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A PROPOSITION 1: DERIVATION OF FAIRNESS FUNCTION ON GROUP
FAIRNESS

Assume the risk of ✓ is R(✓) := 1
n
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i
; ✓), and the model trained on the entire training set
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By the first order condition of ✓̂K we have
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When ✏ ! 0, with the Taylor expansion (and first-order approximation) we have:
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By the first-order condition of ✓̂ we have rR(✓̂) = 0, and re-arranging terms we have
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Taking the limit of ✏ ! 0 on both sides we have
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Finally, the fairness influence of assigning training sample i in group K with weight wi is:

infl(Dval,K, ✓̂) := `fair(✓̂)� `fair(✓̂K) (14)
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B PROPOSITION 2: DERIVATION OF FAIRNESS FUNCTION FOR
COUNTERFACTUAL SAMPLES

The proof follows largely from the one we presented above for Proposition 1 with the only difference
being adapting the summation term to incorporate the addition of terms for counterfactual samples:
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and the counterfactual model now is defined as:
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Similarly invoking the first-order condition we have
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which further offers us
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and that
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r`(ẑtr

i
; ✓̂)

!

(19)

By setting the the proper wi, w0
i

(e.g., wi =
1
n
, w0

i
= � 1

n
) we recovered the claim made in Proposi-

tion 2.

C APPROXIMATING FAIRNESS METRICS

Similarly to DP, we can approximate the violation of Equality of Opportunity (EOP) with:
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And for Equality of Odds (EO), we have
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We summarize the definition and surrogate approximation of three group fairness measures as fol-
lows:
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Table 1: Fairness definition and surrogate approximation.

D THEORETICAL ANALYSIS: WHY CAN CIF IMPROVE FAIRNESS?

Overview. We base the analysis on the data generation model adopted in (Feldman, 2020; Liu,
2021) to capture the impact of data patterns generated with different frequencies and the impact
of label errors. This setup is a good fit for understanding how counterfactual data overriding can
change the data frequency of different groups (majority group with higher frequency vs. minority
group with lower frequency) and provides insights for CIF.

Overriding label Y is relatively straightforward. If we are able to change a training label of a dis-
advantaged group from a wrong label to a correct one, we can effectively improve the performance
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of the model for this group. Therefore the label (re)assignment can reduce the accuracy disparities.
Our analysis also hints that the influence function is more likely to identify samples from the dis-
advantaged group with a lower presence in the data and mislabeled samples. This is because, for a
minority group, a single label change would incur a relatively larger change in the influence value.

Overriding sensitive attribute A improves fairness by balancing the data distribution. In
the experiments (Figure 14), we show that the influence function often identifies the data
from the majority group and recommends them to be changed to the minority group, as
shown in Figure 7. In the analysis, we also show that this transformation incurs positive
changes in the accuracy disparities between the two groups and therefore improves fairness.

Fr
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nc
y
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Figure 7: Illustration of the
effect of overriding sensitive
attribute A as rebalancing
data distribution.

Setup. We base our analysis on the data generation model adopted
in (Feldman, 2020; Liu, 2021) to capture the impact of data patterns
generated with different frequencies and the impact of label errors.
This setup is a good fit for understanding how counterfactual data
overriding change the frequencies of data of different groups and
therefore provides insights for CIF.

In this setup, each feature X takes value from a discretized set X .
For each X 2 X , sample a quantity qX independently and uni-
formly from a set � := {�1, ..., �N}. The probability of observing
an X is given by D(X) = qX/(

P
X2X qX). Each X is mapped

to a true label Y = f(X). But our observed training labels can be
noisy, denoting as Ỹ ⇠ P(Ỹ |X,Y ). n pairs of (X, Ỹ ) are observed
and collected for the dataset. Denote by Sl the set of all samples
that appear l times in the dataset, and denote by l[X] the number
of appearances for X . Each X is also associated with a sensitive group attribute A. Denote by h✓

as the classification model defined by ✓ 2 ⇥ (parametric space) and the generalization error over a
given distribution D as

errD(h✓) := ED[1(h✓(X) 6= Y )] .

The following expected generalization error is defined in (Feldman, 2020):

err(✓|D) := ED⇠P[·|D] [errD(h✓)] ,

where P[·|D] is the distribution for the data distribution inferred from the dataset D. It is proved
that:
Theorem 1 ((Feldman, 2020)). err(✓|D) � min✓02⇥ err(✓0|D)+

P
l2[n] ⌧l ·

P
X2Sl

P[h✓(X) 6= Y ].

In the above ⌧l is a constant that depends on l. We call this the importance of an l-appearance
sample. It is proven in (Feldman, 2020) that when l is small, for instance l = 1, ⌧l is at the order of
O( 1

n
), and when l is large ⌧l is at the order of O( l

2

n2 ) (Liu, 2021).

Consider an ideal setting where we train a parametric model ✓ that fully memorizes the training data
that R(✓) = 0, and therefore P[h✓(X) 6= Y ] = P̃[Ỹ 6= Y |X], where P̃[Ỹ 6= Y |X] is the empirical
label distribution for sample pattern X . Theorem 1 can easily generalize to each group Da:

Proposition 3. err(✓|Da) � min✓02⇥ err(✓0|Da)+
P

l2[n]
⌧lP

X2Da
⌧l[X]

·
P

X2Da\Sl
P̃[Ỹ 6= Y |X].

Denote the following excessive generalization error for group a:

err+
a
(✓|D) :=

X

l2[n]

⌧lP
X2Da

⌧l[X]
·

X

X2Da\Sl

P̃[Ỹ 6= Y |X].

Importantly, the above error term captures the vital quantities that are interesting to our problem: (1)
the relevant frequency ⌧lP

X2Da
⌧l[X]

captures the importance of the pattern with different frequencies

and (2) P̃[Ỹ 6= Y |X] the label noise rate of sample pattern X .

To set up the discussion, suppose we have two groups a, a0. a is the advantaged group with a smaller
err+

a
(⇡, ✓|D); there is an Xa 2 Da with a larger la. On the other hand, there is an Xa0 2 Da0 , an
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la0 -appearance sample. We further assume that la > la0 (Xa0 has a lower representation). The rest
of the discussion will focus on the following generalization error disparity as the fairness metric:

F (✓) := |err+
a
(✓|D)� err+

a0(✓|D)| .

The excessive generalization error for each group can be viewed as the expected influence of a
model ✓ on the test data for that particular group. So the rest of the analysis focuses on the impact
of flipping a sample’s label to the group’s excessive generalization error and then F (✓).

Overriding Labels (Y ). On the high level, overriding a wrong label from the disadvantaged group
a0 to the correct one will effectively reduce P̃[Ỹ 6= Y |X] for some X 2 Da0 , and therefore reduces
the gap from it to the advantaged groups. The literature on influence functions (Koh & Liang, 2017)
has demonstrated its power to detect mislabelled samples. But why would the influence function
identify samples from the disadvantaged group and samples with wrong labels?

Consider a specific sample Xa0 2 Da0 , and suppose its label is wrong. Overriding the wrong label
to the correct label for this rare sample leads to a reduction in noise rate P̃[Ỹ 6= Y |X] for Xa0 .
Therefore we know that overriding this “rare sample” reduces err+

a0(✓|D), and the disparity F (✓).
On the other hand, overriding the label for Xa from the privileged group reduces err+

a
(✓|D) but this

would further increase the gap F (✓). Therefore, flipping (i.e. overriding) the wrong labels from the
disadvantaged group leads to a larger drop in disparity.

Overriding Sensitive Attributes (A). Suppose Xa 2 Da (from the privileged group) is identified to
be overridden. After the counterfactual overriding, Xa is overridden to Xa0 (from the disadvantaged
group), we show the gap in the excessive generalization errors between a and a0 is reduced as
follows:

(1) Increase in generalization error for the privileged group: For group a’s generalization error,
since we are removing one sample from it, the importance of Xa drops from ⌧la to ⌧la�1 as ⌧l

monotonically increases w.r.t l (recall ⌧l implies the importance of a l-frequency sample, the higher
l is the more important it generally is). When Xa is a cleaner example that P̃[Ỹ 6= Y |Xa] is
sufficiently small, especially smaller than the average noise rate P̃[Ỹ 6= Y |X 2 Da] of the group a,
removing one sample of it results in an increase in the average generalization error (Proposition 4).

(2) Decrease in generalization error for the privileged group: For group a0, because of the addition,
the weight of Xa0 increases by ⌧la0+1 � ⌧la0 . Therefore, adding a cleaner sample to group a0 not
only reduces Xa0 ’s empirical label noise rate P̃[Ỹ 6= Y |Xa], but also increases the relative weight of
⌧la0 . Again using Proposition 4, we know that increasing the weight of a smaller quantity will then
reduce the average of the group.

To summarize the above, overriding A effectively (1) increases err+
a
(✓|D) (i.e. increasing the exces-

sive generalization error for the privileged group) and (2) decreases err+
a0(✓|D) (i.e. decreasing the

excessive generalization error for the disadvantaged group). Therefore the counterfactual overriding
A reduces the gaps in the excessive generalization errors between the two groups.

D.1 PROOF OF PROPOSITION 3

Recall we assume a simplified case where we train a parametric model ✓ that fully memorizes the
training data that R(✓) = 0, and therefore P[h✓(X) 6= Y ] = P̃[Ỹ 6= Y |X]. Following the proof
from (Feldman, 2020), it is easy to show that

ED⇠P[·|D] [PD(h✓(X) 6= Y, X 2 Da)] � min
✓02⇥

err(✓0, X 2 Da) +
X

l2[n]

⌧l ·
X

X2Da\Sl

P̃[Ỹ 6= Y |X]

This is done simply by restricting generalization error to focus on data coming from a particular
subset Da. Note that
ED⇠P[·|D] [PD(h✓(X) 6= Y, X 2 Da)] = ED⇠P[·|D] [PD(h✓(X) 6= Y |X 2 Da) · PD(X 2 Da)]

Assuming the independence of the samples drawn, we have
ED⇠P[·|D] [PD(h✓(X) 6= Y, X 2 Da)] = ED⇠P[·|D] [PD(h✓(X) 6= Y |X 2 Da)]

· ED⇠P[·|D] [PD(X 2 Da)]
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From the above, we derive that

ED⇠P[·|D] [PD(h✓(X) 6= Y |X 2 Da)] =
ED⇠P[·|D] [PD(h✓(X) 6= Y, X 2 Da)]

ED⇠P[·|D] [PD(X 2 Da)]
. (26)

According to the definition of ⌧ in (Feldman, 2020) we have

ED⇠P[·|D] [PD(X 2 Da)] = ED⇠P[·|D]

"
X

X2Da

D(X)

#

=
X

X2Da

ED⇠P[·|D] [D(X)]

=
X

X2Da

⌧l[X] (Definition of ⌧ )

Plugging the above back into Eqn 26 gives

err(✓|Da) � min
✓02⇥

err(✓0|Da) +
X

l2[n]

⌧lP
X2Da

⌧l[X]
·

X

X2Da\Sl

P̃[Ỹ 6= Y |X].

D.2 BASIC THEOREM FOR PROPOSITION 4

We next prove the following:
Proposition 4. For a set of non-negative numbers {b1, ..., bN} with their associated non-negative
weights {w1, ..., wN} such that

P
N

i=1 wi = 1. Denote the average as b̄ :=
P

N

i=1 wibi. Then

(1) For bi < b̄, change its weight from wi to w0
i
< wi, and every other weight stays unchanged

s.t. w0
j
= wj . Given the following renormalization w0

j
=

w
0
jP

i w0
i
, we have b̄0 :=

P
i
w0

i
bi >

b̄.

(2) For any particular bi < b̄, change its bi to b0
i

< bi and keep other bj , j 6= i unchanged
that b0

j
= bj . Furthermore, change its weight from wi to w0

i
> wi, and every other weight

stays unchanged s.t. w0
j
= wj . Given the following renormalization w0

j
=

w
0
jP

i w0
i
, we have

b̄0 :=
P

i
w0

i
bi < b̄.

Proof. To prove (1), we have

b̄0 � b̄ =
X

j

(w0
j
� wj) · bj

=
X

j 6=i

(w0
j
� wj) · bj +

0

@(1�
X

j 6=i

w0
j
)� (1�

X

j 6=i

wj)

1

A bi

=
X

j 6=i

(w0
j
� wj) · (bj � bi)

Furthermore, let � = wi � w0
i
, for j 6= i we have:

w0
j
� wj =

wj

1��
� wj = wj ·

�

1��

Therefore we have
X

j 6=i

(w0
j
� wj) · (bj � bi) =

�

1��
·
X

j 6=i

wj(bj � bi)

=
�

1��
·
�
(b̄ � wi · bi)� (bi � wi · bi)

�

=
�

1��
· (b̄ � bi) > 0
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To prove (2), we basically follow the same proof. The only difference is that now let � = w0
i
� wi,

then for j 6= i:

w0
j
� wj =

wj

1 +�
� wj = �wj ·

�

1 +�

Then we have

b̄0 � b̄ =
X

j

(w0
j
� wj) · bj + w0

i
· (b0

i
� bi)

=
X

j 6=i

(w0
j
� wj) · (bj � bi) + w0

i
· (b0

i
� bi)

= � �

1 +�
·
X

j 6=i

wj(bj � bi) + w0
i
· (b0

i
� bi)

= � �

1 +�
·
�
(b̄ � wi · bi)� (bi � wi · bi)

�
+ w0

i
· (b0

i
� bi)

= � �

1 +�
· (b̄ � bi) + w0

i
· (b0

i
� bi) < 0

E ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

E.1 DATASET DETAILS

We include the details of datasets in the following:
• Synthetic: We generate synthetic data with the assumed causal graphs in Figure 1, and therefore

we have the ground-truth counterfactual samples. See Appendix E.1 for the dataset generation
process. Model: logistic regression.

• COMPAS: Recidivism prediction data (we use the preprocessed tabular data from IBM’s AIF360
toolkit (Bellamy et al., 2019)). Feature X: tabular data. Label Y : recidivism within two years
(binary). Sensitive attribute A (removed from feature X): race (white or non-white). Model:
logistic regression. When overriding X , we choose to flip the binary feature (age > 45 or not) in
X .

• Adult: Income prediction data (we use the preprocessed tabular data from IBM’s AIF360
toolkit (Bellamy et al., 2019)). Feature X: tabular data. Label Y : if income > 50K or not.
Sensitive attribute A (removed from feature X): sex (male or female). Model: logistic regression.
When overriding X , we choose to flip the binary feature race (white or non-white) in X .

• CelebA: Facial image dataset. Feature X: facial images. Label Y : attractive or not (binary).
Sensitive attribute A: gender (male and female). Model: ResNet18 (He et al., 2016). When
overriding X , we choose to flip the binary image-level label “Young.”

The synthetic data is generated using a DAG with specified equations as follows:

X1 ⇠ Normal(0, 1)
A ⇠ Bernoulli(0.3)
X2 ⇠ Normal(A, 3)

Z1 ⇠ Normal(0, 1)
X3 ⇠ Normal(2 · Z1 � 1, 0.1)

X4 ⇠ Bernoulli(0.1)

Y = sign(5 · X1 · A + 0.2 · X3
2 + 0.5 · A + 0.3 · X4 � X3)

We use X1, X2, X3, X4, A as features, A as sensitive attributes, and Y as labels.

We split all tabular datasets randomly into 70% training, 15% validation, and 15% test set. We use
the original data splitting in CelebA.
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E.2 EXPERIMENT DETAILS

We train the logistic regression on synthetic, Adult, and COMPAS using SGD with a learning rate
0.01. For CelebA, we train ResNet18 using Adam with a learning rate 0.001.

Generating Image Counterfactual Samples. When generating image counterfactual samples, we
find directly using the generated images from W-GAN does not lead to a satisfactory mitigation
performance because the distance between the counterfactual sample and the original sample is too
small to impose a change that is large enough to improve fairness (tabular data has no such problem).
Therefore we use a heuristic in CIF-based mitigation for image data. Using overriding X as the
example, when we map a sample’s feature from X|C = c to X|C = c0, we get the counterfactual
feature x̂i = Gci!ĉi(xi). We then search from the real examples X|C = c0 to find the nearest
neighbor (in the original model’s feature space) of x̂i, i.e.

x̂
0

i
= argmin

x⇠X|C=c0
||g

✓̂
(x̂i)� g

✓̂
(x)||2 (27)

where g
✓̂

is the feature extractor of the original model. That is to say, we search from the pool
of real samples belonging to the target group closest to the generated fake sample. Since now the
counterfactual feature is another real sample in the training data, it is directly removing a sample and
replace with another real sample, which induces a larger change than replacing with a fake sample
that needs to be reasonably close to the original sample in the W-GAN’s training constraint. The
resulting counterfactual sample is ẑtr

i
(ĉi) = (x̂

0

i
, h

✓̂
(x̂

0

i
), ai, ĉi). In experiments, we cap the nearest

neighbor search space to be 10% of the target group size to reduce the computational cost.

E.3 ADDITIONAL MITIGATION RESULTS

Figure 8-10 show the model accuracy after applying CIF-based mitigation.

E.4 IMPACT OF LABEL NOISE

We add label noise to the synthetic data, and Table 2 shows the effectiveness of Y-overriding when
we override 10% top samples flagged by our method.

Noisy Rate 0% 5% 10% 15% 20% 25%

Demographic Disparity 12.4% 2.1% 6.5% 1.7% 0.05% 2.2%

Table 2: Effectiveness of Y-overriding on synthetic data when label noise exists.

E.5 ACCURACY OF ESTIMATED INFLUENCE VALUE

Figure 6 plots influence value vs. the actual difference in fairness loss (DP) on COMPAS dataset.
For the first data point, we remove 100 training samples with the largest influence value from the
training set, retrain the model, and compute the actual change of fairness loss (eq.4) from the original
model. For the next data point, we pick samples with the next 100 largest influence values and so
on. We can see the relationship between our estimated influence and the actual change in fairness is
largely linear, meaning our influence value can estimate the fairness change reasonably well.

E.6 DISTRIBUTION OF INFLUENCE VALUES

Figure 11 shows the distribution of influence values computed on COMPAS corresponding to three
fairness metrics.

E.7 DETAILS OF EXPERIMENTS ON ADDITIONAL APPLICATIONS

Fixing Mislabelling. The group-dependent label noise rate we add to the Adult training dataset is
shown in Table 3. We follow a similar experimental setting in (Wang et al., 2021). After the label
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Figure 8: Model accuracy with CIF-based mitigation using fairness measure Demographic Parity
(DP).

Figure 9: Model accuracy with CIF-based mitigation using fairness measure Equality of Opportunity
(EOP).

Figure 10: Model accuracy with CIF-based mitigation using fairness measure Equality of Odds
(EO).

Figure 11: Distribution of influence values computed on COMPAS across three fairness metrics.

A = 0 A = 1
Y = 0 0.45 0.35
Y = 1 0.15 0.55

Table 3: Group-dependent label noise rate added in the training samples in Adult data.
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Figure 12: Precision and mitigation performance of using Y -overriding CIF to detect and correct
training mislabeling that causes bias on Adult.

Figure 13: Precision and mitigation perfor-
mance of using X-overriding CIF to detect
and correct poisoned training samples that
cause unfairness on Adult.

Figure 14: Performance of using A-overriding
CIF to detect and correct imbalanced training
representation that causes unfairness on Adult.

overriding, the bias increases significantly: DP increases from 16.1% to 49.6%, EOP increases from
31.4% to 77.3%, and EO increases from 19.1% to 63.3%.

We flag samples by choosing samples with top influence when Y is overridden and report the preci-
sion (#flipped labels correctly detected

#flagged labels ) of our detection.

Defending against Poisoning Attacks. After the training samples are poisoned, the model unfair-
ness increases as follows: DP increases from 16.1% to 61.4%, EOP increases from 31.4% to 69.4%,
and EO increases from 19.1% to 65.2%.

Resampling Imbalanced Representations. After artificially unbalancing the training samples, the
fairness gap increases as follows: DP increases from 16.1% to 42.6%, EOP increases from 31.4%
to 63.7%, and EO increases from 19.1% to 47.2%.

E.8 GENERATED COUNTERFACTUAL SAMPLES

Figure 15 and 16 show some random examples of generated images in CelebA when overriding A.
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Figure 15: W-GAN generated images that map from male to female in CelebA.
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Figure 16: W-GAN generated images that map from female to male in CelebA.
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