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A Detailed Description of Secure MPC Protocols

A.1 Secret Sharing

CRYPTEN uses two different types of secret sharing: (1) arithmetic secret sharing [9] and (2) binary
secret sharing [11]. Below, we describe the secret sharing methods for single values x but they can
trivially be extended to real-valued vectors x.

A.1.1 Arithmetic Secret Sharing

CRYPTEN uses arithmetic secret sharing to perform most MPC computations. In arithmetic secret
sharing, a scalar value x ∈ Z/QZ (where Z/QZ denotes a ring with Q elements) is shared across
|P| parties in such a way that the sum of the shares reconstructs the original value x. We denote
the sharing of x by [x] = {[x]p}p∈P , where [x]p ∈ Z/QZ indicates party p’s share of x. The
representation has the property that

∑
p∈P [x]p mod Q=x. We use a fixed-point encoding to obtain

x from a floating-point value xR. To do so, we multiply xR with a large scaling factor B and round
to the nearest integer: x = bBxRe, where B = 2L for some precision parameter, L. To decode a
value, x, we compute xR ≈ x/B. Encoding real-valued numbers this way incurs a precision loss that
is inversely proportional to L. Since we scale by a factor B to encode numbers, we must scale down
by a factor B after every multiplication. We do this using the truncation protocol described below.

Addition. The addition of two secret-shared values, [z] = [x] + [y], can be trivially implemented by
having each party p sum their shares of [x] and [y]: each party p ∈ P computes [z]p ← [x]p + [y]p.

Multiplication. To facilitate multiplication of two secret shared values, the parties use random
Beaver triples [1], generated in an offline preprocessing phase. A Beaver triple of secret shared values
([a], [b], [c]) satisfies the property c=ab. The parties use the Beaver triple to compute [ε] = [x]− [a]
and [δ] = [y] − [b] and decrypt ε and δ. This does not leak information if a and b were drawn
uniformly at random from the ring Z/QZ. The product [x][y] can now be evaluated by computing
[c] + ε[b] + [a]δ + εδ, where ε and δ requires a round of communication among all parties. It is
straightforward to confirm that the result of the private multiplication is correct:

[c] + ε[b] + [a]δ + εδ = [a][b] + [x][b]− [a][b] + [y][a]− [b][a] + ([x]− [a])([y]− [b])

= [x][y].

Because this result holds for any linear function, f(·), of two variables for which the triple (a, b, c)
satisfies c = f(a, b), we use the same procedure to perform matrix multiplication and convolution.

Square. To compute the square [x2], the parties use a Beaver pair ([a], [b]) such that b= a2. The
parties compute [ε] = [x]− [a], decrypt ε, and obtain the result via [x2] = [b] + 2ε[a] + ε2.

Truncation. A simple method to divide an arithmetically shared value, [x], by a public value, `,
would divide the share of each party by `. However, such a method can produce incorrect results
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Algorithm 1: Private computation of the wrap count for an arithmetically shared value.
Input: Arithmetic secret shared value [x],
Secret shared random value [r] and its wrap count [θx].

Compute: [z]← [x] + [r]
for p ∈ P do

Party p computes: [βxr]p ← ([x]p + [r]p − [z]p)/Q.
end for
Construct: [βxr] = {[βxr]p}p∈P
Decrypt: z ← reveal([z])
Compute during decryption: θz ← (

∑
p[z]p − z)/Q.

Compute: [ηxr]← z < [r]
Compute: [θx]← θz + [βxr]− [θr]− [ηxr]

when the sum of shares “wraps around” the ring size, Q. Defining θx to be the number of wraps such
that x =

∑
p∈P [x]p − θxQ, indeed, we observe that:

x

`
=
∑
p∈P

[x]p
`
− θx

`
Q 6=

∑
p∈P

[x]p
`
− θxQ.

Therefore, the simple division method fails when θx 6= 0, which happens with probability x/Q in the
two-party case. Many MPC implementations specialize to the |P| = 2-party case and assume this
probability is negligible [19, 22, 27]. However, when |P| > 2 the probability of failure grows rapidly
and we must account for the number of wraps, θx. We do so by privately computing a secret share of
the number of wraps in x, [θx]. To this end, we define three auxiliary variables:

• θx represents the number of wraps produced by the shares of a secret shared variable [x], such that
x =

∑
p[x]p − θxQ, where Q is the ring size.

• βxr represents the differential wraps produced between each party’s shares of two secret shared
variables, [x] and [r], such that [x]i + [r]i mod Q = [x]i + [r]i − [βxr]iQ.

• ηxr represents the wraps produced by two plaintext variables, x and r, such that x+ r mod Q =
x+ r − ηxrQ.

We use these variable in Algorithm 1 to compute [θx]. This approach is inspired by Algorithm 4 of
[27], but extends to an arbitrary number of parties. The correctness of this algorithm can be shown
through the following reduction:

z = x+ r − ηxrQ∑
p[z]p − θzQ = (

∑
p[x]p − θxQ) + (

∑
p[r]p − θrQ)− ηxrQ∑

p[z]p − θzQ = (
∑
p[x]p + [r]p)− (θx + θr + ηxr)Q∑

p[z]p − θzQ = (
∑
p[z]p − [βxr]pQ)− (θx + θr + ηxr)Q∑

p[z]p − θzQ = (
∑
p[z]p)− (βxr + θx + θr + ηxr)Q

θx = θz + βxr − θr − ηxr.

We then use [θx] to correct the value of the division by `:

x

`
= [y]− [θx]

Q

`
where [y] =

{
[x]p
`

}
p∈P

.

In practice, it can be difficult to compute [ηxr] in Algorithm 1. However, we note that ηxr has a
fixed probability of being non-zero, irrespective of the number of parties. Indeed, regardless of the
number of parties, we have P (ηxr 6= 0) = x/Q. In practice, we can therefore skip the computation of
[ηxr] and simply set ηxr = 0. This implies that incorrect results can be produced by our algorithm
with small probability. For example, when we encode a real value x̂ using a fixed-point encoding
x = bBx̂e, truncation will produce an error with probability P (ηxr 6= 0) = bBx̂e/Q. This probability
can be reduced by increasing Q or reducing the precision parameter, B.
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Security proof. One can show the security of Algorithm 1 by noting that the only information gained
by an adversary is the revealed shares of [z], which are indistinguishable from white uniform random
noise because shares of [r] are chosen to be uniformly random.

A.1.2 Binary Secret Sharing

Binary secret sharing is a special case of arithmetic secret sharing that operates within the binary
field Z/2Z. In binary secret sharing, a sharing 〈x〉 of a value x is generated as a set of arithmetic
secret shares of the bits of x within the binary field. Each party p ∈ P holds a share 〈x〉p that satisfies
x =

⊕
p∈P〈x〉p. Because addition and multiplication modulo 2 are equivalent to binary XOR and

AND operations, we can use bitwise operations on integer types to vectorize these operations.

Note that XOR and AND operations form a basis for the set of Turing-complete operations (via
circuits). However each sequential AND gate requires a round of communication, which makes all
but very simple circuits very inefficient to evaluate via binary secret sharing. In CRYPTEN, we only
use binary secret sharing to implement comparators.

Bitwise XOR. Similar to addition in arithmetic secret sharing, a binary XOR of two binary secret-
shared values, 〈z〉 = 〈x〉+ 〈y〉 can be trivially implemented by having each party XOR their shares
of 〈x〉 and 〈y〉. That is, each party p ∈ P computes 〈z〉p ← 〈x〉p ⊕ 〈y〉p.

Bitwise AND. Since the bitwise AND operation is equivalent multiplication mod 2, we can utilize
the same method we use to multiply arithmetic secret shared values. To facilitate bitwise AND of
two binary secret-shared values, the parties use random triples generated in an offline preprocessing
phase. The generated triple (〈a〉, 〈b〉, 〈c〉) satisfies the property c=a⊗ b. The parties then compute
〈ε〉 = 〈x〉 ⊕ 〈a〉 and 〈δ〉 = 〈y〉 ⊕ 〈b〉 and decrypt ε and δ. This does not leak information since
a and b contain bits drawn uniformly at random. 〈x〉 ⊗ 〈y〉 can now be evaluated by computing
〈c〉 ⊕ (ε⊗ 〈b〉)⊕ (〈a〉 ⊗ δ)⊕ (ε⊗ δ). Correctness follows from the same logic as multiplication in
arithmetic secret sharing. We note that revealing ε and δ requires a round of communication among
all parties in this protocol.

Logical shifts. Because each bit of a binary secret-shared value is an independent secret-shared bit,
logical shifts can be performed trivially. To shift the bits of a binary secret-shared value 〈x〉 by a
constant k, each party can compute the shift locally on its share, 〈y〉p = 〈x〉p >> k.

A.1.3 Converting Between Secret-Sharing Types

Many machine-learning models require both functions that are easier to compute on arithmetic secret
shares (e.g., matrix multiplication) and functions that are easier to implement via circuits on binary
secret shares (e.g., argmax). Therefore, CRYPTEN uses both types of secret sharing and converts
between the two types as needed using the techniques proposed in [10].

From [x] to 〈x〉: To convert from an arithmetic share [x] to a binary share 〈x〉, each party first secretly
shares its arithmetic share with the other parties and then performs addition of the resulting shares.
The parties construct binary secret shared values 〈yp〉 where each yp represents one of the arithmetic
secret shares yp = [x]p. This process is repeated for each party p ∈ P to create binary secret shares
of all |P| arithmetic shares [x]p. Subsequently, the parties compute 〈x〉 =

∑
p∈P〈yp〉. To compute

the sum, a carry-lookahead adder circuit can be evaluated in log2(|P|) log2(L) rounds [5, 8]. In
practice, the carry-lookahead adder circuit is quite memory-intensive. When CRYPTEN runs out
of GPU memory, we adopt an alternative adder circuit that requires substantially less memory but
performs |P| log2(L) communication rounds to perform the summation.

From 〈x〉 to [x]: To convert from a binary share 〈x〉 to an arithmetic share [x], the parties compute
[x] =

∑B
b=1 2

b
[
〈x〉(b)

]
, where 〈x〉(b) denotes the b-th bit of the binary share 〈x〉 and B is the total

number of bits in the shared secret. To create the arithmetic share of a bit, the parties use b pairs
of secret-shared bits ([r], 〈r〉) generated offline. Herein, [r] and 〈r〉 represent arithmetic and binary
secret-shares of the same bit value r. Parties then use Algorithm 2 to generate

[
〈x〉(b)

]
from 〈x〉(b).

This process can be performed for each bit in parallel, reducing the number of communication rounds
required for the conversion process to one.
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Algorithm 2: Private single bit conversion from binary to arithmetic sharing.
Input: Binary secret shared bit 〈b〉; random bit in both arithmetic and binary sharing [r], 〈r〉.
Compute: 〈z〉 ← 〈b〉 ⊕ 〈r〉.
Decrypt: z ← reveal(〈z〉).
Compute: [b]← [r] + z − 2[r]z.

Security proof. One can show the security of Algorithm 2 by noting that the only information gained
by an adversary is the revealed shares of 〈z〉, which are indistinguishable from white Bernoulli
random noise because shares of 〈r〉 are chosen to be uniformly random.

A.1.4 Logic-based Operations

Many applications require implementations of logic-based operators to make branching decisions
and compute piece-wise functions.

Comparisons. To compare two secret-shared values [x] and [y], we can produce [x < y] by
computing their difference [z] = [x]− [y] and comparing the result to zero: [z < 0]. We compute
[z < 0] by first converting [z] to a binary secret-share 〈z〉, computing its sign bit using a right shift
〈b〉 = 〈z〉 >> (L− 1), and converting the resulting bit to an arithmetic sharing [b]. Because we are
using an integer encoding, the most significant bit of z represents its sign. It is possible to compare
[x < y] directly using a less-than circuit, but this requires converting an extra value to binary secret
sharing and incurring another log2 L rounds of communication to compute the less-than circuit.

We can use the ability to compute [x < y] to compute all other comparators on [x] and [y]:

[x > y] = [y < x]

[x ≥ y] = 1− [x < y]

[x ≤ y] = 1− [y < x]

[x = y] = [x ≤ y]− [x < y]

[x 6= y] = 1− [x = y].

We optimize evaluation of the is-equal operator by computing [x ≤ y] and [x < y] in parallel.

Multiplexing. Multiplexing is a very valuable tool for computing conditional and piece-wise func-
tions. To multiplex between two values [x] and [y] based on a condition c, we must first evaluate c to
a a binary value [c] ∈ {[0], [1]}. We can then compute [c ? x : y] = [c][x] + (1− [c])[y]. This allows
us to evaluate if-statements using CRYPTEN, where [x] is the result when the if-statement is executed,
and [y] is the result otherwise. However, unlike if-statements, both results must be evaluated, meaning
we cannot use tree-based or dynamic programming techniques to optimize algorithm runtimes.

Sign, absolute value, and ReLU. Several important functions can be computed using the multiplex-
ing technique. We can compute sign([x]) = 2[x > 0]− 1. We can then use this to compute |[x]| =
[x] sign([x]). Similarly we can compute the ReLU function by noting ReLU([x]) = [x][x > 0].

Argmax and maximum. CRYPTEN supports two methods for computing maximums [maxx].
Both methods first compute a one-hot argmax mask that contains a one at the index containing
a maximal element [y] = argmax([x]). A maximum can then be obtained by taking the sum
[maxx] =

∑
i[yi][xi] where the sum is taken along the dimension over which the maximum is

being computed. By default, the argmax is computed using a tree-reduction algorithm, though
configurations are available to use pairwise comparisons depending on network bandwidth / latency.

The tree-reduction algorithm computes the argmax by partitioning the input into two halves, then
comparing the elements of each half. This reduces the size of the input by half in each round, requiring
O(log2N) rounds to complete the argmax. This method requires order O(log2N) communication
rounds, O(N2) communication bits, and O(N) computation complexity.

The pairwise method generates a matrix [A] whose rows are constructed by the pairwise differences
of every pair of elements ∀i 6= j : [Aij ] = [xi−xj ]. We then evaluate all comparisons simultaneously
by computing [A ≥ 0]. All maximal elements will correspond to columns whose elements are all
greater than 0, so we can compute the argmax mask [m] by taking the sum over all columns of
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[A]. However, if more than one maximal element exists, this will result in a mask [m] that is not
one-hot. To make this one-hot we take a cumulative sum [c] of [m] and return [c < 2][m] to return
the index of the first maximal element. This method requires O(1) communication rounds, O(N2)
communication bits, and O(N2) computation complexity. In theory, because of constant-round
communication, this method should be more efficient than the tree-reduction algorithm when the
network latency is high.

Argmin and minimum. To compute minimums and argmins, we compute our argmax mask with a
negated input: [argminx] = [argmax(−x)].

A.2 Mathematical Approximations

Many functions are very expensive to compute exactly using only addition, multiplication, truncation,
and comparisons. CRYPTEN uses numerical approximations to compute these functions, optimizing
for accuracy, domain size, and efficiency when computed on secret shares. Each of these approxi-
mations has a specific domain over which the approximation converges well. One can modify the
domain of convergence for certain functions using function-specific identities. For example, ∀a ∈ R:

ln(x) = ln(ax)− ln(a)

x−1 = a(ax)−1

ex = ex−aea.

CRYPTEN also offers configurable parameters for protocol-specific optimizations, for example,
custom initializations that improve convergence for iterative methods in a pre-specified input domain.

A.2.1 Exponential, Sine, and Cosine

There are many well-known polynomial approximations for the exponential function, for example, the
Taylor series, ex =

∑∞
n=0

1
n!x

n. However, because exponentials grow much faster than polynomials,
the degree of the polynomial we would need to approximate the exponential function increases
exponentially as the domain increases. Therefore, we instead use the limit approximation, which
allows us to do repeated squaring very efficiently:

ex = lim
n→∞

(
1 +

x

2n

)2n
.

CRYPTEN can also use the repeated-squaring method to compute complex exponentials efficiently,
which enables the computation of the sine and cosine functions:

cosx = <(eix)
sinx = =(eix).

A.2.2 Reciprocal

CRYPTEN uses Newton-Raphson iterations to compute the reciprocal function. This method uses an
initial guess, y0, for the reciprocal and repeats the following update:

yn+1 = yn(2− xyn).

This will converge to limn→∞ yn=
1
x quadratically as long as the initial guess y0 meets the Newton-

Raphson convergence criterion, which is 0<y0< 2
x for the above. By default, CRYPTEN uses:

y0(x) = 3e0.5−x + 0.003,

to initialize the approximation, which provides convergence on a large domain. This function was
found by inspection and can be replaced by a user-defined value using CRYPTEN’s configuration API.
Because this method only converges for positive values of x, we compute the reciprocal using the
identity 1

x = sgn x
|x| . (Note that square matrix inverses and Moore-Penrose inverses can be found using

similar techniques given input matrices with singular values that meet the convergence criterion.)
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A.2.3 Square Root and Normalization

CRYPTEN uses Newton-Raphson iterations to compute square roots. However, the Newton-Raphson
update formula for square roots, yn+1 = 1

2 (yn + x
yn

) is quite inefficient to compute on secret shares.
Instead, we use the much more efficient Newton-Raphson update formula for inverse square root:

yn+1 =
1

2
yn(3− xy2n).

We then multiply by the input x to obtain the square root:
√
x = (x−0.5)x. We can also use the

inverse square root function to efficiently normalize values via: x
‖x‖ = x

(∑
i x

2
i

)−1/2
.

A.2.4 Logarithm and Exponents

To compute logarithms, CRYPTEN uses higher-order iterative methods to achieve better convergence.
The following update formula can be found using high-order modified Householder methods on ln(x)
[26] or by manipulating the Taylor series expansion of ln(1− x):

hn = 1− xe−yn

yn+1 = yn −
∞∑
k=1

1

k
hkn.

Note that at each step lnx = yn + ln(1 − hn), but we can only approximate ln(1 − hn) using a
truncated Taylor Series approximation. For this method, the order of the Householder method (i.e.,
the polynomial degree in the second equation) will determine the speed of convergence. Since the
convergence rate per iteration increases proportionally to the degree of the polynomial, whereas
an exponential must be computed for each iteration, it is more computationally efficient to use
high-degree polynomials instead of doing many iterations. By default, CRYPTEN uses a polynomial
of degree 8, the initialization y0 = x

120 − 20e−2x−1 + 3, and 3 iterations. This provides effective
convergence on the domain [10−4, 102].

Using the logarithm and exponential functions, we can also compute arbitrary public or private
exponents on positive inputs x using the equation xy = ey ln(x).

A.2.5 Sigmoid and Hyperbolic Tangent

We have explored several methods for computing logistic functions in MPC, including direct com-
putation, rational approximations, and Chebyshev polynomial approximations [12]. We have found
that direct computation is the most efficient when it is combined with some specific optimizations.
Specifically, CRYPTEN uses the exponential and reciprocal functions to compute:

σ(x) =
1

1 + e−x
.

We optimize this computation by noting that the range of the sigmoid function is [0, 1], and the range
for the positive half of its domain is [0.5, 1]. Therefore, when we compute the reciprocal using the
method described in Section A.2.2, we compute σ(|x|) using an initialized value of 0.75 for the
Newton-Raphson iterations to improve convergence. We extend the result to the full domain by
noting σ(−x) = 1− σ(x). We compute the hyperbolic tangent function via tanh(x) = 2σ(2x)− 1.

A.2.6 Gaussian Error Function

We use a Maclaurin series to approximate the Gaussian error function erf(x) = 2/
√
π
∫ x
0
e−x

2

dx.

The resulting approximation is given by: erf(x) ≈ 2√
π

∑K
k=0

(−1)kx2k+1

k!(2k+1) , where K is the number of
terms in the approximation (we set K = 8 by default). Although the approximation works reasonably
well in practice, we note that it is known to have poor convergence when x > 1 (see OEIS A007680).

A.3 Random Sampling

Several applications of privacy-preserving computations require secret-shared generation of random
numbers such that no party can gain any information about the value of realizations. We use the
following methods for generating secret shares of random samples from several popular distributions.
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A.3.1 Uniform Sampling

Due to quantization introduced by our encoding with scale 2L, we can only produce discrete uniform
random variables with 2L possible values. To do so, we produce samples [u] ∼ Uniform(0, 1) by
generating L bits as Rademacher variates. To generate these bits, each party randomly generates
its own binary secret-share with the same distribution locally. The XOR sum of independently
distributed Rademacher variates, u = ⊕p∈P〈u〉p, is itself a Rademacher variate and is uncorrelated
with any of the input bits.

Security proof. One can show the security of this sampler by noting that no adversary could gain any
information about the sampled bit from its own binary share of the bit, because the XOR sum of
independently distributed Rademacher variates is uncorrelated with any of the input bits. The bits are
then converted to an arithmetic share [u] using Algorithm 2, which is itself secure.

A.3.2 Bernoulli Sampling

To compute a Bernoulli random variable with arbitrary mean [b] ∼ Bern(p), we first generate
a uniform random variable [u] ∼ Uniform(0, 1) and compute [b] = [u > p]. Note that due to
quantization in [u], the true probability parameter of the Bernoulli random sample is quantized to the
nearest multiple of 2−L, as would have happened if p was encoded using the fixed-point encoder.

A.3.3 Gaussian Sampling

Gaussian random samples [x] ∼ N (µ, σ2) can be computed using the Box-Muller transform. Given
a pair of independent uniformly distributed random variables ([u1], [u2]), two independent Gaussian
random variables ([x1], [x2]) from N (0, 1) can be generated by computing:

[x1] =
√
−2 ln[u1] cos(2π[u2])

[x2] =
√
−2 ln[u1] sin(2π[u2]).

Since the range of the uniform inputs is [0, 1], we optimize our numerical approximations for better
performance on this domain. To obtain samples [y] ∼ N (µ, σ2), we compute [y] = σ[x] + µ.

A.3.4 Exponential and Laplace sampling

Exponential random variables [x] ∼ Exp(λ) can be computed using the inverse CDF method. Given
a uniform random sample [u] ∼ U [0, 1], an exponential random variable is generated via:

[x] = −λ−1 ln([u]).

Again, we optimize the logarithm for the domain [0, 1].

A Laplace distributed random sample [y] ∼ Lap(µ, k) can be generated from an exponential random
sample, [x] ∼ Exp(k−1), and a Rademacher variate, [b], by evaluating [y] = (2[b]− 1)[x].

A.3.5 Weighted Random Sampling

To produce a weighted random sample of inputs [xi] with weights given by [wi], we first generate
a uniform random sample in ([0,

∑
i[wi]) by drawing a uniform sample, [u], and evaluating [r] =

[u] [
∑
i wi]. Care should be taken to avoid precision issues caused by generating [u] in fixed-point

with finite precision. We then compute the cumulative sum values [ci] of the weights [wi], and
compare those values to our random value [mi] = [ci > r]. This produces a mask vector whose
entries are all zero below some index j and all one above index j. To convert this mask vector into
a one-hot vector, we append a zero in front of the [mi]-values and compute [oi] = [mi] − [mi+1].
Finally, we obtain the selected sample from the inputs [xi] by multiplying the samples with the
one-hot vector and summing: [y] =

∑
i[xi][oi].

B Comparison with Secure MPC Frameworks for Machine Learning

Table 1 presents a comparison of CRYPTEN with other secure MPC frameworks for machine learning.
For each framework, the table shows whether the framework supports maliciously secure threat
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models, can generate Beaver triples (if needed) without requiring a trusted third party, supports GPU
computations, supports model training, supports general purpose function evaluation, and implements
automatic differentiation (autograd). We define a secure MPC framework for machine learning to be
general-purpose if it supports at least the following functions: linear functions, convolutions, rectified
linear units (ReLU), max-pooling, and batch normalization.1

Framework Malicious
security

Triple
generation

Supports
GPUs

Supports
training

General
purpose†

Supports
autograd

Two parties

Chameleon [22] 7 7 7 7 7 7
Delphi [16] 7 4 7 7 7 7
EzPC [6] 7 4 7 7 7 7
Gazelle [13] 7 4 7 7 7 7
MiniONN [15] 7 4 7 7 7 7
PySyft [24] 7 4 4 7 7 7
SecureML [18] 7 4 7 4 7 7
XONN [23] 4 N/A 7 7 7 7

Three parties

ABY3 [17] 7 N/A 7 4 7 7
Astra [7] 7 4 7 4 7 7
Blaze [20] 7 4 7 4 7 7
CrypTFlow [14] 7 N/A 7 7 4 7
CryptGPU‡ [25] 7 7 4 4 4 4
Falcon [28] 4 N/A 7 4 4 7
SecureNN [27] 7 N/A 7 4 7 7

Four parties

FLASH [3] 4 N/A 7 4 7 7
Trident [21] 4 N/A 7 4 7 7

Arbitrary number of parties

CRYPTEN (ours) 7 7§ 4 4 4 4

Table 1: Overview of secure MPC frameworks for machine learning and their properties. †We define
a framework to be general-purpose if it supports all of the following layers: linear, convolution,
rectified linear unit (ReLU), max-pooling, and batch normalization. ‡We note that CryptGPU was
developed on top of CRYPTEN, hence, it inherits many features from CRYPTEN. §Future versions of
CRYPTEN will support Beaver triple generation without requiring a trusted third party.

C Overview of Functions Implemented in CRYPTEN

Table 3 gives an overview of all functions currently implemented in CRYPTEN, together with a short
description of the approach used to implement the function. Random samplers are not listed in the
table. For full details on the CRYPTEN secure-computation protocol, we refer to Appendix A.

D Security of CRYPTEN Functions

CRYPTEN provides MPC implementations of a large number of functions. However, these functions
are all composed from a small set of primitives, which are listed in Table 2. CRYPTEN provides
the security guarantee in Lemma 1. The proof for this security guarantee follows trivially from the
following observations and results from prior work:

i. Operations in arithmetic secret sharing are performed in the ring Z2L . Multiplications in this
ring are proven to be secure in [2].

ii. Operations in binary secret sharing are performed using the GMW protocol [11]. AND opera-
tions in this protocol are proven to be secure in [10].

iii. Conversion from arithmetic to binary (A2B) secret shares is performed using the protocol that is
proven to be secure in [8].

1CRYPTEN supports a variety of functions beyond these five functions, but we focus on these five in our
comparison as they are the main building blocks of many deep network architectures.
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MPC Primitive Round Complexity Security Proof
Arithmetic secret sharing

Addition 0 Non-interactive
Multiplication 1 [2, Theorem 1]
Truncation 1† Appendix A.1.1

Binary secret sharing

XOR 0 Non-interactive
AND 1 [10, §III.B]
Bit-shift 0 Non-interactive

Conversions

A2B log2(|P|) log2(L) [8, §3]
B2A 1 Appendix A.1.2

Sampling

Bernoulli(.5) 1 Appendix A.3.1

Table 2: Overview of the MPC primitives used in CRYPTEN, with their round complexity and
references to the relevant security proof. Round complexity is defined as the number of sequential
round-trips of communication required between parties to implement a given function, using an L-bit
ring and |P| parties. †The number of rounds needed for truncation in the two-party setting is zero.

iv. Tensor indexing operations like concatenation, selection, reshaping, etc. are non-interactive,
which implies an adversary cannot gain any information.

v. Security proofs for custom MPC protocols are provided in Appendix A (see Table 2 for details).
vi. All other operations are compositions of secure functions (see Appendix A for details). This

implies they are secure because security is closed under composition [4].
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Function Function name(s) Description
Absolute abs Multiply value by its sign.
Addition add, + Each party adds their shares.
Argument of maximum argmax Perform pairwise comparisons or tree reduction.
Argument of minimum argmin Perform pairwise comparisons or tree reduction.
Average pooling avg_pool2d Each party computes the average pooling of its share.
Batch normalization batchnorm Batch normalize values using summation, division, and variance functions.
Binary AND and, & Compute using binary Beaver protocol.
Binary cross-entropy binary_cross_entropy Compute using logarithm, multiplication, and addition functions.
Binary XOR xor, ˆ Each party XORs it shares.
Clone clone Each party clones their share.
Comparison >=, <=, =, ge, le, eq To compare to 0, convert to binary secret share and inspect most significant bit.
Concatenation cat Each party concatenates their shares.

Convolution conv1d, conv2d
If filter is public, each party convolves its share.
If filter is private, compute using Beaver protocol.

Cosine cos Approximate using repeated-squaring method.
Cross-entropy cross_entropy Compute using softmax, logarithm, multiplication, and division functions.
Cumulative sum cumsum Each party computes cumulative sum of values in its share.
Division div, / If divisor is public, divide shares by value and correct for wrap-around errors.
Dot product dot Multiply all elements and sum results.

Dropout dropout
Each party multiplies their share with dropout mask.
Dropout mask is not encrypted.

Error function erf Approximate using Maclaurin series.
Exponent exp Approximate using limit approximation.
Flatten flatten Each party flattens their share.
Flip flip Each party flips their share.
Hard tangent hardtanh Compute using comparison, multiplication, and addition functions.
Logarithm log Approximate using higher-order modified Householder method.
Log-softmax log_softmax Compute using exponentiation, maximum, summation, and addition functions.

Matrix multiplication matmul
If one matrix is public, each party matrix-multiplies its share.
If both matrices are private, compute using Beaver protocol.

Maximum max Compute argmax as one-hot vector; compute dot product with input.
Max pooling max_pool2d Compute maximum value.
Mean mean Each party computes mean of its share.
Minimum min Compute argmin as one-hot vector; compute dot product with input.

Multiplication mul, *
If multiplier is public, each party multiplies its share with the
multiplier. If multiplier is private, use Beaver protocol.

Multiplexing where Multiply first value by binary mask; add second value multiplied by inverse mask.
Negation neg Each party negates their share.
Norm norm Compute using the square, sum, and square root functions.
Outer product ger Perform multiplication of each pair of elements.
Padding pad Each party pads their share.
Permute permute Each party permutes their share. Indexes are not encrypted.
Product prod Multiply all elements in the input.

Power pow, pos_pow
For positive powers, multiply in log-domain and exponentiate.
For negative powers, compute reciprocal and evaluate positive power.

Reciprocal reciprocal Approximate using Newton-Rhapson iterations.
ReLU relu, relu6 Compare values with 0, and multiply values by the resulting mask.
Reshaping reshape, view Each party reshapes their share.
Rolling roll Each party rolls their share.

Scattering scatter
Each party scatters one share into the other share.
Indexes are not encrypted.

Selection
gather,

index_select,
narrow, take

Each party selects part of their share. Indexes are not encrypted.

Sigmoid sigmoid Compute using the exponential and reciprocal functions.
Sign sign Compare value with 0, multiply by 2, and subtract 1.
Sine sin Approximate using repeated-squaring method.
Softmax softmax Compute using exponentiation, maximum, summation, and reciprocal functions.
Square square Compute using Beaver protocol.
Square root sqrt Approximate using Newton-Rhapson iterations.
Squeezing squeeze Each party removes dimensions with size 1 from their share.
Stacking stack Each party stacks their shares.
Subtraction sub, - Each party subtracts their shares.
Summation sum Each party sums all values in its share.
Tangent tanh Perform linear transformation of sigmoid value of output.
Trace trace Each party sums all diagonal elements of their share.
Transpose t, transpose Each party transposes their share.
Unsqueezing unsqueeze Each party adds dimensions with size 1 to their share.
Variance var Compute using square, addition, and subtraction functions.

Table 3: Overview of all functions on tensors implemented in CRYPTEN.
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