
A VQA-MNIST Dataset

In Appendix A.1, we describe the attributes and the comparisons in the VQA-MNIST datasets. The
algorithm for the generation of the training and testing combinations is in Appendix A.2. Given the
combinations, in Appendix A.3 we define the procedure to generate training and testing examples.

A.1 Attributes and Comparisons

Visual attributes. Each object in VQA-MNIST is characterized by a category, the original MNIST
category from 0 to 9, a color among red, green, blue, yellow and pink, a light condition among bright,
half-bright, and dark, correspondent to a multiplicative factor (1, 0.7, 0.4) applied on the whole
image, and a size among large, medium, small, correspondent to three scale factors (1, 5/7, 1/2) of
the original digit. This corresponds to a total of 21 attribute instances. Figure App.1 shows some
objects with a reduced amount of combination of attributes.

Figure App.1: VQA-MNIST: some examples of training images, with a limited amount of attributes
combinations.

Attribute comparisons. The sub-tasks used for attribute comparison between two separated objects
are in Table App.1. The sub-tasks for comparison of spatial relations are in Table App.2.

Table App.1: Sub-tasks for attribute comparison between pairs of separated objects. The sub-tasks
are divided in groups.

group of sub-tasks sub-tasks

category category

color color

light light

size size

comparison of category same_category; different_category
comparison of color same_color; different_color

comparison of light condition same_light; different_light; brighter; darker
comparison of size same_size; different_size; larger; smaller

Table App.2: Sub-tasks for comparison of spatial positions between two objects. The sub-tasks are
divided in groups.

group of sub-tasks sub-tasks

category 0; 1; 2; 3; 4; 5; 6; 7; 8; 9
color red; green; blue; yellow; pink
light bright; half-bright; dark
size large; medium; small

spatial relations left_of; right_of; above; below

A.2 Algorithm for the Generation of Training and Test Combinations

To generate the training and test combinations across all the VQA-MNIST datasets, we fix the
set of attribute types: category (attr1), color (attr2), light condition (attr3), and size (attr4);
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and we define a list of attribute instances for each type. The list attr1 = [0,..., 9] con-
tains the ten categories, the list attr2 = [red, green, blue, yellow, pink] the five col-
ors, the list attr3 = [bright, half-bright, dark] the three light conditions, and the list
attr4 = [small, medium, large] the three sizes. We define a single comprehensive list of all
attributes as attributes = attr1+ attr2+ attr3+ attr4, of length 21. Two integers are required for
the generation of training and test combinations: n_combinations_train and n_combinations_test,
which define the minimum amount of times (indicated with the r parameter) each attribute will
appear in the training and testing sets, respectively. We also define train_combinations and
test_combinations as two empty lists. Through a stochastic procedure described in Algorithm 1, we
fill these lists with the objects for the training and the testing sets.

Algorithm 1 Generation of Training and Test Combinations
Require: n_train_combinations, n_test_combinations

1: train_combinations, test_combinations = [ ], [ ], k = 0, random_seed = n
2: for k < n_test_combinations do
3:
4: taken = dict()
5: for a_ in attributes do
6: taken[a_] = False
7: end for

. At every iteration in the loop we set the dictionary of seen attribute to False
8:
9: missing_attributes = True

10: while missing_attributes do
. Until we see all the attributes at the k-th iteration

11: candidate = [choice(attr1), choice(attr2), choice(attr3), choice(attr4)]
. random extraction using uniform distribution

12: exists = candidate in test_combinations
13: reject = True . We assume that all attributes in candidate already appeared
14: for c_ in candidate do
15: reject ⇤ = taken[c_]
16: end for
17: if not reject &not exists then
18: test_combinations candidate
19: for c_ in candidate do
20: taken[c_] = True
21: end for
22: end if
23: if all values of taken are True then
24: missing_attributes False
25: k  k + 1 . All attributes appeared once, next iteration
26: end if
27: end while
28: end for
29: To fill the list train_combinations, substitute in line 2 n_test_combinations to

n_train_combinations. Change declaration of line 12 into line 30. Repeat from 2-28.
30: exists = (candidate in test_combinations) OR (candidate in train_combinations)

The additional variable reject and the loop in 14-16 is to exclude a new tuple if it
contains a list of attributes which have already appeared, e.g., if test_combinations =
[(3, yellow, bright, small), (4, blue, dark, large)], the candidate (3, blue, dark, small) will be re-
jected. This constraint allows to guarantee that all attributes appear at least r times while minimizing
the number of combinations used to do so.

A.3 Procedure for the Generation of Training and Test Examples

Across all the VQA-MNIST datasets, we leverage on Algorithm 1 to generate the combinations of
attributes. The digits of MNIST used for the training, validation, and test splits have been fixed a
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priori, with 50K training digits, 10K validation digits, and the 10K test digits of the original MNIST.
Depending on the VQA task, we differentiate the data generation process.

Attribute Extraction. Given a split (training or test), and the VQA question with its corresponding
sub-task, we divide the objects in the split into those providing a positive and negative example. We
randomly select a digit from the MNIST split which belongs to the category of the example, and we
introduce the additional attributes to the image. We generate evenly examples for both cases, so to
have a balanced dataset. The program layout corresponds to one of the 21 attribute instances.

Attribute Comparison. The data generation repeats identically at training and testing. Given a
VQA question about a relation and a split, we first collect all the pairs of objects from that split
that provide a positive answer to the question. We repeat the same for the negative pairs. Then, we
generate the examples based on the attributes for the pair of objects, by extracting images from the
MNIST split which match with the categories of the objects. We generate an even number of positive
and negative examples for each question, to have a balanced dataset.

For the tasks of attribute comparison, the program layout has a tree structure. For attribute comparison
between pairs of separated objects, the sub-tasks at the leaves can be category, color, light condition,
and size. These sub-tasks match with the relational questions (eg., if we are asking if two objects are
the same color, the leaves tackle the sub-task color). The sub-tasks and their division in groups are
detailed in Table App.1. For comparison between spatial positions, the sub-tasks at the leaves can
assume the form of one of the 21 attribute instances, while the root coincides with one of the four 2D
spatial relations among below, above, left, and right. The sub-tasks and their division in groups are
detailed in Table App.2.
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B Implementation Details and Supplemental Results on VQA-MNIST

In Section B.1, we give the definition of image encoder and classifier architectures, common to all the
NMNs trained on VQA-MNIST. We present the experimental setup and optimization details for the
experiments on VQA-MNIST in Section B.2. The in-distribution generalization of the main libraries
on VQA-MNIST are in Section B.3.

Then, we introduce a series of control libraries to prove the generality of our findings. In particular, in
Section B.4 we compare libraries with modular image encoder to state-of-the-art libraries in the NMN
literature. In Section B.5 we analyze the effect of different degrees of modularity at the image encoder
stage. In Section B.6, we further verify the impact of different architectures for the intermediate
modules on systematic generalization. In Section B.7, we analyze the effect of different degrees of
modularity at the classifier stage. Finally, in Section B.8, we report the systematic generalization of
NMNs trained ten times larger datasets than those in Figure 3.

B.1 Description of the Image Encoder and Classifier Architectures

Table App.3: Image encoder module VQA-MNIST. The first two parameters in Conv2d refer to
the number of input and output channels. For those libraries without batch normalization, the
BatchNorm2d and BatchNorm1d should not be considered.

Image Encoder
Layer Parameters

(0) Conv2d (3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1) BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2) ReLU
(3) Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4) BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5) ReLU
(6) MaxPool2d (kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(7) Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8) BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(9) ReLU
(10) Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(11) BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(12) ReLU
(13) MaxPool2d (kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(14) Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(15) BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(16) ReLU
(17) Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(18) BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(19) ReLU

The architectures of the image encoder and the classifier modules are shared across all the experiments
on VQA-MNIST. All the libraries in Section 4, as well as most of those in this section, do not have
batch normalization, except for all(bn) - all - all(bn) and all(bn) - sub-task - all(bn) libraries. We
report the implementation of an image encoder module and a classifier module, respectively in
Table App.3 and Table App.4, where we include the batch normalization.

For those image encoders and classifiers without batch normalization, the BatchNorm2d and Batch-
Norm1d layers need to be excluded (respectively transformations 1, 4, 8, 11, 15, and 18 in the image
encoder and transformations 1 and 6 in the classifier). Notice that in Tables App.3 and App.4, the
first two parameters for the Conv2d define the number of input and output channels.

B.2 Optimization Details

Across all the experiments on VQA-MNIST on 210K training examples, we fix the number of
training steps to 200K. For the task of attribute extraction from a single object, the grid of hyper-
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Table App.4: Classifier module for libraries VQA-MNIST. The first two parameters in Conv2d refer
to the number of input and output channels. For those libraries without batch normalization, the
BatchNorm2d and BatchNorm1d should not be considered.

Binary Classifier
Layer Parameters

(0) Conv2d (64, 512, kernel_size=(1, 1), stride=(1, 1))
(1) BatchNorm2d (512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2) ReLU
(3) MaxPool2d (kernel_size=7, stride=7, padding=0, dilation=1, ceil_mode=False)
(4) Flatten
(5) Linear (in_features=512, out_features=1024, bias=True)
(6) BatchNorm1d (1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7) ReLU
(8) Linear (in_features=1024, out_features=2, bias=True)

parameters includes batch size with candidate values [128, 256], and the learning rates with values
[10�4, 10�3, 0.005, 0.01]. Given the high computational cost of training, for all the remaining
experiments we reduce the number of models by fixing the batch size to 64 and the learning rate
hyper-parameters to the values [10�5, 10�4, 10�3, 0.005, 0.01].

During training, the learning rate is kept constant. We notice that in some cases, especially on
comparison tasks, the training loss function, as well as the training accuracy, often presents several
plateaus alternated to jumps, despite the absence of a decaying learning rate. This did not allow us to
use early stopping as a strategy to accelerate the experiments.

B.3 In-distribution generalization

(a) (b)

(c) (d)

Figure App.2: In-distribution generalization on the VQA-MNIST dataset, for (a) attribute extraction
from single object, (b) attribute extraction from multiple objects, (c) attribute comparison between
pairs of separated objects, and (d) comparison between spatial positions.
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We aim at comparing the in-distribution and systematic generalization trends for the libraries previ-
ously tested on novel combinations, in Figure 3. The plots in Figure App.2 shows the in-distribution
generalization for (a) attribute extraction from single object, (b) attribute extraction from multiple
objects, (c) attribute comparison between pairs of separated objects, and (d) comparison between
spatial positions. The disparity between testing in-distribution generalization or systematic general-
ization is dramatic. In absence of a bias, the tasks of attribute extraction and comparison, with the
given amount of training examples looks easy. Indeed, the plots across the four VQA tasks show that
all the libraries represent equivalently a good choice to achieve generalization within in-distribution
testing examples. This result emphasizes the importance of measuring systematic generalization as a
strategy to highlight the limited capability of models to generalize to novel combinations.

B.4 Results for Additional state-of-the-art Libraries and Comparison with Libraries with
Modular Image Encoder

With the exception of the all - all - all library, the libraries in Figure 1a are not the standard ones from
the literature. To confirm our findings on the superiority of the modular image encoder (group - all

- all in particular) with previous works, we add the all - sub-task - all library used in [13]. Its
implementation consists of a single image encoder and a single classifier, and Residual intermediate
modules. Given the usage of a single module at the image encoder and the classifier stages, all - all -

all library and all - sub-task - all library have variants with batch normalization at both the image
encoder and classifier [11]. We denote these libraries as all(bn) - all - all(bn) and all(bn) - sub-task -

all(bn). See Figure App.3a for the depictions of these libraries of modules.

We measure the systematic generalization of those libraries. In Figure App.3b-e, we reported the
performance on (b) attribute extraction from single object, (c) attribute extraction from multiple
objects, (d) attribute comparison between pairs of separated objects, and (e) comparison between
spatial positions. The systematic generalization accuracy for state-of-the-art methods remains clearly
below the performance of the group - all - all library.

B.5 Results for Libraries with Modular Image Encoder

Results in Figure 3 highlight the importance of a library of modules at the image encoder stage,
together with a medium degree of modularity. To further investigate this aspect, we introduce the
sub-task - all - all library, an additional library with image encoder modules per each sub-task. We
further define two additional libraries for the task of attribute comparison, reported in Figure App.4b.
There, given the tree program layout for this task, we rely on libraries with different degrees of
modularity at the intermediate modules stage: at the leaves, we use a module per sub-task, while the
root has an intermediate module per group of sub-task, where the division of sub-tasks follows the
one in Table App.1. The main difference in the libraries of Figure App.4b is at the image encoder
stage. On the left, the all - group/sub-task - all library relies on a single image encoder module. On
the right, the sub-task - group/sub-task - all library relies on the largest library of image encoder
modules. These two libraries have a single classifier module.

We tested the libraries in the first three columns of Figure App.4a on the VQA-MNIST tasks, while
the libraries on the last two columns are used on the task of attribute comparison between a pair of
separated objects. In Figure App.5a-d, we reported the systematic generalization performance for
the tasks of (a) attribute extraction from single object, (b) attribute extraction from multiple objects,
(c) attribute comparison between pairs of separated objects, and (d) comparison between spatial
positions. We observe that the group - all - all library consistently outperforms the sub-task - all -

all library across all the tasks. The sub-task - all - all library is nonetheless superior to the standard
all - all - all library. In (c), the modularity of the image encoder library brings advantage also to the
network with different degrees of modularity at the intermediate stage.

B.6 Results for Libraries for Different Implementations of Intermediate Modules per
sub-task

To exclude that the different implementation of the Residual from the Find module could be a reason
for the poorer systematic generalization performance of the sub-task - sub-task - sub-task library, we
introduce a similar library, which we call sub-task - sub-task(Find) - sub-task library. In the latter, the
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Figure App.3: Comparison of libraries with modular image encoder and state-of-the-art libraries.
OOD test accuracy refers to systematic generalization accuracy. (a) State-of-the-art libraries and
library with modular image encoder (group - all - all). Systematic generalization accuracy on (b)
attribute extraction from single object, (c) attribute extraction from multiple objects, (d) attribute
comparison between pairs of separated objects, and (e) comparison between spatial positions.

implementation of the intermediate modules rely on the Find module as in Equations 5-6, where each
sub-task defines a group. See Figure App.6a for the depictions of these libraries of modules.

Figure App.6b-e shows the systematic generalization of the libraries of Figure App.6a, trained on
(b) attribute extraction from single object, (c) attribute extraction from multiple objects, (d) attribute
comparison between pairs of separated objects, and (e) comparison between spatial positions. We
observe that libraries with sub-task degree of modularity at the image encoder stage perform quite
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Figure App.4: Comparison between libraries with different degrees of modularity at the image
encoder stage. (a) Libraries with different degrees of modularity at the image encoder stage, (b)
Implementation of libraries with group/sub-task libraries at intermediate module stage.

similar independently from the implementation of their intermediate modules, and show consistently
lower performance than the group - all - all library.

B.7 Results for Libraries with Modular Classifier

We further consider the effect of libraries with different degrees of modularity at the classifier stage
on systematic generalization. To do so, we introduce two libraries with a shared image encoder
module and shared intermediate modules. As before, we envision three degrees of modularity at the
classifier stage: shared module, that is the all - all - all library, per group of sub-tasks, that is, the all

- all - group library, and per sub-task, that is, the all - all - sub-task library. Figure App.7a depicts
these libraries.

The systematic generalization performance for the libraries in Figure App.7a across the VQA-MNIST
tasks is reported in Figure App.7b-e. The conclusion here is that the degree of modularity of the
library at the classifier stage alone does not bring any advantages across the tested tasks.

B.8 Results on More Training Examples

We performed additional experiments to check if the amount of training examples plays a role in the
trade-off among degrees of modularity. With this goal, we increased by a factor ten the amount of
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(a) (b)

(c) (d)

Figure App.5: Results for comparison between libraries with different degree of modularity at the
image encoder stage. OOD test accuracy refers to systematic generalization accuracy. (a-d) Systematic
generalization accuracy on (a) attribute extraction from single object, (b) attribute extraction from
multiple objects, (c) attribute comparison between pairs of separated objects, and (d) comparison
between spatial positions.

training examples, in Figure App.8, for (a) attribute extraction from single object, and (b) attribute
comparison between pairs of separated objects.

The NMNs trained on (a) have a fixed batch size to value 64 and a grid of learning rates with values
[10�5, 10�4, 0.001, 0.005, 0.01]. We fixed at half a million the amount of iterations. The NMNs
trained on dataset (b) share the same set of hyper-parameters of the case with ten times less data.
We fixed the number of iterations to one million, but due to the high computational cost, we ran the
experiments for maximum ⇠ 300 hours on a NVIDIA DGX-1 machine. Not all the models reached
the last iteration, but all their loss curves qualitatively show convergence. We report the results in
Figure App.8. (a) shows the case of attribute extraction from a single objects, while (b) reports the
performance for attribute comparison between pairs of objects.

The colored bars report the systematic generalization performance over one trial, with 2.1 million
training examples, while the black dots display the systematic generalization performance for the
corresponding model trained on ten times less examples. We observe that, consistently with the
previous results, the group - group - group library outperforms the other libraries, in Figure App.8a.
In Figure App.8b, the NMN with modular library at the image encoder stage achieve the highest
systematic generalization. This result shows that high systematic generalization is not reachable by
increasing the amount of training data. This conclusion is consistent with the observation in previous
works on out-of-distribution generalization [9, 14].
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Figure App.6: Comparison between libraries of same degree of modularity, but different implementa-
tion of the intermediate modules. OOD test accuracy refers to systematic generalization accuracy. (a)
Two libraries with different implementation of the intermediate modules and all - all - all and group -

all - all libraries for reference. Systematic generalization accuracy on (b) attribute extraction from
single object, (c) attribute extraction from multiple objects, (d) attribute comparison between pairs of
separated objects, and (e) comparison between spatial positions.
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Figure App.7: Comparison between libraries with different degrees of modularity at the classifier stage.
OOD test accuracy refers to systematic generalization accuracy. (a) Three libraries with different
degrees of modularity at the classifier stage and the group - all - all library for reference. Systematic
generalization accuracy on (b) attribute extraction from single object, (c) attribute extraction from
multiple objects, (d) attribute comparison between pairs of separated objects, and (e) comparison
between spatial positions.
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(a) (b)

Figure App.8: Experiments with ten times more data. OOD test accuracy refers to systematic
generalization accuracy. The colored bars correspond to networks trained with 2.1 million images,
dots correspond to the case of 210K images. Systematic generalization accuracy for (a) attribute
extraction from single object, (b) attribute comparison between pairs of separated objects.
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C Supplemental Results on SQOOP

To perform these experiments, we rely on the networks proposed in [11]. Both tree-NMNs make use
of batch normalization in their image encoder and classifier stages.

To validate that NMNs outperform other VQA models in systematic generalization, we report
in Table App.5 the results obtained on SQOOP for two non-modular neural networks, namely re-
implementation of MAC [20] from Bahdanau et al. [11] and FiLM [19], with the results of tree-NMNs
we have reported in Table 1. We adopted the same hyper-parameters from [11].

For each model, we observe a wide gap in systematic generalization on the two datasets. For the FiLM
architecture, reducing the amount of objects in the image leads to higher systematic generalization
than for the case of five objects, while the opposite happens to MAC.

A direct comparison between non-modular networks and NMN is not possible, given that the NMN
are provided with an optimal program layout. Nonetheless, the higher systematic generalization of
NMNs highlights the potential benefit in the use of NMNs wherever there is a mechanism to identify
a proper program, given a question.

Table App.5: Systematic generalization accuracy (%) for MAC (reimplemented by Bahdanau et

al. [11]), FiLM, and NMN architectures with tree layouts. Top row: bias in the question (five objects
per image). Bottom row: bias in the co-occurrence of objects in the image (two objects per image).

Bias type MAC
(Bahdanau et al. [11])

FiLM all - all - all

with bn
all - sub-task - all

with bn
Five objects per
image
(as in [11])

84± 4 70± 2 99.8± 0.2 99.96± 0.06

Two objects per
image

66± 5 77± 3 84± 2 88.5± 0.5
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D Implementation Details and Supplemental Experiments on
CLEVR-CoGenT

In Appendix D.2 we report the implementation of the Vector-NMN as in [5], with its image encoder,
intermediate module, and classifier. Then, in Appendix D.1 we describe the Compositional Gen-
eralization Test (CoGenT), its tasks, and our grouping of sub-tasks, in Appendix D.3. Lastly, we
report the results obtained on single questions for other non-modular networks, and different NMN
implementations.

D.1 CLEVR-CoGenT

The Compositional Generalization Test (CLEVR-CoGenT) dataset [2] includes training, validation,
and test splits. The data generation process follows the usual criteria of CLEVR, but CoGenT is
built to explicitly measure the ability of a model to generalize to novel combinations of objects and
attributes. CLEVR-CoGenT has two conditions: Condition A and Condition B. In Condition A, the
one used at training, cubes, cylinders and spheres appear in different sizes, colors, and positions.
Cubes are gray, blue, brown, or yellow, cylinders are red, green, purple, or cyan, while spheres can
have any color. In Condition B these combinations of attributes are reversed. Cubes are red, green,
purple, or cyan, cylinders are gray, blue, brown, or yellow, and spheres can have any color. Condition
B is the split to measure systematic generalization of a model. The models can be validated and
tested in-distribution as well.

D.2 Vector-NMN

We define Vector-NMN as in previous work [5]. On the family of CLEVR datasets, the image encoder
of Vector-NMN takes in input the output features from a ResNet-101 as detailed in Section 4.1 of
[2]. The image encoder consists of two convolutional layers with ReLU activation, as detailed in
Table App.6, the classifier is a multi-layer perceptron, as detailed in Table App.7.

Table App.6: Image encoder of Vector-NMN.

Image encoder
(0) Conv2d ((1024, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1) ReLU
(2) Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3) ReLU

Table App.7: Classifier of Vector-NMN.

Classifier
(0) Flatten
(1) Linear (in_features=128, out_features=1024, bias=True)
(2) ReLU
(3) Linear (in_features=1024, out_features=32, bias=True)

The Vector-NMN leverages on modulation through a set of weights, similarly to the FiLM net-
work [19]. Every intermediate module of the Vector-NMN receives in input the concatenation of the
embedding for the sub-task and the output from previous modules, defined as hc = [Emb(k); sx; sy].
We define the output of the image encoder given the input features of an image as simg. In the
following, we report the definition of Vector-NMN [5]:

[�j , �̃j ] = W j
2 (ReLU(W j

1hc + bj1) + bj2), with j 2 [0, 1], (App.1)
�j = 2 tanh (�̃j) + 1, (App.2)

h̃1 = ReLU(U1 ⇤ (�1 � simg � �1)), (App.3)

h̃2 = ReLU(U2 ⇤ (�2 � h̃1 � �2) + hx), (App.4)

hi(k, sx, sy) = maxpool(h̃2). (App.5)
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D.3 Grouping of sub-tasks

We decide to divide sub-tasks based on their similarity. We group together all the sub-tasks which
require determining colors, shapes, materials, etc. We identify eight groups of sub-tasks. In the follow-
ing, we specify each group, each with its related sub-tasks: counting, with count, equal_integer,
exist, greater_than, less_than, unique; colors, with equal_color, filter_color[*color
instance], query_color, same_color; materials, with equal_material, same_material,
filter_material[*material instance], query_material; shapes, with equal_shape,
filter_shape[*shape instance], query_shape, same_shape; sizes, with equal_size,
filter_size[*size instance], query_size, same_size; spatial relations relate[* four

possible directions]; logical operations intersection, union; and a group neutral to sub-
tasks, with scene.

D.4 Supplemental Results on CLEVR-CoGenT

We now report the systematic generalization performance on CLEVR-CoGenT. The results include
non-modular networks, as MAC [20] re-implemented by Bahdanau et al. [5], its variant with batch
normalization in the image encoder and classifier, the FiLM network [19], the Vector-NMN and
the Tensor-NMN, their variant with batch normalization in the image encoder and classifier, and an
additional NMN which receives the input simg at every intermediate step.

We divide the questions into several question types, by considering the first sub-task of the program
layout for each question, as in [2]. In Table App.8, we report separately in a scale from 0 to 100
(ie. percentage) the performance for each model and each question type. It is important to underline
that all the NMNs are trained and tested using the ground-truth program layout.

The best network for each question type is highlighted in bold. On nine over thirteen question
types, our Vector-NMN with modular image encoder has higher performance than pre-existing
modular networks, given the same ground-truth program layout. Modularity of the image encoder is
particularly convenient on the hardest type of questions, as query_shape and query_color.
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Table App.8: Systematic generalization accuracy (%) on validation split of CLEVR-CoGenT Condi-
tion B across different question types.

MAC with bn
(Bahdanau et al. [5])

MAC
(Bahdanau et al. [5])

FiLM

count 69.5± 0.5 68.8± 0.9 73.3±0.9
equal_color 78.5± 0.8 79.1± 0.7 78.1± 0.7
equal_integer 81± 1 79± 2 82± 2
equal_material 77± 3 80.6± 0.8 82± 2
equal_shape 96± 1 92± 2 97.0± 0.7
equal_size 77± 2 81.3± 0.7 81± 1
exist 84.9± 0.4 85.1± 0.6 86.8± 0.4
greater_than 83.4± 0.9 83± 1 83.8± 0.5
less_than 81.4± 0.4 81.4± 0.7 81.8± 0.8
query_color 63± 1 68± 1 65.5± 0.3
query_material 85± 1 87± 1 87± 1
query_shape 34.7± 0.7 36± 1 36.2± 0.6
query_size 84± 2 86± 1 85.4± 0.5

Tensor simple arch Tensor Tensor with bn

count 69.7± 0.5 69.7± 0.8 70.9± 0.7
equal_color 76± 2 75.6± 0.8 78.0± 0.7
equal_integer 83± 1 82.7± 0.3 83.3± 0.7
equal_material 74± 2 74± 2 75± 1
equal_shape 92± 2 91± 2 92± 3
equal_size 76± 3 75± 1 77± 1
exist 83.8± 0.3 84.2± 0.4 84.9± 0.2
greater_than 84.4± 0.5 83.8± 0.6 84.4± 0.5
less_than 82.2± 0.3 80.7± 0.9 82± 1
query_color 59± 1 58± 1 62.6± 0.9
query_material 85± 1 84.1± 0.9 85.7± 0.7
query_shape 37± 2 37± 1 37± 1
query_size 85± 1 83.5± 0.6 84.9± 0.8

Vector Vector with bn Vector
modular (ours)

count 70.4± 0.4 71.5± 0.9 71± 1
equal_color 74± 1 76± 2 80± 1
equal_integer 78± 2 81.6± 0.9 85± 2
equal_material 74.2± 0.7 77± 3 84± 2
equal_shape 89± 3 86± 2 79± 2
equal_size 75± 1 78± 3 88± 2
exist 84.4± 0.4 85± 0.7 84.4± 0.5
greater_than 83.6± 0.4 84± 1 89± 1
less_than 82.0± 0.5 83± 1 87± 2
query_color 60± 1 66± 5 67± 4
query_material 84.7± 0.4 86± 2 88.2± 0.8
query_shape 40± 3 41± 2 52± 3
query_size 84.7± 0.7 86± 2 89.5± 0.5
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E Supplemental Results on CLOSURE

CLOSURE is a novel test set for models trained on the CLEVR dataset [5]. This dataset introduces
seven question templates that have high overlap to the CLEVR questions but zero probability of
appearing under the CLEVR data distribution.

We trained Tensor-NMN, Vector-NMN and our Vector-NMN with modular image encoder on the
CLEVR dataset by keeping the hyper-parameters (learning rate, batch size, number of iterations,
network’s number of layers and transformations) as in [5]. For our Vector-NMN, the separation of
sub-tasks into groups is specified in Section 5.

The results in Table App.9 shows the performance of our Vector-NMN with modular image encoder
compared to the original Vector-NNM and Tensor-NMN, for novel questions templates of CLOSURE.

Table App.9: Systematic generalization accuracy (%) on each question type of CLOSURE for
Tensor-NMN and Vector-NMN (as reported in [5]), and for our Vector-NMN, across five repetitions.

Tensor-NMN Vector-NMN Vector-NMN
with modular
image encoder (ours)

and_mat_spa 64.9± 2 86.3± 2.5 65.8± 2.4
or_mat 44.8± 6.8 91.5± 0.77 70.3± 3.3
or_mat_spa 47.9± 5.8 88.6± 1.2 65.2± 4.5
embed_spa_mat 98.1± 0.38 98.5± 0.13 88.6± 1.8
embed_mat_spa 79.3± 0.83 98.7± 0.19 94.0± 1.4
compare_mat 90.7± 1.8 98.5± 0.17 89.8± 1.7
compare_mat_spa 91.2± 1.9 98.4± 0.3 90.2± 2.1

The Vector-NMN outperforms our modular Vector-NMN across all questions. These two models only
differ at the image encoder stage, which seem to suggest that a limited distribution of questions can
have a different effect on modularity from what we observed in previous experiments. Note that this
experiment is the only experiment in the paper in which modularity at the image encoder stage does
not improve systematic generalization. This experiment is also the only one in which the distribution
of program layouts in the training and testing is different. This is an interesting phenomenon which
requires of further analysis (it is unclear how general this phenomenon is, what are the trends for
different amounts of bias, etc.). A possible explanation is that having more modules leads to a more
diverse set of possible networks, and if there is bias in the program layout, the difference between the
trained networks and tested ones may become larger. This suggests that there is a trade-off between
modularity and bias in the program layout.

29



F Code and Computational Cost

All the code for data generation, data loading, training, testing, and the networks trained on CLEVR-
CoGenT can be found at this link: https://github.com/vanessadamario/understanding_
reasoning.git. This work stems from two forked repositories which investigated systematic
generalization in VQA: https://github.com/rizar/systematic-generalization-sqoop.
git [11] and https://github.com/rizar/CLOSURE.git [5]. Our code, as the one from which
we took inspiration, is open access and reusable.

The experiments have been run on multiple platforms (AWS + MIT’s OpenMind Computing Cluster1).

VQA-MNIST Across all the experiments with 210K training examples, the number of epochs is
always higher than 60 (more specifically, (200000 ⇤ 64)/210000 > 60). Across all the experiments,
we observed that the training converged for such number of epochs.

The resources and amount of time for VQA-MNIST experiments varies: with larger batch size,
the experiments of attribute extraction from single object (experiment_1) took around ten days to
complete the training of each data-run (NVIDIA Tesla K80, NVIDIA Tesla K40, NVIDIA TitanX).

We moved the experiments for attribute comparison and attribute extraction from multiple objects
to AWS. We further parallelized those using Ray (https://ray.io/), a parallelization framework.
On AWS, we have been using 60 instances of g4dn.2xlarge, with 32 GB RAM, Intel Custom Cascade
Lake CPU, NVIDIA T4 GPU. Training a data-run for these experiments took less than 48 h.

For the experiments with 2.1M training examples, we use an NVIDIA DGX-1. For the attribute
extraction from a single object (500K iterations, batch size 64), training all models (for grid search) in
parallel (through Ray we were training ten NMNs at the time) took about two weeks of computation.
For the attribute comparison between separated objects (1M iterations, batch size 64), training all
models (for grid search) in parallel (ten experiments at the time), was taking more than two weeks.
Experiments that took longer than that time were interrupted, but all the training curves reached a
plateau at that point.

SQOOP The experiments on SQOOP datasets took less than 15 hours on a single GPU (NVIDIA
Tesla K80, NVIDIA Titan X).

CLEVR datasets The experiments on the CLEVR dataset have an average training time of a week,
which varies depending on the network. These models are trained on single GPU (NVIDIA Tesla
K80, NVIDIA Tesla K40, NVIDIA Titan X).

1https://openmind.mit.edu/
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