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A Details of Section [3|

A.1 Randomized Response with Constant Probability p ., st

Algorithm 2 Randomized Response Majority (RR)

1: Input: K (e, A)-DP mechanisms {M;}X | noise function v : {0,...,K} — [0,1], dataset D, privacy
allowance 1 < m < K, failure probability 6 > A >0

2: Output: (me, §)-DP majority vote of {M;}K
3: Compute a constant probability peonst € [0,1]
4: Flip the peonsi- biased coin

5: if Head (with probability peons:) then

6: S = {Sl, ..,Sk}, where Sz ~ MZ(D)

o L= 5

8 Output [{ £ > 1}

9: else

10:  Output 0/1 with equal probability

11: end if

We show the magnitude of p.onst in RR (Algorithm to solve Problem such that the output is (me, §)-DP,
in Lemma [A.T.

Lemma A.l. Consider using RR (Algorithm [2) to solve Problem [1.1. Let the majority of K (e, A)-
differentially private mechanisms be (te, \)-differentially private, where T € [1, K| and X € [0,1) are computed
by simple composition (Theorem|2.2) or general composition (Theorem (2.3). If

eme—1+4+20
<
pCOTLSt — 2(675767Zij-£1+€7"5))\) + emE _ 1 (4)

then RR is (me, d)-differentially private.

Proof of Lemma[A.1l Let x € {0,1} denote the output of RR. Let ¢, = Pr[£(D) = z] and ¢, = Pr[L(D’) = z],
where L(D) = Zfil M;(D), L(D') = Zf{:l M;(D’") and D, D’ are adjacent datasets. Recall each mechanism
M; is (e, A)-differentially private, and the majority of the outputs of {M;}X | is (e, \)-differentially private.
When A = 0, using simple composition, 7 = K and A = 0. When A > 0, using general composition 7 ~ vK
and A & KA. By definition of differential privacy (Definition , all of the following four constraints on

x> q, apply:

e <e™q,+ A, and 1—¢, <e™(1—q)+ A
G <e g+ A and 1—gq <e™(1—-q;)+A

To ensure RR is (me, d)-differentially private, peonst needs to be such that for all possible ¢, ¢, € [0, 1],

Pr[RR(D) = z] < ™ Pr[RR(D') = 2] + ¢ (5)
1 1
Deonst * 4z + 5(1 - pconst) <em (pconst : q; + 5(1 - pconst)) +0 (6)
1 1 1 1
_me_/ S ome _ T\ | < Zeme _
(Qx e gy + 26 2) Pconst = 26 5 +9 (7)

Let h(qs,q,) := qz — e™q), + %eme — % The above inequality of peonst (Eq.[7) needs to hold for worst case
output probabilities ¢, ¢/* that cause the maximum privacy loss. That is, peonst needs to satisfy

1 1
Peonst - MaZq, ¢ Mde, @) < §€m€ ) +9 ®)
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To find the worst case output probabilities, we solve the following Linear Programming (LP) problem:

Objective: max g, ) = 4o — €5, + 2€™ — & 9)
>4, 2 2

Subject to: 0<¢:<1,0<¢q, <1 (10)

Qe <€ AN —qp <71 —qu) + A (11)

G <€+ A1 =g < e (1 —q,) + A (12)

LP Problem Illustration

1.0
— qy=e X (gx—A) X
e gi=l—eT*(l-g)—A 1,1-2)
081 __ qy=e"*qy+A PR
— g=l-eTT*(1-g-A) L7
0.6 ® optimum |~
= = objective
q /
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Figure 3: A visualization of the above LP problem.

The optimum of any LP problem is at the corners of the feasible region, which is bounded by the
optimization constraints. We plot the feasible region F and the objective of the above LP prob-
lem in Figure E Here, (q;aq;*) = argmaxqzyq; h(qﬁmqlm) € {(070)7 (17 l)v (Oa)‘)a (A50)7 (1 - /\a l)v (171 -

1-X e+ [ 2 N
)\')7 (675+17 eT.e+1 ); (6754’,1 ) eTe+1
ties ¢, ¢iF — is,

)}. The optimum of the LP problem — that is, the worse case probabili-

= — (13)
By Eq.
et (S — € 5 = ) S 5 D) 8 (19
Peonst - (en - em;:f;r A %(eme 1) < %(emf 144 (15)
o2

For small m, €, K, using the approximation e¥ ~ 1 4+ y and that 7e < 2,

me + 20 N me + 26

Pconst = Q(Tefm:;s?rme))\) + me ~re + (2 + me))\ (17)
In the pure differential privacy setting, 6 = 0,A = 0,7 = K, and 80 peonst ~ 7; and in the approximate
differential privacy setting, A ~ 0,0 ~ 0,7 = v K, and 80 Pconst ~ \/% O
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Algorithm 3 Subsampling Majority (SubMaj)
1: Input: K (e, A)-DP mechanisms {M;}X |, noise function v : {0,..., K} — [0,1], dataset D, privacy
allowance 1 < m < K, failure probability 6 > A >0
Output: (me, §)-DP majority vote of {M;}
S ={51,.., Sk}, where S; ~ M;(D)
Jm < m indices chosen uniformly at random from [K] without replacement
L=3ics S]-A
Output I{ L £ > 1}

A.2 Proof of Lemma 3.1l

Lemma A.2 (Restatement of Lemma . Consider Problem with the privacy allowance m € [K].
Consider the data-dependent algorithm that computes L(D) and then applies RR with probability p.. If
Py = Ysub(l), where 1 € {0,1,..., K} is the value of L(D), i.e., the (random) sum of observed outcomes on
dataset D, and vsup : {0,1,..., K} —[0,1] is

’YSub(l) = FYSub(K B l)
S (;)((5:;) if m is odd
1—2% " (j)((g):;) B (r;z}((),zn )

m

if m is even

then the majority of m out of K subsampled mechanisms without replacement and the output of our data-
dependent RR algorithm have the same distribution.

Proof of Lemma[3.1. Let L = Zfil S; be the sum of observed outcomes from K mechanisms. Following
Algorithm Jm denotes the m indices chosen uniformly at random from [K] without replacement. Conditioned
on L, notice the output of SubMaj follows a hypergeometric distribution. The output probability of SubMaj is

K
Pr[SubMaj(D) = 1] = Y~ Pr[SubMaj(D) = 1 | £ =1] - Pr[£ = ] (18)
l;O
=3 pe[ Y 5> L=1-PrL =1 (19)
=0 JETm
fio(Z;-”:%ﬂ (;)(}?:;)) PriL =] if m is odd

) (20)

)-Pr[L=1] if miseven

Consider an arbitrary noise function ygyu : {0,1,..., K} — [0,1]. Let RR-d(D) denote the output of the
data-dependent RR-d on dataset D, where RR-d has the non-constant probability set by vgus. The output
probability of RR is,

K

Pr[RR-d(D) = 1] = > Pr[RRd(D) = 1| L =1] - Pr[L =[] (21)
=0
K

= > s I 2 S0+ 21— 5w (0) - PriL =] (22)

I
o

We want Pr[RR-d(D) = 1] = Pr[Submaj(D) = 1].
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If m is odd, for any [ < %, this is

m I\ (K—1
= Yew(l) =1-2 Y G) <;<”*j) (23)

and for any [ > %, this is

p Tarsel= 2
m l K-
= swl) =2 3 (j)((l?)j> ! (24)

2

Similarly, if m is even, for any [ < %, this is

w0y 1(s)
;(1V5ub(l))j%:+l ) ; (
)
(

Saswl)=1-2 S mil BT (25)
j:%-&-l (m) m)
and for any [ > %, this is
11 o Oy 1D
]:%+1 m m
m (1) (K-l 1y (K-l
D=2 3 () (my) . (=) (%) . (26)

A @)

Next, we show the above 7yg,; is indeed symmetric around % For any | < %, there is K — [ > % If m
is odd,

B o [ B S

j=1 (5) j=mtl (fri)

5K D=2 3 <KJZ><m%>+<é><K@Z>12(15"'21 (L) 1<g><fzf>>1

() = ) 2 ()
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= Ysub(l) (28)

Now, combining Eq. Eq. 4] and Eq. if m is odd, setting vsup as

m N\ (K-l
Ysun(l) = vsup(K =) =1-2 > (])((;)_])

==
makes RR-d have the same output distribution as SubMaj.
Similarly, combining Eq. Eq. [26] and Eq. if m is even, setting vgup as
m () (K-l 1\ (K-I
Q) 0

Ysub(l) = ysup(K —1) =1 -2 Z ) - ¥ (30)
j=%+1 m

makes RR-d have the same output distribution as SubMaj.

A.3  Proof of Lemma

Lemma A.3 (Restatement of Lemma. Let A be an (e, )-differentially private algorithm, where € € (0, 3)
and § € [0, %), that computes the majority of K (e, §)-differentially private mechanisms My, ..., Mg, where
M; : D — {0,1} on dataset D and Pr[M;(D) = 1] = p;,Vi € [K]|. Then, the error E(A) > |Pr[g(S) =
1] -+ filpi\, where g(S) is the probability of the true majority output being 1 as defined in Deﬁnitionh
Proof. Consider the setting where M;’s are i.i.d., i.e., Pr[M;(D) = 1] = p,Vi € [K] for some p € [0, 1] on any
dataset D. Then, it suffices to show £(A) > |Pr[g(S)] = 1 — p|, because a lower bound in this special case
would indicate a lower bound for the more general case, where p;’s can be different.

Construct a dataset Dy and K mechanisms {M;}/£, such that Pr[M;(Dg) = 1] = Pr[M;(Dy) = 0] = 5 and
without loss of generality, we may assume Pr[A(Dy) = 1] < 1.

Next, we construct a sequence of datasets D1, Do, ..., Dy, such that D; and D;4, are neighboring datasets
tha t differ in one entry, for all j € [L — 1], and Pr[M;(D;) = 1] = Le’c + Zfz_é el“s, Vi € [K], Vj € [L].
Choose L € N such that el + ZlL:_Ol e!d = p, for some 1 >p > 1.

Now, by definition of differential privacy,

Pr[A(D,) =

1 ]+
PY[A(D2)

=1
=1]+0 < e*Pr[A(Dy) = 1] + 5+ 6

1] < e Pr[A(Dy)
1] < 1

| < efPr[A(Dy)
L1 =
PrlA(Dy) = 1] < e"“Pr[A(D) = 1] + Y ed < eLE§ +> elo=p
1=0 1=0
Since the probability of true majority being 1 on dataset Dy, is Pr[g(S) = 1] > p > 1, there is

E(A) = |Pr[g(S) =1] = PrlA(D) = 1]| = Pr[g(S) =1] —p
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A.4 Proof of Lemma [3.3

Lemma A.4 (Restatement of Lemma . Let A be any randomized algorithm to compute the majority
function g on S such that for all S, Pr[A(S) = g(S)] > 1/2 (i.e. A is at least as good as a random guess).
Then, there ezists a a general function v : {0, 1}5+1 — [0, 1] such that if one sets p, by v(S) in DaRRM, the
output distribution of DaRRM,, is the same as the output distribution of A.

Proof of Lemma[3.3. For some D and conditioned on S, we see that by definition Pr[DaRRM,,(S) = ¢(S)] =
v(8) + (1/2)(1 — v(S)). We want to set v such that Pr[DaRRM.(S) = ¢(S)] = Pr[A(S) = ¢g(S)]. Therefore,
we set y(S) = 2Pr[A(S) = g(S)] — 1.

Lastly, we need to justify that v € [0,1]. Clearly, v(S) <2 —1 <1 since Pr[A(S) = ¢g(S)] < 1. Note that the

non-negativity follows from assumption. O

A.5 Proof of Lemma 3.4
Lemma A.5 (Restatement of Lemma . Consider using DaRRM (Algorithm E) to solve Problem
let oy = Pr[L(D) = 1] and o) = Pr[L(D’) = 1], where D and D' are adjacent datasets and | € {0,...,K}.

For a noise function v : {0,1,..., K} —[0,1] such that v(I) = v(K —1),Vl, DaRRM,, is (me, d)-differentially
private if and only if for all oy, o}, the following holds,

f(plw'wpKap/]w'wp/I{;’y)§677L€_1+26 (31)

where [ is called the privacy cost objective and

=

N K

f(p17 ce 7pK7p/17 s 7pl[(77) = (eﬂ'Léa; - O{l) ' V(Z) + Z (al - eﬂ'L€a2) ' V(Z)
1=

=0 K41
2

~

Proof of Lemma[34. By the definition of differential privacy (Definition [2.T)),

DaRRM,, is (me, ¢)-differentially private
+— Pr[DaRRM, (D) = 1] < ¢™ Pr[DaRRM, (D) = 1] + 6,
and Pr[DaRRM., (D) = 0] < ™ Pr[DaRRM, (D) = 0] + 4, V adjacent datasets D,D’ (32)

Let random variables £(D) = Zfil S(D) and L(D') = ZzK:1 S(D’) be the sum of observed outcomes
on adjacent datasets D and D’, based on which one sets p, in DaRRM. Let oy = Pr[£(D) = ] and
ap=Pr[L(D)=1],Vl€{0,1,...,K}.

Consider the output being 1.

Pr[DaRRM., (D) = 1] < ™€ Pr[DaRRM,, (D) = 1] +§ (33)
K

< > Pr[DaRRM,(D) = 1| L(D) =] - Pr[L(D) =] (34)
=0

K
< eme

/

Pr[DaRRM,, (D) = 1| £(D') = 1] - Pr{L(D) = 1]} +
K 1
= Y (V0 = T+ 51 =90)) - PrLD) = 1 (35)
me X K ]' /
<em (3 (0 1= S+ 50— )}) - PrlLD) = 1)) +3
=0
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K K;l
= Y (0 +21=W) - PHED) = 0+ 3 21— 5() - Pr{E(D) = 1
l:K;»l 1=0
K K2—l
<em (> (v + 50 = 5@)) - PriLD) = 1) + e %(1 — (1)) PrE(D) = 1)) +6
= K2+1 1=0
K K;l
= Y a3 ot g
l=K;—1 1=0
me = 1 me Kgl 1 / me
<e Z 57(1)041 —e€ Z 57(”041 + €™ +0
l:Kg»l 1=0
K K2—l
= Z (ag —e™a)y(l) = Y (ay—e™a))y(l) <e™ —1+26
= K1 1=0

2

Similarly, consider the output being 0.

Pr[DaRRM, (D) = 0] < ™ Pr[DaRRM.(D') = 0] + 6

K
4= Y Pr[DaRRM, (D) =0 | £(D) =] - Pr[L(D) =]
=0

me(

= 3 (W + 50 —0)) PrED) =0+ > 11— (1) - PrL(D) =1
=0 l=K;—1
K2—1 K
< eme( (7(1) + %(1 - ’y(l))) PrLD) =0+ Y %(1 — (1)) - Pr[L(D) = l]) +6
=0 1=K
=1 K 1
= 57(1)% - Z 57(1)% + 3
=0 l:%
me Kgl 1 me K 1 me
<e Z 5’7(5)041 —e Z (D)o + ze™ 40
1=0 1= K41
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Therefore, plugging Eq. 38 and Eq. [#4] into Eq.

DaRRM,, is (me, 6)-differentially private

= Z (ag —e™ap)y(l) — (ag —e™ap)y(l) <e™ —1+26 (45)
I=KH 1=0
K
and Z a; —e™a))y(l) — Z (ap —e™ap)y(l) <e™ —1+2§ (46)
1= K+1

2
where oy = Pr[£(D) =] and o = Pr[L(D’) =1], VI € {0,1,..., K} and D, D’ are any adjacent datasets.

Next, we show if 7 is symmetric around & 5, e, y(l) = y(K — 1), satisfying either one of Eq. @ or Eq. @
implies satisfying the other one. Following Eq. .

K—1
K 2
S (= emapr(l) — 3 (o — e™ap)y(l) < emF — 1426 (47)
= K2+1 1=0
K;l K
= (ag—_;—e™ayk_;) v(K—1)— Z (a1 —e™ayk_ ;) (K —=1)<e™ —1+25 (48)
=0 1= K2—1
K2—1 K
= (ag—1 —e™ak_,) Z =™ ) y(l) < e —1+426 (49)
=0 =K=1

Since (1) = y(K —1)

For analysis purpose, we rewrite Eq. [46|as

=

—1
2

(@ —e™ap) () —
1=0

(ap —e™ay) - ~v(l) <e™ —1+26 (50)

1

5[]

2

and proceed by showing Eq. < Eq.

Recall p; = Pr[M;(D) = 1] and p, = Pr[M;(D’') = 1]. Observe L(D) ~ PoissonBinomial({p;}X,) and
L(D') ~ PoissonBinomial({p;} % ). Let F; = {A: |A| =1, A C [K]}, for any | € {0, ..., K}, denote the set
of all subsets of [ integers that can be selected from [K]. Let A° = [K]\ A be A’s complement set. Notice
Fg_ = {Ac A€ Fl}

Since « denotes the pmf of the Poisson Binomial distribution at [, it follows that

=Pr[L(D)=1]= > Tcapilljea(l - p;) (51)
A€F;

Consider 3; = 1 — p;,Vi € [K] and a new random variable £° ~ PoissonBinomial({3;}X£,), and let &; =
Pr[£P = 1]. Observe that

= Pr[ﬁﬁ Z H]EAﬂz ZG.AL 1 - 51 Z H]E.A HzéA‘pi
AcF; A€F,
= Y Mjeall —pi)icapi= Y Micapidljeac(l - pi)
AceFK A€eFk_;
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=ag_; (52)

Similarly, consider 8! = 1 — p.,Vi € [K] and a new random variable £"® ~ PoissonBinomial(3/}£ ), and let
&) = Pr[£'® = 1]. Then, &) = o}, _,.

Since Eq. @ holds for all possible ax_;, a/5_;, Eq. @ then holds for all &y, @] in the K-simplex, and so
Eq. [50| follows by relabeling ax_; as &; and o _; as af.

The above implies Eq. <~ Eq. Therefore,

DaRRM,, is (me, 6)-differentially private

K—1
2

K
= Z (ag —e™ap)y(l) — (ag —e™ap)y(l) <e™ —1+20 (53)

1= K41 1=0
2

=F(P15e DK DDl 3Y)

24



Published in Transactions on Machine Learning Research (November/2024)

B Details of Section [4 Provable Privacy Amplification

In this section, we consider Problem in the pure differential privacy and i.i.d. mechanisms setting. That
is, d = A =0and p = p; = Pr[M;(D) = 1],p’ = p}, = Pr[M;(D’) = 1],Vi € [K]. Our goal is to search for a
good noise function + such that: 1) DaRRM,, is me-DP, and 2) DaRRM,, achieves higher utility than that of
the baselines (see Section [3) under a fixed privacy loss. Our main finding of such a 7 function is presented in
Theorem 4.1 which states given a privacy allowance m € [K], one can indeed output the majority of 2m — 1
subsampled mechanisms, instead of just m as indicated by simple composition. Later, we formally verify in
Lemma Section that taking the majority of more mechanisms strictly increases the utility.

To start, by Lemma for any noise function v, v satisfying goal 1) is equivalent to satisfying
fo,py) <ef -1 (54)

K_1
where f(p,p';7) =>0,22 (™o —aq) -~y(1) + E{i x41 (o — €™ a)) - (1) refers to the privacy cost objective

2

(see Lemma in the i.i.d. mechanisms setting, and recall a; = Pr[£(D) =[] and o] = Pr[L(D’) = ],
vl € {0,1,..., K}. Notice in this setting, £(D) ~ Binomial(p), and L(D’) ~ Binomial(p’).

Monotonicity Assumption. For analysis, we restrict our search for a « function with good utility to the
class with a mild monotonicity assumption: v(I) > y(I +1),vl < £-2 and v(I) < y(1+1),vl > £ This
matches our intuition that as £(D) = Zf; S;, i.e., the number of mechanisms outputting 1, approaches 0 or
K, there is a clearer majority and so not much noise is needed to ensure privacy, which implies a larger value
of .

Roadmap of Proof of Theorem Since v needs
to enable Eq. [f4 to be satisfied for all p,p’ € [0,1], we

Feasible Region F 11

1.0, ® begin by showing characteristics of the worst case prob-
(_1_ 1 ) abilities, i.e., (p*,p"”) = argmax, ) f(p,p’;7), given any
1+ge'1+ E_e. v:{0,1,...,K} — [0,1] that is symmetric around £ and that
/ satisfies the above monotonicity assumption, in Lemma[B.1] Sec-
j— pee tion[B.1] We call (p*,p’*) the worst case probabilities, since they
0'5 _ Z,z ie;e G-p incur the largest privacy loss. Later in Section we present,
ps1-ea-p) . the main proof of Theorem where we focus on searching
o 1 for a good v that enables f(p*,p"™*;v) < e — 1, based on the
© 0)/ (Gieefize¢ characteristics of (p*,p’*) in Lemma to ensure DaRRM,, is
le me-differentially private.
0.0
0.0 0.5 1.0

n B.1 Characterizing the Worst Case Probabilities

First, note (p,p’) are close to each other and lie in a feasi-
ble region F, due to each mechanism M; being e-differentially
private; and so does (p*,p™). The feasible region, as illus-
trated in Figure [4, is bounded by (a) p’ < e‘p (b) p < ep/
(c)1—p <e(1-p),and (d) 1 —p < e (1 —p'), where the
four boundaries are derived from the definition of differential
privacy. Therefore, we only need to search for (p*,p’™*) = arg max, ,/\cr fp,0'57).

Figure 4: The feasible region F is plotted
as the blue area. The four boundaries are
implied by p,p’ satisfying e-differential pri-
vacy.

Next, we show that given v satisfying certain conditions, (p*,p") can only be on two of the four boundaries
of F in Lemma — that is, either p* = e“p/, i.e., on the blue line in Figure 4| or 1 — p™* = (1 — p*), i.e.,
on the line in Figure [4

Lemma B.1 (Characteristics of worst case probabilities). For any noise function v :{0,1,..., K} — [0,1]
that is 1) symmetric around &, 2) satisfies the monotonicity assumption, and 3) y(£52) > 0 and v(£5L) > 0,
the worst case probabilities given v, (p*,p’™) = arg max, ,,\cr f(p,p";v), must satisfy one of the following
two equalities:

J,p™ €10, ]

1
>k — € /*, v * G O7
p=cp el e~ c+1

1+ e
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or 1—p"* =e(1-p"), Vp* €|

1]

1,1*6 ,
l.p [1+e€

1+e e’
To show Lemma we first show in Lemma that the search of (p*,p’*) can be refined to one of the four
boundaries of F, via a careful gradient analysis of f(p,p’;7y) in F, and then show in Lemma [B.3| that the
search of (p*,p'*) can be further refined to two of the four boundaries, due to symmetry of p,p’. Lemma
directly follows from the two.

Lemma B.2. For any noise function v :{0,1,...,K} — [0,1] that is 1) symmetric around %, 2) satisfies
the monotonicity assumption, and 3) v(551) > 0 and v(5FL) > 0, the worst case probabilities given -,
(p*,p™) = argmax, ,ncr f(p,p0';7), must satisfy one of the following four equalities:

1
/*: 6*, V*EO, ,/*607
P ep p [ 1+ef]p [ 1+e*€]
1 1
*: € Ix v* O /% O
pr=ePp”, pehie,wrl],p 6[,1+66]
1—p* = ef(1 - p™) Wp* € [ 1], P € [— 1]
pt= "), prel e gt
1—p™* =e(1—p"), Vp* e [——— 1],p" € .1
P =e(1—p") P el e [1+ee ]

Proof of Lemma[B.2. Recall the privacy cost objective (as defined in Lemma is now

=

T K

Fop's7) =D (@™ —a) -4+ Y (ar—e™ap) - y(1)

=0 |= K41
p)

~

where oy = Pr[£(D) = ] and o) = Pr[L(D’) = 1], VIl € {0,1,...,K}. Since £(D) ~ Binomial(p) and
L(D’) ~ Binomial(p’) in the i.i.d. mechanisms setting, and using the pmf of the Binomial distribution, f can
be written as

f,p's7) =) (™ (?)p’l(l ) - <[l(>pl(1 -p) a0+ D) (<[l(>pl(1 —p)fit—eme (?)p’l(l -5

Vof(p,p'7) = 2 <Il(>v(l) (A= p) R =l (K =) (1 = p)KT (55)
1=0
=A
KK
£ 3 ()0 @ amp st - -
l:K;l
=B
and
Vb = 3 e (3 )70 2=y = = (56)
=0
K
+ > 6m6<fl(>7(l)~(lp’”(1p’)Kl PUE = D)1= p)*
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We show in the following Vp € (0,1), V, f(p,p’;7) > 0 and V, f(p,p’;) < 0. This implies there is no local
maximum inside F, and so (p*, p"*) = argmax, , f(p, p';y) must be on one of the four boundaries of F. Also,
if p=0, then p’ =0, and (0,0) is a corner point at the intersection of two boundaries. Similarly, if p = 1,
then p’ = 1, and (1, 1) is also a corner point. This concludes Vp € [0,1], (p*,p"*) = argmax, ,, f(p,p’;y) must
be on one of the four boundaries of F.

To show V, f(p,p';7y) > 0 for p € (0,1), we write V, f(p,p’;v) = A+ B as in Eq. @, and show that A > 0
and B > 0.

To show A > 0, first note

A= Y0 () 0 -0 - - > 0 57)
=0
= Y0 () A na - s Y () e (58)
1=0 =0
= ao(* ) e -na-pes o (D e e
=0 =1
T K1 & (K1
— K (1) 1-pt> K () 1 - p)Rt (60)
ZZO'Y ( I )p p l:1’7 (l—l)p p
K—1 K-1_4
2 K-1 3 K-1
= >0 s Y ) (1 pytt (61)
l:O'Y ( I ) p £ Y < I )p p

Since VI < %, v() > ~v(+1) and p € (0,1), there is for [ € {0,..., % -1},

(1) <Kl 1)pl(l —p) KTl > (14 1) (Kl 1>pl(1 —p)ftt (62)

Furthermore, since y(£52) > 0 and p € (0, 1),

(L) - >0 (63)
2

Eq. [62] and Eq. [63] combined implies

’7(}(2_1)(‘[(1'(_11>pk21(1 -p)T o+ 2 0 v(l)<K_ 1>pl(1 -t > 2

2

(64)
and hence, Eq. [61] holds. This further implies A > 0.
Next, to show B > 0, note that
/K
B= ) ( ; >7(l) ST A =p) T = (K - =-p)KTT) >0 (65)
l:@

= Z (3 ) prts Z (7 )t = na -yt (66)

K+1 K+1
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‘:’ZZ <z—1>[l('lpll(1_p)Kl

(") ey - -y

= K Z <l_11>~pl‘1(1—p)K‘l

l ) pl1—p)t

— Z ( 1) P -p)t > _i (I — 1)<Il(_—11) (L =y

1= K+1

(D) <Il(_11)p“(1 — ) 2 A -1) (K - 1>p11(1 e

Furthermore, since v(£52) > 0 and p € (0, 1),

Eq. [70] and Eq. [71] combined implies

(L a - S o(f 7)) ra-pers S =)

2 1= K+1+1 l:K;rlJrl

and hence Eq. [69 holds. This further implies B > 0.
Following Eq[55] for p € (0,1) and ~ satisfying the three assumptions,

Vpf(pp's7) =A+B>0

Following similar techniques, one can show for p € (0,1) and ~ satisfying the three conditions,

Vo f(p,p';7) <0

(67)

(70)

(74)

This implies there is no local minima or local maxima inside the feasible region F. Also recall (p,p’) €
{(0,0), (1,1)} are two special cases where (p,p’) is at the intersection of two boundaries. Hence, we conclude
the worst case probability (p*,p™) = argmax,, ,cx f(p,p’;7) is on one of the four boundaries of 7 — that

is, (p*,p™) satisfy one of the following;:

o=, Vp € [0, L €0, 7]
pr =P, vp € [0, e_elﬁ],p/ o, ﬁ]
L—p*=e(1-p"), Vp € [1+ - 1],p' € [Hle_e»l]
gt == p), V€ [ 1)8 € [ 1]
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Lemma B.3. For any noise function v : {0,1,..., K} — [0,1] function that is 1) symmetric around % and
2) satisfies the monotonicity assumption, the privacy cost objective f(p,p’;7y) is mazimized when p > p'.

Proof of Lemma[B.3. Following Eq. [33]and Eq. B8 in the proof of Lemma [3.4] and that 6 = 0,

Pr[DaRRM, (D) = 1] < ™ Pr[DaRRM,(D’) = 1] (75)
K K2—1
= > (m—e™apy(l) = D (ar—em™apy(l) <em -1 (76)
=54 1=0
=f(p.p'57)

where a; = Pr[£(D) =] and o) = Pr[L(D’) = 1], Vl € {0,1,..., K}. This implies

Pr[DaRRM., (D) = 1]
Pr[DaRRM. (D') = 1]

flp,p'sv) = -1 (77)

Hence, f(p,p’;7) is maximized when Pr[DaRRM, (D) = 1] > Pr[DaRRM,(D’) = 1].

]~

Pr[DaRRM.(D) = 1] = 3 Pr[DaRRM, (D) = 1 | £(D) = 1] - Pr[£(D) =[] (78)
=0
*K l]Il>K 11 l Pr[L(D) =1 79
;(v<>'{_2}+2< — (1)) - Pr{L(D) = 1] (79)
=K211(1—7(1))'az+ S () + 2= 4 e (30)
=0 2 =K+ 2
K K;l
L s oM a-p s (M)a-pr el s
2 l 2 l 2
l:K;1 1=0

where the last line follows from the observation that in the i.i.d. mechanisms setting, £(D) ~ Binomial(p)
and «; is hence the pmf of the Binomial distribution at .

Similarly,
Pr[DaRRM., (D') = 1] = % EKI ~(1) (f);ﬂ(l ) % : (1) (f)p/l(l P S (82)
=K -
Now define the objective
w(B) = ;éﬂ s )= -3 v )sa- st (53)

for 8 € [0,1] and it follows that Pr[DaRRM, (D) = 1] = h(p) and Pr[DaRRM,(D’) = 1] = h(p’). We now
analyze the monotonicity of h(3) in 3.

_1 < K
o S R S alt) 2 9014 1).9 < § and 2(1+ 1) >
2 =2

v(1),Vl > & there is g(I + 1) > g(1),Vl € {0,..., K}. And replacing v(I) with g(l) in Eq.

For ease of presentation, define g(I) := {

K

ORI IR (5)

=0
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Vah(s) = ggm () (= syt = (- pata - ) (55)
- égm () - : (7 ) gmE -osa-me s
= Ké (3 2)p == K:l (7 ")t (37)
- Kf_:ga sy(F - Kf_:gm (7 ea-se s
: Ki (st + 0 -g)(* V)t - pyt (59)

Since g(I + 1) > ¢(I) and (Kfl)ﬂl(l — B)E=1=1 > 0, Vzh(B) > 0. This implies h(3) is monotonically

non-decreasing in [ and hence,
Pr[DaRRM, (D) = 1] > Pr[DaRRM,,(D’) = 1] <= p>p’ (90)

Therefore, f(p,p’;~) is maximzied when p > p'. O

B.2 Proof of Privacy Amplification (Theorem [4.1)

Theorem B.4 (Restatement of Theorem . Consider using DaRRM (Algom'thm@ to solve Problem E,
with i.i.d. mechanisms {M;}K |, i.e., p; = p, pi = p', Vi € [K], the privacy allowance m € [K] and § = A = 0.
Let the noise function v : {0,1,..., K} — [0,1] be that:

ifm > %

() =1

1—2n(l) vI<EA
(1) = © _K%i-l
on(l)—1 vi> Kt

1 K—1
where h(l) = 321 M, then DaRRM., is me-differentially private.

i=m
2m—1

Roadmap. Theorem consists of two parts: v under a large privacy allowance m > £¥L and ~ under

a small privacy allowance m < % We first show in Lemma @, Section that if m > %, setting
v = 1 suffices to ensure DaRRM,, to be me-differentially private, and hence one can always output the true
majority of K mechanisms. In contrast, simple composition indicates only when m = K can one output
the true majority of K mechanisms. Next, we show in Lemma @7 Section that if m < %, one
can set vy to be vYpgup, which corresponds to outputting the majority of 2m — 1 subsampled mechanisms
(and hence the name “Double Subsampling”, or DSub). In contrast, simple compositon indicates one can
only output the majority of m subsampled mechanisms to make sure the output is me-differentially private.
Theorem follows directly from combining Lemma [B.5 and Lemma

B.2.1 Privacy Amplification Under A Large Privacy Allowance m > %

The proof of Lemma is straightforward. We show that given the constant Vqz (1) = 1, if m > %, the

worst case probabilities are (p*,p’*) = arg Max, e r F(D,0"; Ymaz) = (0,0) and notice that f(0,0;Vmaez) =
e™¢ — 1, which satisfies the condition in Lemma Hence, DaRRM,,, = is me-differentially private.
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Lemma B.5 (Privacy amplification, m > %) Consider using DaRRM (Algorithm to solve Problem
with i.3.d. mechanisms {M;}E |, i.e., p; = p, p, =, Vi € [K], the privacy allowance m > %,m € Z and
d = A = 0. Let the noise function be the constant Ymaz(l) = 1,Vl € {0,1,...,K}. Then, DaRRM., .. is

me-differentially private.

)=1v1€{0,1,...,K} is: 1) symmetric around £, 2) satisfies the
1)y >0 and me(KH) > 0. Therefore, by Lemma the worst
= argmax, e x (P, P'; Ymaz), are on one of the two boundaries

Proof of Lemma|[B.5. First, notice Yimqz
monotonicity assumption, and 3) %naz(
case probabilities given Ymqz, i-e., (p*,p™*
of F, satisfying

p=ep”, vp* € [0, #LPM [ am]

or 1-pt=e(1-p), Vo € [, " € [ 1
We now find the local maximums on the two possible boundaries, i.e.,

(Plocat: Plocat) = arg max F®, 0’ Ymas)
(p.p"):p=e“p’ ,pE[0, ——7]
and
(Plocats Plocat) = arg max fP,p's Yimaz)
(p.p'):1=p'=e (1-p),pEli=,1]

separately.

Part I: Local worst case probabilities on the boundary p = e°p’.

Plugging p = ep’ into the privacy cost objective f(p,p’; Vmaz), One gets

F: ) ; (D)= (F)erta- e (o1)

l

k

s K
_ -l _me /1 AV ¢
+2K: () N1 —ep)f T —e (l)p(l p)
=541
The gradient w.r.t. p’ is
/ 2 me K -1 N\K—I /1 NK—-1—-1
V50 5men) = 3 (e () )= = (0 (92)

=0

!
= 1 Kl K—1
_ me /71 K—1—-1 me - /1 K—1-1
—x e (M Y e (0 ) (99)
=0 l:K;»l
K2—1
K—1 o
+KZ€6( z )(ep)(l NS - K Z ( )ep)(l ep/ )1
=0 l_K+1
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71 K—1 -1
K me - i — K -1 _ g N1 _ Y EK—i-1
+ e ( l >p( ) ; e Nt -p)

1

)

2 K — = L (K-1
-K e ( ) N1—ep)s T+ K Z ee( ] )(eep')l(l —efp )KL
0 =K1

3
- <I§“ ) ) K (12—11> (ep)) T (1 —ep) "7 (04)
=A - ~
Notice that
A ‘(- ) e 1y e )
B e (5 (ep) T (L—ep) 5 "5 Ty (95)
Since 1 Y p >1and m > K+17 g > 1. This implies Vi f('; Ymaz) < 0. Hence, f(p'; Ymaz) is monotonically

non-increasing on the boundary, for p’ € [0, ﬁ]

Therefore, arg Max, .o, L] F(@';Ymaz) = 0. Since p = e“p’, p’ = 0 implies p = 0.

Hence,

(Plocats Plocat) = arg max f (0.9 Ymaa) = (0,0)
(p.p):p=ep’,pE[0, —L7]
and

max f(p7p/; ’Ymaz) = f(oa O;Vmam) =em™ -1
(p.p"):p=e“p’,pE[0, —7]

Part II: Local worst case probabilities on the boundary 1 —p’ = e(1 — p).

For simplicity, let g=1-—pand ¢ =1—p'. Note on this boundary p € [+==,1] and p’ € [ 1], and

hence, ¢ € [0, ——] and ¢’ € [0

1+e € Tt+ec?

e ) THe=e)

Plugging ¢ and ¢’ into the privacy cost objective f(p,p’; Ymaz), One gets a new objective in ¢, ¢’ as

(-t
., <<[z(>(1 St <IZ(> Va7 < Amaa (1)
(0

S e (r-ane - (o)

=0

i (<Il(> (1-q)lg" ™ —em (?) (1- q’)lq’K‘l)

K+1

=

£(a.d'sYmaz) = ) Q)'¢" l) Ymaz (1) (96)

_|_

NMN IM“

5\‘
"w

_|_

)

Since on this boundary, 1 —p’ = e“(1 — p), writing this in ¢, ¢, this becomes ¢’ = e¢q. Plugging ¢’ = ‘g into
f(Qa q/; A/maz)y one gets

=

@) = S (6”“ <Il(>(1 —eq)(eq)" ' - <Il<>(1 - q)lqK’l) (98)

=0
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Wt = 3 (e () (et = e e et - - e ) (99)

(7)) (10 - - gt

+ i ((?) (=11 = ) 1" (K = D1 - g)fg" )

K
2 K-1 K-1 K
_ (m+1)e o _ l1 (m+1)e _ e N e NK—1—-1
=S ) e e Z () s -0 - ot
(100)
K;l K;l
K-1\K K-1 K
I -1 K-l _ -1 | K—l-1
+ 3 () st (F ) - na - '
1=1 1=0
K K-1
K-1\K K-1\ K
(1 — -1 _K-I K —D(1 - I K—l-1
> (V1)) Te—aee X (M) Fu-nu-a
1= ;»1 l:K;1
K K-1
K-1\K K-1\ K
(m+1)e o e Nl—1/ e \K—1 (m+1)e o e Nl e NK—1—-1
DI G L (R e (1) 25 (- - )
= ;1 l:K2+1
K-—1
- K—1 K—l-1
_ (m+1)e 1 — e I—-1/,e \K—1 (m+1)e 1—
Ky ( 1>( e‘q)" " (e“q) +Kl§ ( l )( ¢“q)'(c“q)
(101)
K-—1 K—1
V(K -1 (K -1
K 1 -1, K-l _ ¢ 1 I K—1-1
+K Y <1—1)( 9)''q Y, )a-a
=1 =0
K K—-1
1 K-1
- K Z ( )(1 q)l—lqK—l+K Z ( l )(1 )qu -1
= K1 1 = K1
2 - 2
K K-1
K-1 K-1
(m+1)e e N —1 e NK—1 (m+1)e _ K-l1-1
D I i (R T DIl (S LB
1= ;—1 l*Kg—l
K-1 _ - K-1 - _
_2K6(m+1)e< )(1 eq) T (e5q) T _2[(( e )(1 QT (102)
2 2
Recall ¢ € [0, ;3] and so (1 — e“q)(e“q) > (1 — ¢)q. Furthermore, since e(m+1e > 1 there is V,f(q) > 0.

This implies f(¢) is monotonically non-decreasing in ¢, and so the local maximum on thls boundary is

1 1

_ 103
1—|—e€71—|—e—€) (103)

(ql*ocal’ ql/:;cal) = argmax f(q7 q/§ 'Ymax) = (
(0,4"):¢'=eq,4€10, 73]
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That is,
(Plocat: Pocat) = arg max F .03 mar) = (U Ghocats | = tfseat) = (e 1)
b - ? ) max - ) - —e?
oca oca (p7p,):1_p/:e (1 p) pe[ L ,1] oca oca 1 + e € 1 + 66
(104)

Part ITI: The global worst case probabilities.
Notice that (1+e_€, 1Jreg) the maximum on the second boundary 1 —p’ = e€(1 — p),Vp € [1+ —, 1], is indeed
the minimum on the first boundary p = ep’,Vp € [0, m]
Therefore, the global maximum given 7,44 iS

(p™,p") = argmax f(p, p'; Ymaz) = arg max f(p.p'sYmaz) = (0,0) (105)

(p.p")EF (p.p"):p=ecp’,pE[0, =]

and recall that f(0,0; Vmaee) = €™ — 1.

Hence, if m > %, by Lemma DaRRM is me-differentially private.

Ymazx

B.2.2 Privacy Amplification Under A Small Privacy Allowance m < %

The proof of Lemma is slightly more involved. First, recall by Lemma ~Ysub, the noise function that

makes the output of DaRRM,, , and the subsampling baseline the same, is

Ysub(l) = Ysun(K =1)
(;) KJ) P
22 Cmi1 m_d if m is odd

if m is even

N b e

m

for I € {0,1,..., K}, suppose the privacy allowance m € Z.

l K—1
L= (j)((f?"’)’j) if m is odd
D) ()0

If we define h(l) := (
L= (F)

, then yg,s(1) can be written as vguu(l) =

—

if m is even

1-2n(l) ifl< £
2n(l) —1 if 1> &H
This can be generalized to a broader class of v functions — which we call the “symmetric form family” — as

follows

Definition B.6. v:{0,1,..., K} — [0,1] is a member of the “symmetric form family” if v follows

1—-2h(l) dfl<BAL
b= : 106
"0 {Qh(l)—l if 1> Exl (106)
where h: {0,1,..., K} — [0,1] and
R()+hK —1)=1, h(+1)>hn(), vIie{0,1,...,K}, and 7(%) > 077(@) -0

2

It is easy to verify any 7 function that belongs to the “symmetric form family” satisfies: 1) symmetric around
% and 2) the monotonicity assumption. Hence, Lemma can be invoked to find the worst case probabilities
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given such 7, i.e., (p*,p*) = arg max, e f(p,p";7v), which in turn gives us the guarantee of DaRRM,,
being me-differentially private.

Roadmap. In this section, we restrict our search of a good 7 that maximizes the utility of DaRRM,,
to in the “symmetric form family”. To show the main privacy amplification result under a small m in
Lemma [B.10} Section we need a few building blocks, shown in Section We first show in
Lemma [B.7] Section two clean sufficient conditions that if a “symmetric form family” « satisfies, then
DaRRM, is me-differentially private, in terms of the expectation of the v function applied to Binomial random
variables. The Binomial random variables appear in the lemma, because recall the sum of the observed
outcomes on a dataset D, L(D), follows a Binomial distribution in the i.i.d. mechanisms setting. Next, we
show a recurrence relationship that connects the expectation of Binomial random variables to Hypergeometric
random variables in Lemma This is needed because observe that for v functions that makes DaRRM,
have the same output as the majority of subsampled mechanisms, the h function is now a sum of pmfs of the
Hypergeometric random variable.

Finally, the proof of the main result under a small m (Lemma is presented in Section based on
Lemma[B.7]and Lemma [B.9] We show in Lemma [B.10|that ypgusp, i.e., the v function that enables the output
of DaRRM,, ., and outputting the majority of 2m — 1 subsampled mechanisms to be the same, belongs
to the “symmetric form family” and satisfies the sufficient conditions as stated in Lemma [B.7, implying
DaRRM, ., being me-differentially private.

B.2.3 Building Blocks

Lemma B.7 (Privacy conditions of the “symmetric form family” functions). Let random variables X ~
Binomial( K—1,p"), Y ~ Binomial(K—1,ep’), X ~ Binomial(K—1,1—e*(1—p)) andY ~ Binomial(K—1,p).
For a function v:{0,1,..., K} — [0,1] that belongs to the “symmetric form family” (Definition @, if y
also satisfies both conditions as follows:

" Ex[h(X +1) = h(X)] > By [h(Y +1) = h(Y)], ¥p' €0, - —] (107)
5 5 ~ N 1
MR LMK 4+ 1) — h(X)] > Eg[h(Y +1) — h(Y)], Vpe [W’ 1] (108)
then Algorithm DaRRM., is me-differentially private.
Proof of Lemma[B7. Since h(1+1) > h(l) onl € {0,..., K}, y(I) > v(1+1),Vl < & and y(I+1) > ~v(1),VI >
K. Furthermore, since h(l)+h(K —1) = 1, y(EFL) = 1-2n(52) = 1-2(1—h(EFL)) = 2n(5H) —1. Hence,
any v that belongs to the “symmetric form family” satisfies: 1) symmetric around % 2) the monotonicity

assumption, and 3) 7(%) - ’Y(KH) > 0.

Therefore, by Lemma the worst case probabilities (p*, p'*) = arg max, ,er f (p,p’;7) are on one of the
two boundaries of F, satisfying

* €, Ix

p* = ePp’, Vp* € [0,

l,p™ €10, ] (109)

1+e€
] (110)

e ¢+1

1],p" €

or 1—p"=e(l-p"), vp* € [

14e¢’ 1+ e€

We now derive the sufficient conditions that if any v from the “symmetric form family” satisfy, then DaRRM,
is me-differentially private, from the two boundaries as in Eq. and Eq. separately.

Part I: Deriving a sufficient condition from Eq. [109 for “symmetric form family”

Consider the boundary of F, p = ep/, Vp € [0, ﬁ],p’ € [o, H%]
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Given any 7, plugging p = e“p’ into the privacy cost objective f(p,p’;7), one gets

K—

H

g ( ) (1-p )K_l—(I;)(eep’)l(l—eép’)l“l)w(l) (111)
+l_§1< Yt et —em ()= 40

)

The gradient w.r.t. p’ is

Vp’f[(g?’),’)’ e 2231 (Kl1> /l(l p)K l 1(7(l+1)—’y(l)) —26m5(I§(2_11>p/ ;1(1_p/)K2’17(K271)
=0
(112)
e 3 ("7 a2 (b =0+ )
T
+ef 22_ (Kl_1>(ep)(1—ep’)K‘l‘1(7(l)—7(l+ ))+2e (K)(ep) (1—ep) T W(Kgl)
=0 2
K—-1
v 3 (M et - ey (e - o)
g

Consider [ € {0,1,..., K} in the above Eq. [112. For any function « that belongs to the “symmetric form
family”,

LIFI<E v —y(1+1)=(1-2h(l) — (1 —2h(I+1)) =2h(l+1) — 2A(l)

2. If1> & (1 +1)—~() = (2r(1+1) — 1) — (2h(l) — 1) = 2h(1 + 1) — 2h(l)

3. Since ’y(%) fy(T“),
7B o) = (VB ) (113)
- (1 —2h(K2 )+2h(K;1) 1) (114)
:2h($)_2h( ; A1 (115)

Hence, following Eq. [112] the gradient, V, f(p’;7), given a “symmetric form family” v can be written as
K—1
vp’f(plv'y) me K-1 1 K-l
e R Dl G SR ) (2h(l+1)—2h(l)) (116)

=0

K1 0
te Y ( z )(eep/)l(l — e (2004 1) - 2000
1=0
= —2"Ex[h(X 4+ 1) — h(X)] + 2¢°Ey [A(Y + 1) — h(Y)] (117)
where X ~ Binomial(K — 1,p) and Y ~ Binomial(K — 1, ep’). The above implies

Vi f(0'i7) €0 = eBy[h(Y +1) = (Y)] < ™ Ex[h(X + 1) — h(X)] (118)
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If Vi f(p';7) <0, then we know the local worst case probabilities on the boundary p = e“p’, Vp € [0, H%]
given any v i (Pjyears Plocat) = AIEMAX () 1) cepr nelo, ]f(p p’;v) = (0,0). Furthermore, recall the
privacy cost objective given any - is
fo.p"57)

K2—l K
— (emea/ _ al Z al — oMy / ’Y(l)

=0 1= K+1

K—1

1=0 S
and so for any 7,
F(0,0;7) = (€™ = 1) - 4(0) < e™ —1 (119)
Also, notice the local minimum on this boundary is
(Pmin: Prmin) = arg min Fopl5y) = (- ) (120)
- (p,p’):p:eep’,pe[o,ﬁ] l1+e € 1+e€

Part II: Deriving a sufficient condition from Eq. [110 for “symmetric form family”

Consider the boundary of F, 1 —p' =e(1 —p), Vp € [1+e -, 1],p" € [1+e€v 1]. For simplicity, let g=1—p €
[0, 1+e€] and ¢ =1—p' €0, H_%] Plugging ¢’ = e°q into the privacy cost objective, one gets, given any -,

N

2

; ( ( ) (1—eq) (g™ - (Il{)(l *q)lq’”) (1) (121)

~

+l_§; (( > q)'q"! ems(f)(l—eefﬂ (e5)"") - (1)
The gradient w.r.t. q is
Vall4:7) <m+1>f(K D= e @a ™ (50 -+ ) (122)
=
v :(Z (%7 ) a=eaten - (e =) <20 () 1 — e e
+ K%:_l (K n 1) (1= 0" (v + 1) =)
l
=0
K-1
D SN CTORRI ) Bt g (R R ety
=541 2

For any function -y that belongs to the “symmetric form family”, the gradient V,f(¢;) can be written as

. Kil J—
W — (m+1)e Z (Kl 1>(1 ~ ) (efq) KT (Qh([ +1)— 2h(l)) (123)

=0
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KK -1
-3 ( z >(1 —@)'g" 1 (200 +1) - 20())
=0
= 2e(MHDE L [W(X +1) — W(X)] — 2E¢ [A(Y + 1) — h(Y)] (124)
where X ~ Binomial(K — 1,1 — e“(1 — p)) and ¥ ~ Binomial(K — 1,p). The above implies

Vol (@7) 20 = e TEL (X +1) — h(X)] 2 Eg [h(Y +1) = h(Y)] (125)

If V,f(g;y) > 0, then since ¢ € [0, H:eg], we know that the local maximum given any v is (¢} .0rs ear) =

ArgMAX (q,q'):q'=e<q,q€[0, < fla,d'57) = (1+1ee7 1+e =). That is,

)

1 1
(pzkocalvpgcal) = argmax f(p7pl7’y) = (1 - qikocah 1- ql/:cal) = (7_67 T e
(p,p’):1—p'=e(1=p),pEli =] l+eme 1+e

Notice by Eq. the above <1+€_‘ , 1+6‘) is the local minimum on the first boundary p = ep’, Vp € [0, H%]

Therefore, given an arbitrary ~ function, if it satisfies both of the following:

1. On the boundary p = ep’,Vp € [0 ’1+e ——, Vp f(p';v) <0

2. On the boundary 1 — p’ =e“(1 —p),Vp € [i7=,1], Vo f(¢';y) > 0 where ¢/ =1 —p’

1+e <

then the global worst case probabilities given this v is (p*,p'*) = arg max, er f(p, p’;v) = (0,0). Further-
more, since by Eq. |: £(0,0;) < e™ —1 for any +, this implies DaRRM,, is me-differentially private by
Lemma [3.41

Now, if v belongs to the “symmetric form family”, by Eq. [I18 and Eq. [125, the sufficient conditions for ~
that enables DaRRM, to be me-differentially private are hence
By [h(Y +1) — h(Y)] < e™Ex[h(X +1) — h(X)], Vp €[0,——

A~

and e L [(X + 1) = (X)) 2 By [V + 1) — h(T)], Vpe [

where X ~ Binomial(K — 1,p'), Y ~ Binomial(K — 1,ep’), X ~ Binomial(K — 1,1 — e¢(1 — p)) and
Y ~ Binomial(K — 1,p).

O

Lemma B.8 (Binomial Expectation Recurrence Relationship (Theorem 2.1 of |Zhang et al.| (2019))). Let
X(kx—1) ~ Binomial(K —1,p) and X () ~ Binomial(K,p). Let g(x) be a function with —oo < E[g(X(x_1))] <
o0 and —oo < g(—1) < o0, then

KpEx o, [9(X(x-1))] = Ex o, [X () 9(X () — 1)] (126)

Lemma B.9. Giveni,m, K € Z, K> 1,0 <i<m <K, let Xgy ~ Binomial(K,p) for some p € [0,1],

there is
(%)EX(K) Kf) (};_)z()] - (Zz)pi(l -)" (127)

Proof of Lemma[B.9. We show the above statement in Eq. by induction on K and m.
Base Case: K = 1.

1. If m =0, then i = 0. éEX(D[(%()(l’OX)] =Ex,,[1] =1, and (J)p°(1 —p)° = 1.
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2. fm=1,
(a) t=0, GT)EXO)[()O() (1EX)] = EX(I)[l - X] =1-p, and (é)po(l —p)1 =1-p
(b) i=1, (1T)EX<1)[()1() (1_0X)] = EX(l)[X] =p, and G)pl(l —p)o =p.

Hence, Eq. holds for the base case.

Induction Hypothesis: Suppose the statement holds for some K > 1 and 0 < i < m < K. Consider

1 X\/K+1-X
e [ () (257) s
1 X! (K +1-X)!
= A(Kntl) EX(KH)[Z-!(X “im—iN(K+1—X — (m— Z)),] (129)
B 1 (X —1)! (K — (X — 1))
T E N am o NG E - X ) (oo Y
I X! (K - X)!
= it i ol X D KX = (m-D— G- D) sy
(By Lemma [B.8)
(i — 1)!(m —i)! X K-X
B WMEX<K>[(i - 1) ((m— 1) - (i - 1))1 (132)
(i —1)! K m—1\ , 4 i
= s (2 (T 5
(By Induction Hypothesis)
m!/(K+1—m)! K! m—1 i
N ((K+1>!z‘ : m— DK —m+ 1 _(1)1( . P (- p) (134)
= Z‘(nznlz)'pz(l _ p)m—i _ (T)pi(l _p)m—i (135)

Now we consider the edge cases when 0 = ¢ < m.

If i =0and m =0,

(fil)ﬂEX<K+l>[()(§> (K : é ) X)] =1 Exgep, [l =1= (8)1)0(1 -p)° (136)
If i = 0 and m > 0,
(K;&l-l) Xeacsn (K+ - > (137)
o KZ () (e (138)
- 3 (0N (= o o
=g 2 (N (e S () (o

K+1-
(Since when © = K + 1 and m > 0, ( + x) =0)
m
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(o g (o)

= (Ki—l) ((1 —p)EX(K)[<Kn—1X>} +(1 —p)Ex<k)[<Ifn__)1(>D + (Kil)pExw)[(Kn—lX)} (142)
_ (Kil) (]EX(K)[<K7;X)] +(1— p)]EX(m[(I;__)f)]) (143)
= ey () o -pm e a-n (5 Jamn) (144
(By Ieruction Hypothesis) (145)
— (1 p) (147)

Hence, Eq. [I27 holds for all K > 1 and 0 <i<m < K.

B.2.4 Main Result: Privacy Amplification Under a Small m

Lemma B.10 (Privacy amplification, m < %) Consider using DaRRM (Algom'thml) to solve Problem
with 4.i.d. mechanisms {M;},, p; = p, p} = p', Vi € [K], the privacy allowance 1 < m < £-L 'm € Z and
0 = A =0. Let the noise function be that

1-2n(l) vie{o1,..., 52}

2n(l)—1 Vvie{&EH, . K} (148)

Ypsub(l) = {

1 K—1

where h : {0,1,...,K} — [0,1] and h(l) = Y271 M; vi € {0,1,...,K}, then Algorithm
2m—1

DaRRM.

v bsas 08 me-differentially private.

Proof of Lemma |B.10. First, note ypsup, belongs to the “symmetric form family”. We show vpg.p satisfies
the two sufficient conditions in Lemma and hence by Lemma|B.7, DaRRM,, ... is me-differentially private.

K—1
Specifically, we consider h(l) = 377! ()((2”71)7) vie{0,1,...,K}and 1 <m < K.

=m
2m—1

Two show the first condition is satisfied, let X g _1) ~ Binomial(K —1,p) and Y{x_1) ~ Binomial(K — 1, ep),

and consider p € [0, H%]
et X+1\/K-X-1
Ex e, [M(X +1)] ( ) <2m 1 Z.>] (149)
et X\(K-X-1\ (X \(K-X-1 | (150)
2m1 = ) 2m —1—1 i—1/\2m—1—1

(Since (X+) ()+( )H{izm
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<m%1)§§;<E&K1”(f><§nji—f>}*EX““(ifi>(mh§a;—(f—n>o
(151)
(By Lemma "

- K=X ) _(K-1-X)  (K-1-X),
M om_1-i) " \oam—1-i I — 2 — i

“ o o Eaeal(2) G el (7) (s e <am )

m—1/ i=m
(154)

B (155)
(By Lemma [B.9)
Hence, following Eq. and Eq.
Ex ey [MX +1) = h(X)] (156)
2m—1 2m—2
1 K—1\/2m—-2\ , , — K—1Y\/2m-2\ , oo
= z 1— m v _ i1 — m i
(275_1)<i_zm<2m—2><i—1)p (1=p) Z,_Zm<2m—2)< i )p( P) )
(157)
2m—2 2m—2
1 K-1 2m — 2\ ., . K—-1 2m — 2\ . -
— i1 — 2m—2—1i __ i1 — 2m—2—1
(2 o) (7 a8 () (7 o)
(158)
2m —1(2m — 2 1 1
= — A =-p)™ 159
K (me (1=p) (159)
Similarly,
2m—1/2m -2\ . ,._ ¢ \m—
By Y +1) = )] = 225 (2 B eyt - et (160
Since p € [0, ﬁ], there is p(1 — p) > e “ep(1l — e°p). Hence,
m—1)e 2m —1/2m =2\ o 1)e m— —
N 0 e G L (R (161)
2m —1(2m —2
> (m—1)e(, —e€ € 1 — efp))m—1 162
S i e ) (162
2m —1 (2m — 2 1 1
— € m 1 _ € m 1
(et en) (163

41
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Published in Transactions on Machine Learning Research (November/2024)

= Ey,e_y [(Y + 1) = h(Y)] (164)

implying
emE]EX(Kfl) [M(X +1)—h(X)] > eE]Ey(Kfl) [h(Y +1) — h(Y)] (165)
and the first condition is satisfied.

To show the second condition is satisfied, let X(K_l) ~ Binom(K —1,1—¢e¢(1—p)) and }7(K_1) ~ Binom(K —

1,p), and consider p € [y=,1].
B M) = oy mzm s (1) G2 2 (50 () o))
(166)
= (2}1) 2 (o) (" - =myiera—pym (167)
+ (2[;__12> (2?__12) (1= e“(1 = p)) (€5 (1 = p)) > 1)
By Lemma
and
Eg . X)) = (2”{1(_1) 22: (Ekmn[(i{) (;(m__ll__)i)] + EX(KU[();() (fm 12__X)]H{i < 9m — 2})
(168)
=) 2 (o) (" )= =myitera - pym (169)
+ (2};‘9 (2’”[ 2) (1= e“(1 = p))(e“(1 = p))*" 2 7'I{i < 2m - 2})
By Lemma
Hence, following Eq. [[67 and Eq.
Eg o [hX +1) = h(X)] (170)
- (mi)(TiZ (o (2;”_12) (1 e (1= p)) (e - p)Pm ()
- 2 (a2 5) (") F)a=ea-pyea— )
(G0 2) ot o7
S (;; 12) (2’”2. 2) (1= e (1= p))'(e"(1 = p))> 27"
= G CE ) e R (173)
Similarly,
Eg,.  [h(¥ +1) — h(¥)] = % (27:‘_12) Pl — (174)
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Hence,
ma1)e N N mane2m —1(2m —2 . m—1, e m—
VB (X 1) = h(X)] = DT ( o )(1 —e(1—p)" e (1 —p)™ " (175)
2m —1 (2m — 2
> _€(1 _ m—1_(m—1)erq _ \ym—1
> 2L (AT - e ) (176)
_2m_1 2m — 2 € 2e(1 _ m—1/q9 _ _\ym—1
S G [CE R Ll (177
Note that
e —eX(l—p)=e —e*+e*p>p (178)
<~ (e“+1)(e“—1)p>e(ef—1) (179)
€ 1
— px " (180)

e +1 ltec
and the condition needs to hold for p € [H%, 1].
Therefore, following Eq.

O B 1) = )] 2 2 (2 E )t (181)
=Ey,. WY +1) = h(Y)] (182)

implying the second condition is satisfied.

Therefore, by Lemma DaRRM is me-differentially private.

YDSub

B.3 Comparing the Utility of Subsampling Approaches

Intuitively, if we subsample 2m — 1 mechanisms, the utility is higher than that of the naive subsampling
approach which outputs the majority based on only m mechanisms. To complete the story, we formally
compare the utility of outputting the majority of 2m—1 subsampled mechanisms (Theorem and outputting
the majority of m subsampled mechanisms (simple composition, Theorem in the i.i.d. mechanisms and
pure differential privacy setting, fixing the output privacy loss to be me.

Lemma B.11. Consider Problem with i.i.d. mechanisms {M;}X,, i.e., p = p; = Pr[M;(D) = 1],p' =
pi =Pr[M;(D’) =1),Vi € [K]. Letv; : {0,1,...,K} = [0,1],7v2: {0,1,..., K} — [0,1] be two functions that
are both symmetric around 5. If 1 > (1) > 72(1) > 0,1 € {0,..., K}, then £(DaRRM.,,) < £(DaRRM.,,).

Proof. Recall S = {S51,..., Sk}, where S; ~ M;(D), is the set of observed outcomes from the mechanisms
{M;}X . By Definition for any v that is symmetric around %, the error of DaRRM, is

£(DaRRM,) = | Pr[DaRRM,, (D) = 1] — Pr[¢(S) = 1]’ (183)
K 1 K 1 K
= > (W +50-9) @+ Y 0= @ D (184)
l=K2+1 1=0 l=%
Koo 1 =11
=1 Y G0-3) @+ Y (5-50) « (185)
l:Kz»l 1=0
1 K
=I5 > (=) - (o1 — k) (186)
l:K+1

2
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where oy = (If)pl(l —p)E-lvie{0,1,...,K} and recall p = Pr[M;(D) = 1], Vi € [K].

Foranylz%7
1. Ifp=0orp=1, oy = ax_.

2. Otherwise, for p € (0,1),

1
(a‘) pr Z 2
l( )K l u
o p'(l—p)"~ 2A-K K—2l D
= = 1— = >0 >1 > _ 1
ax_  pK-i(1 = p) p ( P) (1—p) 21, = o 2ok (187)
——
>1
1
20 - K
[(67] p v
=(—) = <1, =a<agy (188)
OF 1-p
——

Hence, if p > 1, then oy > oy, VI > £ Since 1 (1) > 72(1), V1 € {0,..., K}, 1 =1 (1) < 1—5(1), and so

K K
1 1
£(DaRRM,,) = (1 =m@)-( —ax-) < > 51 =) (s —ax-i) = £(DaRRM,,) (189)
|=K+1 = E+fL
2 2
Similarly, if p < %7 then oy < ag_, VI > % and
GRS K
E£(DaRRM,,) = > c(1=mn(D) (ax1—a) < Y 51 =) (ax-1 — m) = E(DaRRM,,)) (190)
=5 =55
Therefore,
£(DaRRM,,) < £(DaRRM.,) (191)

O

Since Ypsub(l) > vsus(l), V1 € {0,1,..., K}, by Lemma [B.11, £(DaRRM,, .., ) < £(DaRRM, ) — that is,
outputting 2m — 1 mechanisms has a higher utility than outputting m mechanisms.
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C Details of Section [5; Optimizing the Noise Function v in DaRRM

C.1 Deriving the Optimization Objective

For any ~ function that is symmetric around %, we can write the optimization objective as

Eps pa....pi~7[E(DaRRM, )] (192)
= Ep, po....pic~7[| Pr[DaRRM, (D) = 1] — Pr[g(S) = 1]]] (193)
r K K—1
1 2 1
—Epipaenet || D2 (a0 GO+ 50 =90) =) + D ar- 5(1=90) (194)
|25 =0
r K-—1
R 1 4 11
= Byt || S G0 = 5)+ 3 (g — 50) (195)
e 1= K41
The above follows by conditioning on £ =1 € {0,1,..., K}, i.e. the sum of observed outcomes in S
_ o x
— Epipaeoent ||5 D (1= ax—) (1=10)| (196)
| i=Ep
The above follows by symmetry of
Furthermore, notice the objective is symmetric around 0, and can be written as
| K
EpipaveoprenT | 5 D (= ag—) (1=~() (197)
1= K;l
1 [ &
= 3B~ | O (00— ax—0) = (= ax—)7()) (198)
L= K;rl
1 & 1 us
= §]Ep1,p2,...,p1<~7_ Z (al - aK—l) _iEpl,P27-~7PKNT Z (al - O‘K—l)’}/(l) (199)
_l= K;»l 1= K;l
=A =B

Since expression A in Eq. does not involve v, we only need to optimize expression B in Eq. That is,

K
1
- §EP1,IJ2,-~J)K~7— Z (al - OéK—l)'Y(l) (200)
=
1 K
=5 > Eppient (00 —ax)] -2 () (201)
1=K+l

2

Eq. is the optimization objective we use in the experiments. We see the optimization objective is linear
in 7.

Note in the general setting, £(D) ~ PoissonBinomial(py,pa, ..., px), where recall £(D) is the sum of observed
outcomes on dataset D, and hence, oy = Pr[£(D) = I] is the pmf of the Poisson Binomial distribution at
le{o,1,...,K)}.

C.2 Practical Approximation of the Objective

Since the optimization objective in Eq. requires taking an expectation over p1,...,px, and this invovles
integrating over K variables, which can be slow in practice, we propose the following approximation to
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efficiently compute the objective. We start with a simple idea to compute the objective, by sampling p;’s
from [0, 1] and take an empirical average of the objective value over all subsampled sets of p1,...,pxk as the
approximation of the expectation in Section [C.2.1| However, we found this approach is less numerically stable.
We then propose the second approach to approximate the objective in Section [C.2.2] which approximates the
integration over p;’s using the rectangular rule instead of directly approximating the objective value. We use
the second approximation approach in our experiments and empirically demonstrates its effectiveness. Note
approximating the optimization objective does not affect the privacy guarantee.

C.2.1 Approximation via Direct Sampling of p;’s

One straightforward way of efficiently computing an approximation to the optimization objective is as follows:

Algorithm 4 Straightforward Approximation of the Optimization Objective
: Input: # mechanisms K € N, # iterations T € N, noise function v : {0,1,..., K} — [0,1]
:fort=1,2,...,7T do
: Sample p1,pa, ..., Px ~ T
L + PoissonBinomail(py, . .., Px)

~

1
2
3
4:
5. & « Pi[f=1,VI{0,..., K}
6
7
8

gt = =5 Lz (G0 — dre—r) - (1)
: end for
: Return + Zthl gt

However, we found this approximation is not very numerically stable even for 7' = 10000 in the experiments
and so we propose to adopt the second approximation as follows.

C.2.2 Approximating the Integration Over p;’s

Consider the following surrogate objective:
1 K 1,1 1
-5 2 / / / (1 — axe_1)dprdps . .. dpxc (1) (202)
oz 10505 0.5
- 2

where we approximate the integration instead of directly approximating the objective value. The approximation
of the integration is based on the rectangular rule and that the Poisson Binomial distribution is invariant to
the order of its probability parameters.

First, we discretize the integration over p;’s: pick 7 = 50 points representing probabilities between [0.5,1)
with equal distance 6§ = %. Denote this set of points as W. We pick only 7 = 50 samples to ensure the
distance between each sample, i.e., 6, is not too small; or this can cause numerical instability. For each
le {%, % +1,..., K}, we want to compute an approximated coefficient for (1) as follows:

/0.5 /0.5.”/0.5(%_aK_l>dp1dp2”'de% Z Z Z (g —ag—y) (203)

p1EW p2€W PrEW

which approximates integration over a K-dimensional grid WX.

The idea is then to sample points from this K-dimensional grid W¥ and compute an empirical mean of the
integration based on the sample probabilities for p1, ..., px from WX as the approximation of the integration
in the objective.

Let (s1, 82, ..,5K) be randomly sampled probability values from WX and we want to compute (a; — ax—;)
for all [ based on (p1,...,px) = (s1,-..,8K). To apply the rectangular rule, since the grid of probabilities
is K-dimensional, the weight of (a; — ax_;) in the approximate integration is #%. Furthermore, observe
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that «; is the pmf at [ from a Poison Binomial distribution in our case, and PoissonBinomial(p, ..., pk) dist:

PoissonBinomial(7(p1, ..., pK)), where m denotes a permutation of py,...,px and %t denotes “the same
distribution”. Hence, with a single probability sample (s1, ..., sk ), we can indeed compute a; — gk for each
I at K! points from the grid WX, since they all have the same value. Therefore, we should set the weight of
a; — ax_; in the approximate integration as w = % - K!. Furthermore, since the order of (py,...,px) does
not affect the objective value, there is a total of (7 choose K with replacement) = (”‘g_l) := P different
points in the grid WX.

In summary, the integration based approximation of the objective proceeds as follows:

Algorithm 5 Integration Based Approximation of the Optimization Objective

1: Input: # mechanisms K € N, # iterations 7' = 10000 € N, noise function v : {0,1,..., K} — [0,1],
7 = 50: # samples between [0.5,1) to form the set W

~

a < PriL=1,Vie{0,1,..., K}
g+ =5 Xl sep w- (& = dx—1) (D)
end for
: Return % ZZ;I gt

2: 6 <+ 0.5/7 distance between samples

3w+ 05 . K|

4: P+ (T+£71)

5. fort=1,2,...,7 do

6:  Sample probabilities (s1, sg,...,s5x) ~ WK
7. L~ PoissonBinomial(s1, s2, ..., sk)

8:

9:

=
= o

C.3 Reducing # Constraints from co to a Polynomial Set

Lemma C.1 (Restatement of Lemma . Consider using DaRRM (Algom'thm@ to solve Problem@ and
let f be the privacy cost objective as defined in Lemma|3.4 Given an arbitrary noise function -y, let the worst
case probabilities be

(01, Pk PY - PR) = argmax f(pi,...,PK, Py, PKi7Y)
{(pip)) Y,

Then, each pair (pf,pi*),Vi € [K] satisfies

(p;,pi") €1{(0,0),(1,1),(0,A),(A,0), (1 - A, 1),
(1,1—A),(e —|—A,1—A)7(1—A’e + A
ec+1 ef+1"e+1 e +1

)}

Furthermore, when & > 0, there ewists a finite vector set P of size O(K') such that if 3 =
max((, ;11K ep FP1s- PPy DY) then f(D3, .. D, DY - P y) < B. When § = 0, the size of
P can be reduced to O(K?3).
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Feasible Region F;
@D

1-A e“+/A
0.8 e+ 1'eh1 A=4D p1-4
0.6 — p'=e"f*(p—56p)
— p'=e**p+5

0.4 — p'=1-e"*(1—-p—25p)

0.2 1-A
0,8 ber 7
(0,0)00 7

0.0 (A,O)O'z 0.4 0.6 0.8 1.0

Figure 5: An illustration of the feasible region F;.

Proof. Part I: Reducing # privacy constraints from co to exponentially many.

Consider (p;,p;) for an arbitrary i € [K] and fixing (p;,p}),Vj # i. Given any noise function -, recall the
privacy cost objective f(p1,...,pr,pi, ..., P5;7y) (see Lemma [3.4), is

K—-1
2 K
F1,- i DD Y) = (€™ ap —an) () + Y (on — €™ ap) (1)
=0 |=EK+1

2

and the privacy constraints are of the form
f<p177pKap/177pIK'7,Y) S eme - 1+25

where recall that o = Pr[£(D) = [] is a function of {p;}X, and o] = Pr[£(D') = [] is a func-
tion of {p/}&,, VI € {0,1,...,K} and L(D), L(D') are the sum of observed outcomes on neighboring
datasets D and D’. By Lemma ~v needs to make the above privacy constraint hold for all possible
{(pi, p})}E | to make DaRRM,, (me, §)-differentially private. This is equivalent to saying, v needs to ensure

maxy(p, p/1x | f1, - PES DY s DY) S €M — 1426,

Notice that the sum of observed outcomes follows a Poisson Binomial distribution, i.e., £(D) ~
PoissonBinomial(ps,...,px) and L(D') ~ PoissonBinomial(pj,...,p%). Hence, by the pmf of the Pois-
son Binomial distribution} the privacy cost objective f is linear in each p; and py, fixing all (p;,p}), Vi # i.
Since each mechanism M; is (e, A)-differentially private, by definition, (p;, p}) satisfies all of the following:

pi <epi+ A, pi<ep+A
1—pi<e(1—pj)+A, 1—p;<e(l—p;)+A

That is, (p;,p;) lies in a feasible region F; (see Figure @ Note the constraints on (p;,p;), that
is, the boundaries of F;, are linear in p; and p,. And so the optimization problem (p},p*) =
argmax,, .. f(p1,---,Pr, Py, Pk;y), which finds the worst case probabilities in (p;,p}), is a Linear
Programming (LP) problem in (p;,p;) for i € [K]. This implies (p;,p;") has to be on one of the eight corners
of Fi — that is (p}, ") € {(0,0), (1, 1), (0,A), (A,0), (1 — A, 1), (1,1 - A), (££8, =81 (L=8 ebayy._ ¢,
Since all (p;,p;) and (p;,p}), for i # j, are independent, we can search for the worst case probabilities by
searching for (pf,p;*) € C, instead of searching for (p;,p;) € F;,Vi € [K]. Therefore, the infinitely many
privacy constraints are now reduced to only 8% to optimize for the best  function that maximizes the utility
of DaRRM,,, while ensuring the output is me-differentially private.

Part II: Reducing # privacy constraints from exponentially many to a polynomial set.

To further reduce the number of privacy constraints in optimization, observe that the Poisson Binomial
distribution is invariant under the permutation of its parameters. That is, PoissonBinomial(p, ..., pk) dish:

6See, e.g. https://en.wikipedia.org/wiki/Poisson_binomial_distribution, for the pmf of Poisson Binomial distribution.
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PoissonBinomial(7 (p1, . ..,pk)), for some permutation 7 and 4 means “follows the same distribution”.
Similarly, PoissonBinomial(p], . .., p) dish PoissonBinomial(7(p], ..., p%)).

The above observation implies if we have one privacy constraint f(p; = v1,...,px = Vk,py =v1,..., P =
Ve y) < €™ — 1+ 26, for some {(v;,v!)} £, € CK, then any privacy constraint f(p1 = s1,...,px = sk,P) =
Shyee s D = Sh3y) < €€ — 1+ 26, where (s1,...,55) = m1(v1,...,0K), (s],...,8%) = 7(v},...,v%), for

permutations m; and 7s, is redundant.

Therefore, there is a vector set P, where each probability vector (p1,...,px,p},--.,Pk) in P is constructed by
setting (p1,p1), (P2, P5)s - -, (PK, D) = (v1,v2,...,vK), where v; € C,Vi € [K], such that vectors constructed
by (p1,7}), P2,05)s - -, (P, V) = m(v1,v2,...,vK) is not in P. Note |P| = (8 chooses K with replacement)
= (K+I§_1) = O(KT"). If we can restrict our search for the worst case probabilities to this set P — that
is, solving for 3 := Max((p, p)}K ep f1,-- P, DYy - Psy), then f(pY, ..., 05, P15 - D y) < B. This
implies we only need O(K7) privacy constraints to optimize for the best noise function v in DaRRM, while
making sure DaRRM,, is me-differentially private.

Note if A =0, i.e., the mechanism M;’s are pure differentially private, the feasible region F; in which (p;, p})

lies has only 4 corners instead of 8. This implies (p},p’*) € C = {(0,0), (1,1), (ef-:-l’ eeﬁrl), (eeﬁrl, =)}
K+4-1)
K

Hence, in this case, |P| = (4 choose K with replacement) = ( = O(K?), which implies we only need
O(K?) privacy constraints to optimize for the best noise function v in DaRRM.

O
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D Full Experiment Results

D.1 Optimized v in Simulations
D.1.1 Comparison Using General Composition

The general composition (Theorem [2.3) indicates less total privacy loss than simple composition (Theorem [2.2)
when the number of folds, m, is large, or when the failure probability § is large. To enable meaningful
comparison against general composition, we consider a larger K and a larger failure probability 4.

Consider K = 35,¢ = 0.1, A = 10~°. By general composition, if one outputs the majority of M subsampled
mechanisms for some M < K, the majority output is (€opt, dopt )-differentially private, where

. (e = 1)eM VMe2 (e —1)eM / 1 B M ,
eopt—mm{M@W—&-e 2M log(e + 5 ) 1 +e 2Mlog(§)}, dopt =1 —(1—=0)"(1—-19")

for some ¢ > 0. We set this as the privacy guarantee of all majority ensembling algorithms. That is, if we
want the majority output to be (me, d)-differentially private, we set

_ Copt _ . (ef—1)M vVMe2 (ef—1)M / 1
= fmm{M, ec+1 |/ 2M log(e + & ) ec+1 + QMIOg(é’)}

and 0 = 1 — (1 — §)M(1 — §') accordingly. The parameters 7 and A to compute peonst in RR (see Section [A.1)
are set to be

VEKe? (ef—1)K
8 77 ee+1

(ef— 1)K
e+ 1

1
+ \/QKlog(e—i— + 2Klog(§)}

T = min {K,

and A =1-—(1-8§)K(1-¢).

In the experiments, we consider M = {10, 13,15,20} and ¢’ = 0.1; and 7, is computed using a uniform prior

T.

All values of the parameters of the private ensembling algorithms we use in the experiment are listed in the
table:

# Subsampled mechanisms | M 10 13 15 20
Privacy allowance m | 6.4521 7.5742 | 8.2708 | 9.8823
Parameter of constant T | 14.0328 | 14.0328 | 14.0328 | 14.0328
Parameter of constant -y A 0.1003 | 0.1003 | 0.1003 | 0.1003
Overall privacy loss me | 0.6452 | 0.7574 | 0.8271 | 0.9882
Overall failure probability 1 0.1001 | 0.1001 | 0.1001 | 0.1002

Table 3: All parameter values. Note that all the private ensembling algorithms we compare in the experiment
is required to be (me, §)-differentially private. Here, K = 35, = 0.1, A = 107° and §’ = 0.1.
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Figure 6: Plots of the shape and £(DaRRM,,) of different v functions: the optimized sy, and the baselines
~Ysup (corresponding to subsampling) and 7eons¢ (corresponding to RR). Here, K = 35, M € {10,13,15,20},
A=10"%€=0.1,8 =0.1.

D.1.2 Comparison in Pure Differential Privacy Settings

Consider the pure differential privacy setting, where A = § = 0. Note in this setting, it is known that simple
composition is tight.

To compute an optimized 7., in DaRRM, since we have shown the number of constraints is O(K?) if
A =§ =0 (see Lemma , we can set K to be larger. Here, we present results for K € {11,101} and
e =0.1.

Again, we compare the shape of different  and the corresponding £(DaRRM,) under those v functions, fixing
the total privacy loss to be me. yopt is computed using a uniform prior 7.

Since the subsampling mechanism from Section [4 with privacy amplification applies to this setting, we
compare four different v noise functions here:

1. Yopt (Ours): optimized + function using our optimization framework

2. Ysup (Baseline): the « function that corresponds to outputting the majority of m out K subsampled
mechanisms

3. vpsupr (Baseline): the « function that corresponds to outputting 2m — 1 subsampled mechanisms
from Theorem aka., Double Subsampling (DSub)

4. Yeonst (Baseline): the constant v function that corresponds to the classical Randomized Response
(RR) algorithm

Setting 1. K =11, m € {1,3,5,7,9,11}.
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Figure 7: Plots of shape and £(DaRRM,) of different v functions: the optimized yop:, the baselines vs,, and
Ypsub (Theorem , and the constant Yeonst (corresponding to RR). Here, K = 11,m € {1,3,5,7,9,11},
€ =0.1 and § = A = 0. Note when m € {7,9}, the cyan line (ypsus) and the red line (v,,;) overlap. When
m = 11, all lines overlap. Observe that when m > %, that is, m € {7,9,11} in this case, the above plots
suggest both 7,p: and vpsus achieve the minimum error at 0. This is consistent with our theory.

Setting 2. K = 101,m € {10, 20, 30, 40, 60, 80}.

Shape of y functions
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Figure 8: Plots of shape and £(DaRRM,) of different 7 functions: the optimized vyop:, the baselines
Ysub and Ypsup (Theorem , and the constant v.onst (corresponding to RR). Here, K = 101,m €
{10, 20, 30, 40, 60,80}, ¢ = 0.1 and § = A = 0.
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D.1.3 Comparison Using Different Prior Distributions

When optimizing « that maximizes the utility in DaRRM, recall that the objective takes an expectation
over p;’s for p; ~ T, where T is some distribution and p; = Pr[M;(D) = 1]. The previous experiments
assume we do not have access to any prior knowledge about p;’s and hence 7T is the uniform distribution, i.e.,
Uniform([0, 1]). However, when one has knowledge about the mechanisms, one can set a proper prior 7 to
further maximize the utility of DaRRM.

In this section, let Ty denote Uniform([0, 1]) and we present results considering a different prior distribution,
which we call Tp, as follows. Suppose our prior belief is that each mechanism M; has a clear tendency towards
voting 0 or 1, i.e., p; is far from 0.5. Let Tp be Uniform([0,0.3] U [0.7,1]).

To optimize v under 7p, we change the approximate optimization objective in Eq.[202, which optimizes ~y
under Ty, to be the following,

1 K 1,1 1
D) Z / / / (o —ag_)dprdps ... dpg - (1) (204)
o r J0.7 )07 0.7
- 2

Setting. K =11,m € {3,5},e=0.1,0 =A=0.
We compare the shape and £(DaRRM,,) of different v functions:

1. vopt—u denote the v function optimized under p; ~ Ty
2. 7Yopt—p denote the v function optimized under p; ~ Tp
3. 7sup, corresponding to the subsampling baseline

4. Yeonst, corresponding to the RR baseline

Note when we compute the error, we take the expectation w.r.t. the actual p; distributions, regardless of the
prior used to optimize . In the experiments, we consider three different actual p; distributions:"

1. “Actual: Uniform([0,1])”: p; ~ Tu, Vi € [K]
2. “Actual: p; =0.5”: p; =0.5,Vi € [K]

This setting implies the mechanisms do not have a clear majority
3. “Actual: Uniform([0,0.1])”: p; ~ Uniform([0,0.1]),Vi € [K]

This setting implies the mechanisms have a clear majority (i.e., 0)

Since our prior 7p is closer to Uniform([0,0.1]) (i.e., there is a clear majority), we would expect
£(DaRRM,_,_..) to be the lowest when p; ~ Uniform|0,0.1], but to be higher than £(DaRRM,_,_,,) when
pi ~ Uniform([0,1]) or p; = 0.5. The results are presented in Figure [9]

D.2 Private Semi-Supervised Knowledge Transfer
D.2.1 More Details about the Baseline GNMax [Papernot et al.| (2018)

The GNMax aggregation mechanism for majority ensembling of non-private teachers proceeds as follows
(Section 4.1 of [Papernot et al. (2018])): on input x,

M, (r) = arg max{n;(x) + N (0, a?)} (205)

1
where n;(x) is # teachers who vote for class i.

How to set ¢ in GNMax?
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Figure 9: Comparison of the shape and £(DaRRM,) of different  functions: 1) v optimized under prior 7y, 2)
~ optimized under prior Tp, 3) ysup (corresponding to the subsampling baseline) and 4) y.onst (corresponding
to the RR baseline). Here, K = 11,m € {3,5},e = 0.1. Observe that if the prior 7p used in optimizing = is
closer to the actual distribution of p;’s, there is additional utility gain (i.e., decreased error); otherwise, we
slightly suffer a utility loss (i.e., increased error), compared to optimize v under the 7y prior. Furthermore,
regardless of the choice of the prior distribution 7 in optimizing v, DaRRM, with an optimized ~ achieves a
lower error compared to the the baselines.
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Section 4.1 of [Papernot et al. (2018) states the GNMax mechanism is (\, \/o?)-Renyi differentially private
(RDP), for all A > 1. RDP bounds can be converted to DP bounds as follows:

Theorem D.1 (RDP to DP (Theorem 5 of [Papernot et al.| (2018))). If a mechanism M guarantees (A, €)-RDP,

105_1{5,6)—diﬁerential privacy for 6 € (0,1).

then M guarantees (e +

log1/d

A1
we want to choose A and o2 here so that the output of GNMax is (me, mA)-differentially private. Here,
0 = mA.

Therefore, GNMax with parameter o2 guarantees (% +

,0)-differential privacy, YA > 1. Given m, e, A,

We first obtain a valid range of A. Since me > 0, % + lofj{‘s > 0 and so A > % + 1 := Apin- And
2 A

0 = —ars Since the smaller o2 is, the higher the utility, we perform a grid search over A € [Apn, 500],
A—1

with discretized A values of equal distance 0.5, to find the minimum o2 ,,,. For the (me, mA) values used in
the experiments, we observe o2 decreases first and then increases as A increases, as shown in Figure The
A and 0,4, values in the RDP bound of Gaussian noise to compute the privacy loss of GNMax’s output we

use in the experiments are presented in Table [

Dataset: MNIST Dataset: Fashion-MNIST

2000 2000,
18001 1800
16001 16001
N 14001 . 1400/
© 12001 ) 12001
10001 10001
8001 8001
6001 6001

400+ : : ; ‘ : : : : : :

100 200 /\300 400 500 100 200 /\300 400 500

Figure 10: Plots of A vs. ¢2 in the Gaussian RDP privacy bound. The goal is to choose a A value that
minimizes o2. It is not hard to see the value of 02 decreases at first and then increases as A increases.

Privacy Loss Per Query
(me, mA) A Omin
MNIST (0.2676,0.0003) 34.31 | 21.46
Fashion-MNIST (0.2556,0.0003) 35.74 | 22.46

Table 4: Parameters of the RDP bound of Gaussian noise to compute the privacy loss of GNMax’s output.

A Note on the Data-dependent Privacy Loss Bound

Papernot et al.| (2018) gives a potentially tighter data-dependent bound on the privacy loss using GNMax
to output the majority of non-private teacherss votes. We give a clean pseudo-code on computing the
data-dependent privacy loss bound in Algorithm [6, based on the lemmas and theorems in [Papernot et al.
(2018). Given privacy parameters o, A and the teacher votes per class {n;}$_, for C classes, the data-dependent
bound can be empirically evaluated and compared against the Gaussian privacy loss bound. The smaller
one is the final privacy loss. We empirically find that the condition of the data-dependent bound (line 8
in Algorithm @ is not satisfied when K and the number of classes C are small, e.g., K = 11,C = 2 as in
our case, even if all teachers agree on the same output. And so in the experiments, we can only apply the
Gaussian privacy loss bound (line 14).

D.2.2 Additional Results for Private Semi-Supervised Knowledge Transfer

m = 1.
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Algorithm 6 Compute Tighter Privacy Loss

1: Input: Std. of Gaussian noise o, Privacy parameter \, # teachers K, # classes C, # votes per class

{ni}
2: B« {} bound candidates
3: fori=1,2,..., K do

R D iz erfe(Hg )

5 uy) o flog1/q®, pf? g’ +1
- @ )

6: egl) — %7 eél) —

f gl e expl(u) 1%

8. if ¢ <1 and ugi)

(%) (@) (4)
)
> Xand pg > 1 and ¢ < qq(jg then
NOE
Hy T2
o AD e (1-¢D)/(1 - ¢ -exp(e) )
1

i

1 7 i (i) _
B® « exp(el”)/(¢®) "

10:

11: DataDependentBound < 15 ((1 — gy (A1 4 g0 (B(i)))“1>
12: B < B U DataDependentBound

13:  else

14: GaussianBound <+ U—ﬁ

15: B + B U GaussianBound

16: end if

17: end for

18: Return min B

Privacy loss Total privacy loss

per query over @) queries

Dataset # Queries (€query7 6que7‘y) (etotah 5total)
Q=20 (1.704,0.002)

MNIST Q =50 (0.0892,0.0001) (2.837,0.005)
Q =100 (4.202,0.010)

) Q=20 (1.620,0.002)
Fashion | Q=50 | (0.0852,0.0001) | (2.695,0.005)
@ =100 (3.988,0.010)

Table 5: The privacy loss per query to the teachers and the total privacy loss over @ queries. Note the total
privacy loss is computed by general composition, where we set ¢’ = 0.0001.

Dataset MNIST Dataset Fashion-MNIST
GNMax | DaRRM., [ DaRRM,, GNMax | DaRRM,,, | DaRRM,,,
# Queries | (Baseline) (Baseline) (Ours) # Queries | (Baseline) (Baseline) (Ours)
Q=20 | 054 (0.11) | 0.68(0.07) | 0.74 (0.08) || @ =20 | 0.56 (0.10) | 0.92 (0.05) | 0.89 (0.06)
Q=50 |0.51(0.07) | 0.67 (0.05) | 0.66 (0.05) Q=50 | 052(0.05) | 0.89(0.04) | 0.92 (0.03)
Q=100 | 0.57 (0.03) | 0.71 (0.03) | 0.69 (0.04) || @ =100 | 0.56 (0.04) | 0.89 (0.04) | 0.91 (0.04)

Table 6: Accuracy of the predicted labels of @ query samples on datasets MNIST (on the left) and
Fashion-MNIST (on the right). We report the mean and one std. in parentheses over 10 random draws of the
query samples from the test dataset. Note each prediction on the query sample is (€otal, Ototar )-differentially
private. Note in this case where m = 1, by Lemma subsampling achieves the optimal error/utility. Hence,

there is not much difference in terms of accuracy between DaRRM, , and DaRRM,, . as expected.

56



Published in Transactions on Machine Learning Research (November/2024)

Privacy loss Total privacy loss

per query over () queries

Dataset # Queries | (€query, Oquery) (€totals Ototal)
Q=20 (8.920,0.010)

MNIST | Q=50 | (0.4460,0.0005) | (18.428,0.025)
Q = 100 (28.926,0.049)

, Q=20 (8520, 0.010)
Fashion | Q=50 | (0.4260,0.0005) | (17.398,0.025)
Q = 100 (27.223,0.049)

Table 7: The privacy loss per query to the teachers and the total privacy loss over @ queries. Note the total
privacy loss is computed by general composition, where we set ¢’ = 0.0001.

Dataset MNIST Dataset Fashion-MNIST
GNMax | DaRRM,; [ DaRRM,_, GNMax | DaRRM._, | DaRRM,__
# Queries | (Baseline) | (Baseline) (Ours) # Queries | (Baseline) (Baseline) (Ours)
Q=20 | 0.73 (0.11) | 0.76 (0.09) | 0.84 (0.07) || @ =20 | 0.72 (0.10) | 0.96 (0.04) | 0.97 (0.04)
Q=50 | 0.75(0.07) | 0.82(0.04) | 0.83 (0.04) || Q=50 | 0.72(0.08) | 0.96 (0.02) | 0.97 (0.02)
Q=100 |0.72 (0.04) | 0.79 (0.05) | 0.83 (0.03) || @ =100 | 0.72 (0.06) | 0.97 (0.01) | 0.97 (0.01)

Table 8: Accuracy of the predicted labels of @ query samples on datasets MNIST (on the left) and
Fashion-MNIST (on the right). We report the mean and one std. in parentheses over 10 random draws of the
query samples from the test dataset. Note each prediction on the query sample is (€otal, Ototal )-differentially
private. With the same per query privacy loss (and hence the same total privacy loss over @ samples),
DaRRM,, . achieves the highest accuracy compared to the other two baselines.

m=".

Privacy loss Total privacy loss

per query over () queries

Dataset # Queries (Equem,n 6que7‘y) (etotah 5total)
Q=20 (12.488,0.014)

MNIST Q =50 (0.6244,0.0007) (28.392,0.035)
Q =100 (45.683,0.068)

) Q=20 (11.928,0.014)
Fashion | Q=50 | (0.5964,0.0007) | (26.738,0.035)
@ =100 (42.873,0.068)

Table 9: The privacy loss per query to the teachers and the total privacy loss over @ queries. Note the total
privacy loss is computed by general composition, where we set ¢’ = 0.0001.

Dataset MNIST Dataset Fashion-MNIST
GNMax DaRRM,,,, | DaRRM,, GNMax DaRRM,,,, [ DaRRM,_,
# Queries | (Baseline) | (Baseline) (Ours) # Queries | (Baseline) (Baseline) (Ours)
Q=20 | 0.9 (0.07) | 0.80 (0.09) | 0.85 (0.08) || @ =20 | 0.79 (0.07) | 0.95 (0.04) | 0.96 (0.04)
Q=50 | 0.80(0.05) | 0.82(0.05) | 0.85 (0.04) || Q=50 | 0.79 (0.05) | 0.96 (0.03) | 0.97 (0.03)
Q=100 | 0.80 (0.04) | 0.80 (0.04) | 0.83 (0.03) || Q=100 | 0.79 (0.03) | 0.96 (0.02) | 0.96 (0.02)

Table 10: Accuracy of the predicted labels of @ query samples on datasets MNIST (on the left) and
Fashion-MNIST (on the right). We report the mean and one std. in parentheses over 10 random draws of the
query samples from the test dataset. Note each prediction on the query sample is (€total, Ototar)-differentially
private. With the same per query privacy loss (and hence the same total privacy loss over @ samples),

DaRRM,, , achieves the highest accuracy compared to the other two baselines.
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