
Supplementary Materials
Evaluation beyond Task Performance:

Analyzing Concepts in AlphaZero playing Hex

Charles Lovering∗ Jessica Zosa Forde∗
George Konidaris Ellie Pavlick Michael L. Littman

Department of Computer Science
Brown University

{first}_{last}@brown.edu

Appendix A reports implementation details, hyperparameters and compute requirements.
Appendix B gives more details on each concept introduced in the main body of the paper.
Appendix C demonstrates how AlphaZero often wastes moves.
Appendix D has additional results across the different architectures.

A Implementation Details

We use agents trained by Jones [5]. See Table 1 for hyperparameters and relative agent strengths. We
used NVIDIA GeForce RTX 3090, to generate boards and encode them. The compute is reported in
Table 2 For all results in the main body of the paper we use the model grubby. We report additional
results with other models below in Appendix D. The code, results and examples can be found at
https://bit.ly/alphatology.

∗Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://bit.ly/alphatology

agent run Jones [5]
full agent
run name

depth width MCTS nodes train ckpts win rate
against
MoHex
as black

Elo

grubby 2021-02-20
22-35-41
grubby-
wrench

8 layers 512 neurons 64 20 0.922 -0.345

recent 2021-02-20
21-33-42
recent-
annex

8 layers 256 neurons 64 19 0.77 -0.361

baggy 2021-02-20
22-18-43
baggy-cans

4 layers 512 neurons 64 20 0.922 -0.388

vital 2021-02-20
22-55-43
vital-
bubble

2 layers 1024 neurons 64 20 0.922 -0.400

Table 1: Agent hyperparameters. The win rate is the agent’s win rate as black vs MoHex [4]
without the swap rule. Under perfect play in Hex, black cannot lose. The Elo rating for each agent is
calculated based on trials against MoHex and against the subset of agent runs Jones [5] evaluated
against against MoHex. Because Jones [5] fixes the number of MCTS nodes used to compare against
MoHex at 64, we do not consider alternate agent configurations that expand or contract the number
of nodes when calculating the Elo rating.

script time concepts seeds parallel total

encode 8.34 ± 4 m x9 x3 - 216 m
probing 21.75 ± 16.35 m x9 x3 /4 146 m
positive 14.31 ± 8.23 m x7 x3 /4 75 m
negative 23.48 ± 5.46 m x2 x3 /4 35 m

Table 2: Compute. For grubby model, the total is about 8GPU hours. The other models take less
time than this model. The total run time is about 24GPU hours. We used NVIDIA GeForce RTX
3090.

experiment parameter N

probing training examples O(2000)
test examples O(500)
seeds 3

behavioral tests examples 100
seeds 3

Table 3: Experiment hyperparameters.

2

(g) Bottleneck

1 3 5 7
2 4 6 8

(h) Escape

(i) Dead cells

(j) Captured cells

D
1
2

AB
C

3
4
5
6 D

A

AB

Negative Concepts

Ladder Concepts

Positive Concepts

(f) Edge 3

(e) Edge 2

(b) Crescent

1
2

(c) Trapezoid (d) Span

1
2

1

2

Internal Concepts

(a) Bridge

1

2

Edge Concepts

Figure 1: Hex templates exemplifying game concepts. Concepts within the game of Hex are
templates on the board formed by a player’s pieces with known strategic and tactical implications.
Positive concepts provide the player with the concept with multiple ways to connect the pieces within
the concept together, despite possible attacks from the opponent. An example of these properties is
the bridge (a). If white plays move 1, black can connect the two pieces of the bridge by playing move
2. Negative concepts change the strategic value of specific open spots of the board, such that the
opponent is disincentived to play those open spots, such as move A in (i). Each concept is further
described in our Supplementary Material. Arrows indicate that the piece is connected to the opposite
side of the board; the lines show the bridge concept within the other concepts.

B Concepts in Hex

Internal Concepts With the goal of Hex being to build a chain across the board, it is helpful to
recognize when cells are virtually connected, that is, even in response to perfect adversarial play, the
cells are guaranteed to connect [3, 9]. The bridge (Fig. 1a) is the simplest such concept. The larger
internal templates – crescent, trapezoid, span (Fig. 1(b,c,d)) – provide several possibilities to connect
a player’s pieces.

Edge Concepts An edge template guarantees a connection from a single cell to a given edge [6, 11].
Recognizing these edge templates is important for building effective strategies. In this work, we
consider the edge concept to be the two templates shown in Fig. 1(e, f). In Fig. 1(e, f), black can
connect to the bottom wall irrespective of how white attempts to sever the connection.

Ladder Concepts Ladders are common in Hex. While similar in spirit to ladders in Go, there are
some technical differences. We analyze two different ladder concepts. Bottlenecks are a defensive
concept that leads to the ladder. The defender holds off the attacker (in Fig. 1g white successfully
defends against black). If the attacking player (here black) continues the ladder, the defending player
(here white) must block each move or lose the game. However, the defending player will eventually
win, as each defensive move builds up a chain across the board. Ladder escapes have a different
outcome. If there is already a cell in path of the ladder, like A in Fig. 1h, then the attacking player
will win. When black plays B connecting to A, white cannot defend against both C and D.

Dead Cells (Useless Triangles). Some empty cells cannot impact the outcome of the game regard-
less of with which color they are filled. A cell being dead is a global fact of the board, and is difficult
in general to compute [2]. However, there are known templates where it is relatively easy to deduce
that a cell is dead, and it is these templates with which we test the model. Among the simplest is the
“useless triangle”, which is the precursor of the more general notion of dead cells (Fig. 1e). If white
plays A, she does not restrict black’s territory. To do so she would have to play both other empty
cells, after which her move into A would not have any use. For black, playing A doesn’t hinder white,
nor provide any new territory.

Captured Cells. An empty cell is considered captured when it is effectively filled by a player. The
templates have (at least) two empty cells A and B (Fig. 1f). If the cells are black-captured, it means
that if white intrudes into the template (playing A), then black can respond by playing B and making
A dead.

3

C Characterizing AlphaZero’s Gameplay of Hex

AlphaZero (AZ) uses both deep learning and MCTS. The deep network, fθ(s), takes in boardgame
input, s, and produces two forms of output: the value estimate of the board, v, and a move prior, p.
These prior probabilities are then used for MCTS, which outputs the MCTS probability distribution
over actions, π. In the game of Hex, rewards, z, and value estimates are scaled within [−1, 1] and a
reward of −1 or 1 is only recorded to the loser or winner of a match [5]. AZ is optimized to minimize
the mean square error of the value estimate and reward, v and z, and the cross entropy loss of the
policy outputs of the deep network and MCTS, p and π:

l = (z − v)2 − πT log p + c||θ||2

MCTS balances exploration, search, and value estimates to pick the action that leads to the highest
probability of winning. The loss does not intrude any term (or discount factor) to encourage winning
more quickly. Consequently, the value estimates and action probabilities produced by the deep
network and MCTS solely consider the actions that will eventually result in a win, regardless of the
number of moves necessary to achieve that win. This is in contrast to similar Hex-playing agents such
as MoHex [4, 8, 10], which is hard-coded to connect the winning player’s pieces [1].

MoHex has been demonstrated to play perfectly on boards up to 9x9, and the AZ agent we utilize has
been demonstrated to play competitively with MoHex [5]. We observe, however, that AZ does not
always end the game in the fewest possible moves.

In practice, AZ sometimes delays winning. Figure 3 provides a hand-derived example of AZ delaying
the end of a game. Black has nearly won the game, and must play its next move. By playing B, it can
end the game; because B forms the shortest connection for black, MoHex is hard-coded to select B.
When AZ’s MCTS is run 100 times on this board, however, AZ places higher probability on selecting
A a majority of those games (Figure 5). While playing A is a perfectly fine move, as it forms a bridge
with cells B and C, it unnecessarily extends the length of the game.

A
B

(a) Default (c) Intrusion

(d) Connect (e-1) Owner

 to play

A

A
B

A
B

A
B

(e-2) Owner

not to play

(b) Owner

is white

A
B

Figure 2: Conditions. We generate boards from all combinations of these conditions. Only “connect”
(d) makes a significant impact on the results.

B A
C

0.8 0.9 1.0
Action Value

15

10

5

0

M
CT

S
Lo

gi
t

A

B
C

Figure 3: Example end game board to test efficiency of last moves. Black is close to winning the
game and must decide its next move. Selecting the B ends the game, but AlphaZero instead selects A.
While selecting A gives AlphaZero the ability to win the game on the next round, it unnecessarily
extends the game. Right: While action B leads to a value of 1, action A also has a high value. See
Appendix Fig. 5 for the per action MCTS logits.

4

When AZ’s value estimates are all high, it often takes actions that unnecessarily extend the length of
the game. In Fig. 4, we present an additional example of AZ’s behavior during an endgame from a
selfplay rollout. AZ has three bridges (Figure 1a) that will allow it to win the game: one with the top
edge, one in the middle of the board, and one with the bottom edge. Thus, AZ is virtually connected
to both edges, and guaranteed a win. However, all possible moves for black result in value estimates
greater than 0.99, leading AlphaZero’s MCTS to not produce significantly higher logit scores for the
moves that lead to the win with fewest moves. The flatness of these value estimates suggests a lack of
distinction between efficient and inefficient paths to victory.

This phenomena may have also occurred in AlphaGo’s match against Lee Sedol. In game two,
AlphaGo, the predecessor to AlphaZero (AZ), played a move the commentators deemed “slack” [7].
This occurred towards the end of the game (move 167 out of 211). Given that AlphaGo (and AZ) only
consider the probability of winning, not the margin (nor the timeframe), again, it seems that it will
sometimes waste moves when it it believes the game to be won. So, was move 167 a mistake? Was
playing A in Fig. 3 or G in Fig. 4 a mistake? They are not (necessarily) mistakes, because AZ can
still win. AZ may understand it can use the relevant concepts to win the game, and may eventually do
so. This has ramifications for how we test AZ’s behavioral understanding of concepts. To determine
if AZ uses a concept, we present it with a situation where understanding the concept and using it is
the only way to win.

Because AZ does not prefer faster routes, as described in the main paper, we test the agents in forced
situations. In Fig. 6, not connecting the defender – i.e., testing the agent in unforced situations, the
passing rate of the behavioral test is lower. This is because the agent takes a longer route to victory,
not necessarily because the agent does not evaluate the concept/correct-behavior as winning.

A B

C
D

E F

G

0.98 0.99
Action Value

10

5

0
M

CT
S

Lo
gi

t ABC

DEF

G

Figure 4: Additional example endgame from selfplay. There are six actions that move towards
ending the game for black, (A-F). Sometimes, AZ instead plays G, which doesn’t meaningful impact
the game state. Right: Most the action values are above 0.98. Thus, the values have less impact on
the MCTS logits. In 49 of 100 selfplay playouts continued from this position, AZ takes more actions
than necessary. See App Fig. 5 for the per action MCTS logits.

(0, 0) (0, 4) (0, 5) (0, 6) (1, 0) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (2, 1) (2, 2) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (4, 1) (4, 2) (4, 3)
c

12

10

8

6

4

2

0

lo
gi

t

(4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (8, 4) (8, 5) (8, 6) (8, 7) (8, 8)
Action

12

10

8

6

4

M
CT

S
Lo

gi
t

Figure 5: Boxplot of MCTS logit values of example board presented in Figure 3. While move 19
has high probability of being selected as the action for this board, AlphaZero places higher probability
on move 20. Move 19 results in an immediate win, while move 20 results in a win in the following
round of gameplay.

5

0.00

0.25

0.50

0.75

1.00

B
eh

av
io

ra
l T

es
t

bridge crescent

5% 50% 100%
Training Progress

edge

5% 50% 100%
Training Progress

0.00

0.25

0.50

0.75

1.00

B
eh

av
io

ra
l T

es
t

span

5% 50% 100%
Training Progress

trapezoid

yes
no

Figure 6: Comparing behavioral results for connected vs. not connected defenders. The passing
results are lower than the connected instance because the model does not always choose the fastest
route to victory.

6

D Additional Results

Fig. 7 reports key figures from the main paper replicated across architectures. Fig. 8 shows the same
board structure from the main body of the paper, along with some of the quantative measures of the
board structure. Fig. 9, Fig. 10, Fig. 11, Fig. 12 report the behavioral test scores (as well as “elo”).

7

1 2 3
Layer w/ Highest Accuracy

0

25

50

75

100

Pe
rc

en
t o

f P
ro

be
s

3 layers (vital)
long-term
short-term

1 2 3 4 5
Layer w/ Highest Accuracy

5 layers (baggy)

1 2 3 4 5 6 7 8 9
Layer w/ Highest Accuracy

9 layers (recent)

1 2 3 4 5 6 7 8 9
Layer w/ Highest Accuracy

9 layers (grubby)

trapezoid bridge crescent span
5%

50%

100%

Tr
ai

ni
ng

 P
ro

gr
es

s behavioral: start
converged
probing: start
converged
structural: start
converged

edge escape bottle. dead capturedneighbors

trapezoid bridge crescent span
5%

50%

100%

Tr
ai

ni
ng

 P
ro

gr
es

s behavioral: start
converged
probing: start
converged
structural: start
converged

edge escape bottle. dead capturedneighbors

trapezoid bridge crescent span
5%

50%

100%

Tr
ai

ni
ng

 P
ro

gr
es

s behavioral: start
converged
probing: start
converged
structural: start
converged

edge escape bottle. dead capturedneighbors

trapezoid bridge crescent span
5%

50%

100%

Tr
ai

ni
ng

 P
ro

gr
es

s behavioral: start
converged
probing: start
converged
structural: start
converged

edge escape bottle.

vital

dead capturedneighbors

Figure 7: Key figures from the main paper replicated across architectures.

8

 Checkpoint 20 / 20

0.92

0.94

0.96

0.98

St
ru

ct
ur

al
 P

ro
bi

ng

grubby baggy

5% 50% 100%
Training Progress

0.92

0.94

0.96

0.98

St
ru

ct
ur

al
 P

ro
bi

ng

vital

5% 50% 100%
Training Progress

recent

Figure 8: Left: Dot-product scores between cell embeddings recover board structure, with
modifications on the upper and lower edges. Each grey circle corresponds to the same cell on
the Hexboard; the black arrows correspond to its nearest neighbors according to dot-product scores
between cells’ embeddings. This diagram shows the neighborhood structure for the final checkpoint
in training. See the evolution of the board structure here: https://drive.google.com/file/d/
1UV6mhnJ_FJOP3fEiHITp0bUDC7lUMJx9/view?usp=sharing. Right: Cell embeddings encode
the board structure of the game only 50% of the way through training. We measure how well
dot-product scores between cells align with the ground truth cell distance using a ranking metric
Normalized Discounted Cumulative Gain (NDCG).

10

5

0

El
o

bridge

10

5

0

El
o

crescent

10

5

0

El
o

trapezoid

10

5

0

El
o

span

25% 100%
Training Progress

10

5

0

El
o

dead

25% 100%
Training Progress

10

5

0

El
o

captured

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 %

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 %

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 %

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 %

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 %

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 %

10

5

0

El
o

bridge

10

5

0

El
o

crescent

10

5

0

El
o

trapezoid

25% 100%
Training Progress

10

5

0

El
o

span

25% 100%
Training Progress

10

5

0

El
o

edge

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 %

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 %

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 %

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 %

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 %

Figure 9: Improvements in gameplay ability, as measured by Elo, coincide with improvements
in concept recognition, as measured by the test accuracy of the linear probe on the highest
performing layer.

9

https://drive.google.com/file/d/1UV6mhnJ_FJOP3fEiHITp0bUDC7lUMJx9/view?usp=sharing
https://drive.google.com/file/d/1UV6mhnJ_FJOP3fEiHITp0bUDC7lUMJx9/view?usp=sharing

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t bridge

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t span

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t trapezoid

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t crescent

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t edge

5% 50% 100%
Training Progress

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t bottleneck

5% 50% 100%
Training Progress

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t escape

MCTS Z Score > 1
Policy Network Passing

MCTS Passing
Agent Elo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0
Ag

en
t E

lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t bridge

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t span

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t trapezoid

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t crescent

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t edge

5% 50% 100%
Training Progress

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t bottleneck

5% 50% 100%
Training Progress

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t escape

MCTS Z Score > 1
Policy Network Passing

MCTS Passing
Agent Elo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

Figure 10: AlphaZero learns to use the positive concepts; Model Code = (left) grubby, (right)
recent. See Table 1 for architecture details of the models. At each checkpoint, we present AlphaZero
with a set of example boards that test its ability to utilize each concept. MCTS (yellow) and the
deep policy network (red) select actions that pass our behavioral tests with increasing frequency
throughout training. We additionally report the rate at which the action that passes our behavioral test
is one standard deviation above the mean (z score > 1). The Agent Elo (dark green) measures AZ’s
general gameplaying ability; it increases as AlphaZero starts to use the concepts.

10

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t bridge

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t span

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t trapezoid

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t crescent

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t edge

5% 50% 100%
Training Progress

0.0

0.5

1.0
Be

ha
vi

or
al

 T
es

t bottleneck

5% 50% 100%
Training Progress

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t escape

MCTS Z Score > 1
Policy Network Passing

MCTS Passing
Agent Elo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0
Ag

en
t E

lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t bridge

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t span

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t trapezoid

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t crescent

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t edge

5% 50% 100%
Training Progress

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t bottleneck

5% 50% 100%
Training Progress

0.0

0.5

1.0

Be
ha

vi
or

al
 T

es
t escape

MCTS Z Score > 1
Policy Network Passing

MCTS Passing
Agent Elo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

10

5

0

Ag
en

t E
lo

Figure 11: AlphaZero learns to use the positive concepts; Model Code = (left) baggy, (right)
vital. See Table 1 for architecture details of the models. At each checkpoint, we present AlphaZero
with a set of example boards that test its ability to utilize each concept. MCTS (yellow) and the
deep policy network (red) select actions that pass our behavioral tests with increasing frequency
throughout training. We additionally report the rate at which the action that passes our behavioral test
is one standard deviation above the mean (z score > 1). The Agent Elo (dark green) measures AZ’s
general gameplaying ability; it increases as AlphaZero starts to use the concepts.

0.0
0.2
0.4
0.6
0.8
1.0

Be
ha

vi
or

al
 T

es
t

captured

run = baggy

dead

0.0
0.2
0.4
0.6
0.8
1.0

Be
ha

vi
or

al
 T

es
t run = grubby

0.0
0.2
0.4
0.6
0.8
1.0

Be
ha

vi
or

al
 T

es
t run = recent

5% 50% 100%
Training Progress

0.0
0.2
0.4
0.6
0.8
1.0

Be
ha

vi
or

al
 T

es
t

5% 50% 100%
Training Progress

run = vital

Figure 12: AlphaZero does not fully “use” the negative concepts. At the end of training, it plays
moves in 25% of our behavioral tests that cannot impact the outcome of the game [2]. To pass these
behavioral tests, AlphaZero must avoid playing cells on the board associated with the dead and
captured concepts throughout a full selfplay rollout.

11

References
[1] B. Arneson, P. Henderson, J. Pawlewicz, A. Huang, K. Young, and C. Gao. Ben-

zene, 2018. https://github.com/cgao3/benzene-vanilla-cmake/blob/
d450c01eb38803b1766ed9abea51568c4672f46b/src/hex/EndgameUtil.cpp.

[2] Y. Björnsson, R. Hayward, M. Johanson, and J. van Rijswijck. Dead cell analysis in Hex and
the Shannon game. In Graph Theory in Paris, pages 45–59. Springer, 2006.

[3] R. Hayward, Y. Björnsson, M. Johanson, M. Kan, N. Po, and J. Van Rijswijck. Solving 7× 7
hex with domination, fill-in, and virtual connections. Theoretical Computer Science, 349(2):
123–139, 2005.

[4] S.-C. Huang, B. Arneson, R. B. Hayward, M. Müller, and J. Pawlewicz. MoHex 2.0: A
Pattern-Based MCTS hex player. In Computers and Games, pages 60–71. Springer International
Publishing, 2014.

[5] A. L. Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

[6] D. King. Hall of hexagons. https://www.drking.org.uk/hexagons/index.html, 2004.
Accessed: 2021-11-12.

[7] D. Ormerod. AlphaGo shows its true strength in 3rd victory against Lee Sedol. 2016.

[8] J. Pawlewicz and R. B. Hayward. Scalable parallel DFPN search. In Computers and Games,
pages 138–150. Springer International Publishing, 2014.

[9] J. Pawlewicz, R. Hayward, P. Henderson, and B. Arneson. Stronger virtual connections in hex.
IEEE Transactions on Computational Intelligence and AI in Games, 7(2):156–166, 2014.

[10] J. Pawlewicz, R. Hayward, P. Henderson, and B. Arneson. Stronger virtual connections in hex.
IEEE Trans. Comput. Intell. AI Games, 7(2):156–166, June 2015.

[11] M. Seymour. Hex: A Strategy Guide. 2019. URL http://www.mseymour.ca/hex_book/
hexstrat.html.

12

https://github.com/cgao3/benzene-vanilla-cmake/blob/d450c01eb38803b1766ed9abea51568c4672f46b/src/hex/EndgameUtil.cpp
https://github.com/cgao3/benzene-vanilla-cmake/blob/d450c01eb38803b1766ed9abea51568c4672f46b/src/hex/EndgameUtil.cpp
https://www.drking.org.uk/hexagons/index.html
http://www.mseymour.ca/hex_book/hexstrat.html
http://www.mseymour.ca/hex_book/hexstrat.html

	Implementation Details
	Concepts in Hex
	Characterizing AlphaZero's Gameplay of Hex
	Additional Results

