hessian, the results in Table 3 indicate that the relationship between f , fβ and β warrants further
exploration.

E.2.2 Adversarial Attacks

200 validation points were used to choose β and σ2 for MNIST and FMNIST and 50 validation
points were used to choose β and σ2 for CIFAR10.

28

Dataset MNIST FMNIST CIFAR10
Attack Magnitude ϵ 0.25 0.50 0.75 1.25 1.75 0.25 0.50 0.75 1.25 1.75 0.1 0.2 0.3 0.4 1.0

SH+SG (Us) 1e-3 5e-3 3e-2 5e-2 1.5e-1 1e-3 4e-2 3e-2 8e-2 3e-2 5e-5 1e-4 4e-4 4e-4 7.5e-4
SG [76] 1e-3 5e-3 2e-2 6e-2 8e-2 5e-3 4e-2 8e-2 1.5e-1 3e-1 5e-5 3e-4 5e-4 7.5e-4 3e-3
SP H + G 8 18 17 10 6 20 25 13 9 6 5 4 3 2 2
SP G 10 12 10 11 3 30 9 11 8 3 5 4 3 2 2

Table 4: Selected values of σ2 and β, achieving the lowest post-hoc accuracy of adversarial attacks on a held-out
validation set.

The following values of σ2 were validated for adversarial attacks:

MNIST and FMNIST: σ2 ∈ {0.001, 0.005} ∪ [0.01 : 0.1 : 0.01] ∪ [0.15 : 1.00 : 0.05]

CIFAR10: σ2 ∈ {5e-05, 7.5e-05}∪[0.0001 : 0.0006 : 0.0001]∪{0.00075}∪[0.001 : 0.006 : 0.001]

The following values of β were validated for adversarial attacks:

MNIST and FMNIST: β ∈ [1 : 20 : 1] ∪ [20 : 100 : 5] ∪ [100 : 210 : 10].

CIFAR10: β ∈ [1 : 10 : 1] ∪ [10 : 45 : 5]

The values of σ2 and β that achieve lowest validation post-hoc accuracy are shown in Table 4.
Following intuition, it is generally the case that parameters corresponding with increased smoothing
(larger σ2 and smaller β) achieve better results (lower post-hoc accuracy) for large ε, and parameters
corresponding to less smoothing (smaller σ2 and larger β) achieve better results for small ε.

F Additional Experiments

F.1 PMSE

Comparison with Swish: In Table 1, PMSE results are presented for five methods: the first
(SmoothGrad) and second (SmoothHess + SmoothGrad) order Taylor expansions of the ReLU network
f convolved with a Gaussian, the first and second order Taylor expansions of the SoftPlus smoothed
network and the vanilla (unsmoothed) Gradient. We present Table 5, a version of Table 1 which
includes additional results comparing with Swish [65] smoothed networks. Swish, an alternative
smooth activation to SoftPlus, is formally defined as Swβ(x) = x sigmoid(βx) where sigmoid(x) =

1
1+exp (−x) and β is a hyperparamter determining the level of smoothing. It can be seen in Table 5
that Swish is generally less effective then SoftPlus, and is outperformed by our method at each
combination of dataset and locality.

Standard Deviation: We report the standard deviation of the PMSE for each method, dataset,
function and neighborhood size ε in Table 6. Of the 18 PMSE results, SmoothHess + SmoothGrad
attains the lowest standard deviation for 15 and ties with SoftPlus Hessian + SoftPlus Gradient for 2.
The standard deviation of SoftPlus Hessian + SoftPlus Gradient is the lowest for FMNIST internal
neuron at ε = 0.5, achieving 2.4e-7 while SmoothHess + SmoothGrad achieves 2.5e-7.

ResNet101: We repeat our PMSE experiment for the predicted class logits of CIFAR10 using a
ResNet101, reporting results in Table 7. It can be seen in the leftmost column that our method,
SH + SG, achieves superior performance to the competing methods at each locality, indicating that
SmoothHess can generalize to larger network architectures. The standard deviation of PMSE , as
well as choices of σ2 / β (as selected from a validation set) are reported in the center and rigthmost
columns, respectively.

F.2 Adversarial Attacks

Comparison with Vanilla Hessian: One may use the vanilla Hessian of the predicted SoftMax
probability, which admits higher order derivatives, to construct adversarial attacks. Table 8 is an
updated version of Table 2 which includes results for attacks using the vanilla Hessian + vanilla
Gradient (H + G), in the third to last row.

We see that inclusion of the vanilla Hessian generally results in more effective attacks then use of
the vanilla gradient alone. H + G ties SH+SG and SP H + G for lowest post-hoc accuracy at the

29

Dataset MNIST FMNIST CIFAR10
Function Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓)
ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 9.6e-7 7.8-6 6.7e-5 4.9e-8 4.0e-7 3.3e-6 6.5e-7 4.0e-6 4.3e-5 2.0e-8 1.8e-7 1.6e-6 9.8e-4 2.2e-2 1.2e-1 8.1e-7 1.4e-5 1.6e-4
SG [76] 4.5e-6 4.1e-5 3.9e-4 2.1e-7 1.7e-6 1.5e-5 3.0e-6 2.7e-5 2.6e-4 1.0e-7 9.0e-7 7.0e-6 1.3e-2 8.6e-2 4.9e-1 1.3e-5 1.1e-4 8.3e-4
SP (H + G) 1.2e-6 9.6e-6 8.1e-5 5.5e-8 4.4e-7 3.7e-6 9.6e-7 7.5e-6 6.5e-5 3.0e-8 2.1e-7 1.8e-6 2.1e-3 3.3e-2 2.5e-1 1.1e-5 1.0e-4 7.0e-4
SP G 4.6e-6 4.1e-5 3.9e-4 2.1e-7 1.7e-6 1.5e-5 3.2e-6 2.8e-5 2.6e-4 1.0e-7 8.5e-7 7.2e-6 1.3e-2 9.0e-2 5.2e-1 5.1e-5 2.9e-4 1.6e-3
SW (H+ G) 2.4e-6 2.0e-5 1.9e-4 1.0e-7 8.3e-7 7.3e-6 2.1e-6 1.7e-5 1.8e-4 5.0e-8 4.3e-7 3.7e-6 1.1e-2 3.3e-1 7.9e0 6.2e-5 1.7e-3 3.8e-2
SW G 5.6e-6 5.0e-5 4.9e-4 2.4e-7 2.0e-6 1.8e-5 3.9e-6 3.5e-5 3.5e-4 1.1e-7 9.6e-7 8.3e-6 4.9e-2 9.8e-2 6.0e-1 5.6e-5 3.4e-4 2.0e-3
G [73] 4.2e-3 1.7e-2 6.7e-2 2.0e-3 7.0e-3 2.9e-2 3.8e-3 1.5e-2 6.0e-2 1.0e-4 4.0e-4 1.8e-3 3.0e-1 1.2e-0 5.0e-0 9.0e-4 3.5e-3 1.4e-2

Table 5: Average PMSE results at three radii ε, with the inclusion of vanilla Gradient (G). Other methods
include: SmoothHess + SmoothGrad (SH+SG,Us) SmoothGrad (SG) SoftPlus Grad (SP G) SoftPlus Hessian +
Gradient (SP H + G). Results are provided for the predicted class logit, and the penultimate neuron maximally
activated by the "three," dress and cat classes for MNIST, FMNIST and CIFAR10 respectively.

Dataset MNIST FMNIST CIFAR10
Function Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓)
ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 9.9e-7 7.3-6 6.4e-5 3.9e-8 2.7e-7 2.1e-6 1.0e-6 7.7e-6 6.4e-5 2.8e-8 2.5e-7 1.9e-6 4.7e-3 1.1e-1 4.3e-1 1.5e-6 3.6e-5 4.2e-4
SG [76] 7.0e-6 7.4e-5 7.1e-5 2.2e-7 1.6e-6 1.2e-5 5.5e-6 5.1e-5 4.6e-4 2.0e-7 1.8e-6 1.3e-5 4.7e-2 1.9e-1 7.5e-1 4.2e-5 4.1e-4 2.9e-3
SP (H + G) 1.2e-6 9.5e-6 7.7e-5 4.4e-8 2.9e-7 2.1e-6 2.4e-6 1.5e-5 1.2e-4 3.1e-8 2.4e-7 1.9e-6 6.5e-3 1.3e-1 6.4e-1 5.7e-5 4.0e-4 1.9e-3
SP G 7.1e-6 7.4e-5 7.2e-4 2.2e-7 1.6e-6 1.2e-5 6.1e-6 5.4e-5 4.7e-4 2.0e-7 1.8e-6 1.4e-5 4.8e-2 1.9e-1 7.6e-1 2.6e-4 8.9e-4 3.6e-3
SW (H+ G) 2.6e-6 2.0e-5 1.9e-4 6.5e-8 4.6e-7 4.2e-6 7.2e-6 3.3e-5 3.7e-4 5.3e-8 4.5e-7 4.0e-6 5.0e-2 1.7e0 4.3e1 3.6e-4 1.2e-2 2.7e-1
SW G 7.3e-6 7.2e-5 7.4e-4 2.1e-7 1.5e-6 1.2e-5 6.6e-6 6.2e-5 6.2e-4 1.5e-7 1.1e-6 9.0e-6 5.0e-2 2.1e-1 8.6e-1 2.8e-4 1.0e-3 4.2e-3
G [73] 2.1e-3 8.4e-3 3.4e-2 7.9e-5 3.0e-4 1.2e-3 2.7e-3 1.1e-2 4.3e-2 9.1e-5 4.0e-4 1.4e-3 2.4e-1 9.6e-1 3.7e-0 9.0e-4 3.7e-3 1.5e-2

Table 6: Standard deviation of PMSE at three radii ϵ. SmoothHess + SmoothGrad (SH+SG,Us) SmoothGrad
(SG) SoftPlus Grad (SP G) SoftPlus Hessian + Gradient (SP H + G) Vanilla gradient (G). Results are provided
for the predicted class logit, and the penultimate neuron maximally activated by the "three," dress and cat classes
for MNIST, FMNIST and CIFAR10 respectively.

smallest magnitude (ε = 0.25) for the simplest dataset (MNIST). However, as no smoothing is done,
the attacks generated from the H + G are generally significantly weaker then those generated using
smooth surrogates. In fact, aside from MNIST with ε = 0.25, the second order vanilla H + G attacks
achieve higher post-hoc accuracy then first-order method SmoothGrad for all datasets and values of ε.
This is especially apparent for CIFAR10, the most complex dataset.

F.3 Nested Interactions

We use the Nested Interactions dataset to highlight SmoothHess’s ability to capture different interac-
tions occurring at various localities around a given point. In this experiment we measure interactions
around the origin x0 = (0, 0)T ∈ R2.

Just like the Four Quadrant dataset, the Nested Interactions dataset consists of points x ∈ R2 sampled
uniformly from [−2, 2]× [−2, 2] ⊂ R2 with a spacing of 0.008. We establish different interactions
occurring around the origin x0, based upon the distance from x0. Specifically, we set the label for a
given point x by: x ∈ B0.6(x0) =⇒ y(x) = 1

2x
2
1 + x1x2 , x ∈ B1.2(x0)\B0.6(x0) =⇒ y(x) =

x1x2, x ∈ R2\B1.2(x0) =⇒ y(x) = −5x1x2.

In words, the interaction between features x1 and x2 is 1 inside the radius-1.2 ball around x0 and is
−5 outside of this ball. The interaction between x1 and itself is 1 inside the radius-0.6 ball around x0

and 0 outside of this ball. The interaction between x2 and itself is 0 over all of R2.

We train a 6-layer neural network on the Nested Interactions dataset and estimate SmoothHess and
SoftPlus Hessian for log10 σ

2 ∈ {1e-6, . . . , 1e1} and log10 β ∈ {−1, . . . , 4.0} respectively. The
interaction results for x1 with itself, x1 with x2 and x2 with itself as a function of the level of
smoothing (σ or β) are reported in Figure 5.

As the target function y(x) is discontinuous, it is not possible for a network to memorize the Nested
Interactions dataset. Thus, there very well may be interactions occurring in the network which are
not described as above; the interactions we know occur in the data are not a pure "gold-standard".
That being said, Figure 5 shows that SmoothHess captures the interactions as we know occur in the
data, and the SoftPlus Hessian does not. This suggests that, to a large extent, both (i) the network has

30

Value PMSE PMSE Std σ2, β used

ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 1.3e-4 9.5e-4 6.9e-3 1.7e-4 1.1e-3 1.1e-2 1.1e-5 4.6e-6 1.8e-4

SG 5.3e-4 4.3e-3 3.3e-2 1.0e-3 8.3e-3 6.7e-2 1.1e-5 4.6e-6 1.8e-4

SP (H + G) 3.7e-4 2.6e-3 1.7e-2 6.6e-4 2.7e-3 3.1e-2 41.0 16.0 11.5

SP G 6.2e-4 5.0e-3 3.7e-2 1.1e-3 8.8e-3 6.9e-2 55.0 22.5 11.5

Swish (H + G) 1.5e-3 1.2e-2 4.5e-2 2.5e-3 8.3e-3 2.8e-2 27.5 17.5 1.5

Swish G 8.8e-4 7.0e-3 5.3e-2 1.4e-3 1.1e-2 8.3e-2 60.0 1.0e6 1.0e6

G 3.8e0 1.5e+1 6.0e+1 3.3e0 1.3e1 5.2e1 n/a n/a n/a

Table 7: Using a ResNet101 trained on CIFAR10, the average PMSE achieved by SmoothHess + SmoothGrad
(SH + SG, Us), SmoothGrad (SG), SoftPlus Hessian + SoftPlus Gradient (SP (H+G)), SoftPlus Gradient (SP
G), Swish Hessian + Swish Gradient (Swish (H+G)), Swish Gradient (Swish G) and Vanilla Gradient (G), is
evaluated as a proxy for explainer quality. Results are reported at three radii ε, for the predicted class logit. Left:
PMSE results are reported. The lowest value in each column is bolded. Middle: The standard deviation of
PMSE is reported. The lowest value in each column is bolded. Right: The smoothing hyperparameter (σ2 for
SmoothGrad and SmoothHess + SmoothGrad, β for SoftPlus and Swish) used is reported. Our method, SH +
SG, achieves the lowest PMSE for each of the three radii ε. This indicates that the interactions SmoothHess
captures improve the model of network behaviour, even for large networks such as ResNet101.

Dataset MNIST FMNIST CIFAR10
Attack Magnitude ϵ 0.25 0.50 0.75 1.25 1.75 0.25 0.50 0.75 1.25 1.75 0.1 0.2 0.3 0.4 1.0

SH+SG (Us) 93.0 80.3 48.0 10.5 2.0 79.5 46.8 25.0 3.5 0.0 62.5 38.5 26.5 15.0 4.5
SG [76] 93.3 81.8 48.8 11.3 2.8 79.5 49.3 26.3 4.0 0.0 65.0 42.0 27.5 17.0 0.0
SP (H + G) 93.0 81.8 51.5 15.8 7.5 79.8 51.0 27.5 5.3 0.8 64.5 42.0 31.0 23.5 7.5
SP G 93.3 82.3 53.8 16.3 5.0 79.8 51.5 29.5 7.8 1.0 66.5 47.5 36.0 29.5 8.5
H + G 93.0 81.8 55.3 19.0 11.8 80.0 50.0 30.3 9.5 2.0 68.0 51.5 40.5 32.5 22.0
G [73] 93.3 82.8 56.0 18.5 8.8 80.3 52.3 31.8 11.0 2.5 69.0 51.5 41.0 34.0 21.5
Random 99.8 99.5 99.0 99.0 98.8 99.3 98.0 97.3 95.5 93.8 100.0 99.5 99.0 98.5 96.5

Table 8: Post-hoc accuracy of adversarial attacks performed on the predicted SoftMax probability, at five attack
magnitudes ϵ, with the inclusion of the vanilla Hessian + vanilla Gradient (H + G). Lower is better. Other
methods include: SmoothHess + SmoothGrad (SH + SG, Ours), SmoothGrad (SG), SoftPlus Gradient (SP G),
SoftPlus Hessian + SoftPlus Gradient (SP (H + G)) and vanilla Gradient (G). First order attack vectors are
constructed by scaling the normalized gradient by ϵ and subtracting from the input. Second order attack vectors
are found by minimizing the corresponding second-order Taylor expansions.

memorized the data and (ii) SmoothHess captures the network behaviour while the SoftPlus Hessian
does not.

F.4 Qualitative Comparison

We present a visual comparison of the interactions found by SmoothHess with those from other
methods. Namely, we consider methods that can be interpreted as the quadratic term in a second-order
Taylor expansion around a smooth surrogate network: SoftPlus Hessian and Swish Hessian.

We show interactions found between super-pixels of CIFAR10 test images. To this end, we utilize the
Simple Linear Iterative Clustering (SLIC) [2] algorithm to segment the image into 20-25 super-pixels.
We sum interactions between each pair of features in each pair of super-pixels, before visualization.

Results are shown in Figure 6 for the predicted class logit of a ResNet18 model for three CIFAR10
test images. Here, each row corresponds to a separate image. Test images are visualized in column
1. Columns 2-4 correspond to the three methods. For each image, interactions between one chosen

31

(a)

-5.0 -4.0 -3.0 -2.0-6.0 -1.0 0.0

x1, x1
x1, x2
x2, x2

2.0

-1.0

0.0

1.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

-3.0

-2.0

-4.0

-5.0

Sm
oo

th
H

es
s

va
lu

es
 Smoother

-1.0 0.0 1.0 2.0 3.0 4.0

(b) Smoother

So
ftP

lu
s

H
es

si
an

 V
al

ue
s

2.0

-1.0

0.0

1.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

-3.0

-2.0

-4.0

-5.0

log10 σ2 log10 β

SH : vs ∇2
x(f * qσ)(0) log10 σ2 SP Hess : vs ∇2

x fβ(0) log10 β

Figure 5: Three estimated Hessian elements at x0 = (0, 0)T for a 6-layer ReLU Network f : R2 → R trained
on the Nested Interactions dataset. (a) SmoothHess (SH) is estimated with isotropic covariance Σ = σ2I using
granularly sampled σ2 ∈ {1e-6, . . . , 10}. At minute σ2 < 1e-4 either hyper-local noisy behavior is captured, or
smoothing is so negligible that the smoothed function is approximately piece-wise linear with a low-magnitude
Hessian. For σ ranging from log10 σ

2 = 1e-4 to log10 σ
2 = 0 we see SmoothHess reflects the interactions

in the dataset: Starting at log10 σ
2 = 1e-4 both x1x1 and x1x2 have an interaction ≈ 1 until the interaction

between x1x1 begins to dip to 0 around log10 σ
2 = −1.5. Finally around 1e-1 the interaction x1x2 begins to

dip toward −5, until log10 σ
2 = 0 when σ2 is so large that samples outside the training data distribution are

incorporated into SmoothHess estimation. (b) The Hessian of the SoftPlus smoothed function fβ (SP Hess) is
computed using granularly sampled β ∈ {1e-1, . . . , 1e4}. Here, as β is decreased, it is not apparent that the
variety of interactions in the Nested Interactions dataset are captured, either in relative ordering or magnitude.

super-pixel (outlined in black) and each other super-pixel are visualized as a heatmap overlaid upon
the image. In order to facilitate comparison across images and methods, we standardize the heatmap
colorbar to range between the most negative and most positive interaction values on a per-image and
method basis.

One interesting trend seen in each case is that there is a strong positive interaction between the chosen
super-pixel and one other super-pixel which (a) is spatially nearby and (b) contains the class object of
interest. For example, in the first row, the side-view mirror of the car positively interacts with the
front wheel. In the second row, the tip of the frogs head can be seen to interact positively with the
side of the head. In the third row, the upper and lower portions of the dogs front leg have a strong
positive interaction.

Due to the subjectivity of this comparison, we include quantitative results above each image. Specif-
ically, we indicate the PMSE each method achieves within an ε = 0.25 ball around each image.
Optimal smoothing parameters were chosen for each method for this task (see Table 3). It can be seen
that SmoothHess achieves the lowest PMSE in each case by a wide margin. Thus, SmoothHess may
be the preferable option if one wishes for a visualization which best reflects the network’s behaviour
in an ε = 0.25 ball around the image.

32

Max Positive
Interaction

Min Negative
Interaction

No Interaction

Test Image SmoothHess SoftPlus Hessian Swish Hessian
𝒫MSE = 2.0e-4

𝒫MSE = 1.0e-4

𝒫MSE = 1.0e-4

𝒫MSE = 7.0e-4

𝒫MSE = 3.0e-4

𝒫MSE = 4.0e-4

𝒫MSE = 1.5e-3

𝒫MSE = 7.0e-4

𝒫MSE = 8.0e-4

Figure 6: Visualization of interactions between super-pixels found for a ResNet18 on CIFAR10 by SmoothHess,
SoftPlus Hessian and Swish Hessian. Results are shown for test images of a car, frog and dog in the first
second and third rows respectively. Each image is visualised in column one. Images are segmented into
20-25 super-pixels using the SLIC algorithm [2]. Interactions are summed between each pair of features in
each pair of super-pixels. We show interactions with one given super-pixel in each image, outlined in black.
SmoothHess, SoftPlus Hessian and Swish Hessian interactions for this super-pixel are visualized as heatmaps
overlaid upon the image in columns two, three and four, respectively. The heatmap colorbar is standardized
to range between the minimum and maximum interactions on each image-method pair separately, to facilitate
comparison. Quantitative PMSE results for ε = 0.25 are shown above each method-image pairing, with
SmoothHess achieving the lowest PMSE in all cases.

33

	Introduction
	Related Work
	Technical Preliminary
	SmoothHess
	Experiments
	Experimental Setup
	Results

	Conclusion and Future Work
	Societal Impacts
	Proof of Proposition 1
	Preliminary
	Main Result

	Proof of Theorem 1
	Implementation Details
	Quadratic Optimization
	Similarities and Differences with CASO/CAFO

	SmoothHess
	Alternative Covariance Matrices

	Experiment Setup
	Datasets and Models
	Hyperparameters
	PMSE
	Adversarial Attacks

	Additional Experiments
	PMSE
	Adversarial Attacks
	Nested Interactions
	Qualitative Comparison

