
Published as a conference paper at ICLR 2024

ON THE SCALABILITY AND MEMORY EFFICIENCY OF
SEMIDEFINITE PROGRAMS FOR LIPSCHITZ CONSTANT
ESTIMATION OF NEURAL NETWORKS: SCALING THE
COMPUTATION FOR IMAGENET

Zi Wang∗1, Bin Hu∗2, Aaron J Havens2, Alexandre Araujo3, Yang Zheng4, Yudong Chen1, Somesh Jha1
1. Department of Computer Sciences, University of Wisconsin-Madison
2. CSL & ECE, University of Illinois Urbana-Champaign
3. ECE, New York University
4. ECE, University of California San Diego

ABSTRACT

Lipschitz constant estimation plays an important role in understanding generaliza-
tion, robustness, and fairness in deep learning. Unlike naive bounds based on the
network weight norm product, semidefinite programs (SDPs) have shown great
promise in providing less conservative Lipschitz bounds with polynomial-time
complexity guarantees. However, due to the memory consumption and running
speed, standard SDP algorithms cannot scale to modern neural network architec-
tures. In this paper, we transform the SDPs for Lipschitz constant estimation into
an eigenvalue optimization problem, which aligns with the modern large-scale op-
timization paradigms based on first-order methods. This is amenable to autodiff
frameworks such as PyTorch and TensorFlow, requiring significantly less mem-
ory than standard SDP algorithms. The transformation also allows us to leverage
various existing numerical techniques for eigenvalue optimization, opening the
way for further memory improvement and computational speedup. The essen-
tial technique of our eigenvalue-problem transformation is to introduce redundant
quadratic constraints and then utilize both Lagrangian and Shor’s SDP relaxations
under a certain trace constraint. Notably, our numerical study successfully scales
the SDP-based Lipschitz constant estimation to address large neural networks on
ImageNet. Our numerical examples on CIFAR10 and ImageNet demonstrate that
our technique is more scalable than existing approaches. Our code is available at
https://github.com/z1w/LipDiff.

1 INTRODUCTION

The Lipschitz constant of a neural network plays an important role in training stability (Miyato et al.,
2018), robustness (Tsuzuku et al., 2018), and generalization (Bartlett et al., 2017). Given the fact
that computing the Lipschitz constant of a neural network is NP-hard (Scaman & Virmaux, 2018),
researchers have attempted to improve upon the naive norm product bound and devise methods to
compute tighter and more efficient upper bounds to approximate this Lipschitz constant.

Recently, researchers have proposed to use semidefinite programs (SDPs) to estimate the Lipschitz
constant of neural networks (Fazlyab et al., 2019; Wang et al., 2022). LipSDP (Fazlyab et al., 2019)
is among the first SDP-based conditions that are used to estimate the Lipschitz constant of neural
networks and has motivated numerous works on designing smooth network structures for achieving
improved certified robustness (Araujo et al., 2023a; Wang & Manchester, 2023; Havens et al., 2023;
Fazlyab et al., 2024). Wang et al. (2022) have drawn the connections between the Lipschitz constant
estimation problem and the matrix mixed norm problems, and hinted that semidefinite programming

* Equal contribution.

1

https://github.com/z1w/LipDiff

Published as a conference paper at ICLR 2024

is likely the optimal method to estimate the Lipschitz constant within polynomial time assuming
standard complexity theoretical conjectures.

Though SDPs are convex programs and can be solved by interior point methods (IPMs) within
polynomial time (Ben-Tal & Nemirovski, 2001), the memory requirement of IPMs is enormous.
Consequently, LipSDP cannot scale to modern neural network architectures, which contain at least
thousands of neurons. Currently, general-purpose SDP solvers are not capable of addressing the
scalability issue of LipSDP, placing a significant hurdle for practical use of such methods. Recently,
researchers have studied how to improve the scalability of LipSDP (Xue et al., 2022; Newton &
Papachristodoulou, 2021). These methods mainly exploit the chordal sparsity contained in SDPs
(Zheng et al., 2021). Chordal sparsity allows us to decompose a large SDP constraint to a set of
smaller and coupled ones which might be more scalable to solve; see Zheng et al. (2021) for a recent
review. However, these methods still cannot scale to practical networks on CIFAR10 or ImageNet.

In this work, we aim to address the memory efficiency and scalability of LipSDP. Instead of ex-
ploiting chordal sparsity, we transform the SDP-based Lipschitz constant estimation into an eigen-
value optimization problem using exact penalty methods (Ruszczynski, 2011) and redundant trace
constraint arguments (Liao et al., 2023). Our nonsmooth eigenvalue perspective is motivated
by Dathathri et al. (2020) as well as the advances in large-scale SDP optimization using spectral
bundle methods (Helmberg & Rendl, 2000; Ding & Grimmer, 2023; Liao et al., 2023). In addition to
the eigenvalue problem transformation, we also provide several add-on techniques that enable faster
eigenvalue estimation for SDPs induced from large networks and provide more effective strategies
for initializing first-order subgradient methods. Previously, for large networks, we can only estimate
the Lipschitz constant using the spectral norm product of weight matrices (Leino et al., 2021). With
our initialization, we can recover this bound from the beginning of the iterative optimization process.
In other words, we transform the Lipschitz constant estimation into an incremental optimization pro-
cess, which is guaranteed to improve the spectral norm product and is convenient to terminate at any
time. Our key contributions are summarized as follows.

• We introduce an eigenvalue optimization formulation for LipSDP, which we call EP-LipSDP.
Based on exact penalty methods, we add redundant trace constraints to prove that EP-LipSDP is
equivalent to LipSDP. We obtain the exact penalty parameter by properly introducing redundant
quadratic constraints. EP-LipSDP has a special form such that first-order subgradient methods
can be directly applied.

• We propose a series of numerical techniques compatible with EP-LipSDP, such as eigenvector
approximation, sparse matrix multiplication, and analytical initialization. These techniques fur-
ther improve the speed and practical convergence of solving EP-LipSDP.

• We implemented the algorithm as LipDiff and evaluated it on practical neural networks on CI-
FAR10 and ImageNet. Notably, our numerical study successfully scales the SDP-based Lips-
chitz constant estimation to address large networks on ImageNet. Our numerical examples on
CIFAR10 and ImageNet demonstrate that EP-LipSDP is more scalable than existing approaches.

2 RELATED WORK

The Lipchitz constant estimation of neural networks has been extensively studied in many recent
works (Scaman & Virmaux, 2018; Fazlyab et al., 2019; Latorre et al., 2020; Jordan & Dimakis,
2020; Wang et al., 2022; Chen et al., 2020; 2021; Pauli et al., 2024). This problem is in general
NP-hard (Scaman & Virmaux, 2018; Jordan & Dimakis, 2020; Wang et al., 2022), and thus an exact
estimation is infeasible in practice. It is more plausible to leverage approximations in convex forms
such as LipSDP (Fazlyab et al., 2019; Wang et al., 2022). However, a main issue for LipSDP is
the lack of scalability to large networks. Recently, researchers have leveraged chordal sparsity to
improve the scalability of LipSDP (Xue et al., 2022; Newton & Papachristodoulou, 2021; Batten
et al., 2021). Noticeably, such methods still cannot scale to networks on ImageNet or CIFAR10.

Interestingly, Dathathri et al. (2020) transformed the SDPs designed for neural-network local robust-
ness verification (which is a different problem from Lipschitz constant estimation) into an eigenvalue
problem that can be solved using subgradient methods. Our approach is inspired by Dathathri et al.
(2020), and focuses on a different problem, namely Lipschitz constant estimation. We develop new
optimization techniques tailored specifically for Lipschitz constant estimation, which enables any-
time termination with a quality guarantee.

2

Published as a conference paper at ICLR 2024

It is worth mentioning that there have been significant research efforts on improving the scalability
of general SDPs via first-order methods (Wen et al., 2010; O’donoghue et al., 2016; Zheng et al.,
2020; Garstka et al., 2021); see Majumdar et al. (2020) and Zheng et al. (2021) for recent surveys.
The formulation in this paper closely follows the nonsmooth eigenvalue perspective pioneered by
Helmberg & Rendl (2000). This nonsmooth perceptive is well-suited for applying first-order meth-
ods, from vanilla subgradient methods and cutting plane techniques to sophisticated bundle methods
(Lemarechal & Zowe, 1994). Helmberg & Rendl (2000) developed a special class of spectral bundle
methods for solving the nonsmooth eigenvalue formulation of dual SDPs with constant trace con-
straints. Further developments appeared in Helmberg & Kiwiel (2002) and Helmberg et al. (2014).
The constant trace property has also been investigated in polynomial optimization literature (Mai
et al., 2022). Very recently, comprehensive convergence rates of spectral bundle methods have been
established in Ding & Grimmer (2023), and a comparison of spectral bundle methods for primal and
dual SDPs is discussed in Liao et al. (2023).

Built upon LipSDP (Fazlyab et al., 2019), several works (Araujo et al., 2023b; Wang & Manchester,
2023; Havens et al., 2023) have also developed direct parameterizations of SDP-based Lipschitz
network layers. This allows the design of specific network structures with prescribed Lipschitz
guarantees, leading to non-trivial certified robust accuracy. It is possible that our proposed analysis
method can be used to develop less conservative Lipschitz network structures in the future.

3 BACKGROUND

Notation. We denote the n × n identity matrix and the n × n zero matrix as In×n and 0n×n,
respectively. We will omit the subscripts when the dimension is clear from the context. Given a
vector v, the notation v ≥ 0 means that all the entries of v are non-negative. We denote the i-th
entry of v as vi. In addition, we use the notation diag(v) to denote the diagonal matrix whose (i, i)-
th entry is equal to vi. For a vector v, ∥v∥ denotes the Euclidean norm of v, i.e., ∥v∥ =

√∑
vi2.

For a matrix M , we use ∥M∥op to denote the operator norm, i.e., the largest singular value of M .

3.1 A BRIEF REVIEW OF LIPSDP

The LipSDP approach can be formulated in either the primal or dual domain, leading to a pair
of SDP conditions for the Lipschitz constant estimation of general neural networks. The original
LipSDP was developed in the dual domain (Fazlyab et al., 2019). The primal form of LipSDP was
later discussed in Wang et al. (2022; 2023). To illustrate different forms of LipSDP, we first consider
the simplest single-layer neural network in the form of f(x) = vσ(Wx+ b0) + b1, where x ∈ Rnx ,
W ∈ Rn×nx , b0 ∈ Rn, v ∈ R1×n, b1 ∈ R, and f(x) ∈ R. Here f is a scalar, and n is the neuron
number. The activation σ is assumed to be slope-restricted on [0, 1]. In the dual domain, the LipSDP
(Fazlyab et al., 2019) is formulated as follows:

min
ζ,τ

ζ

subject to
[

−ζI WT diag(τ)
diag(τ)W −2 diag(τ) + vTv

]
⪯ 0, τ ≥ 0,

(1)

where τ ∈ Rn and ζ ∈ R are the decision variables. The original proof in Fazlyab et al. (2019) is
based on the quadratic constraint argument. Given two arbitrary x, x′ ∈ Rnx , set z = σ(Wx+ b0)
and z′ = σ(Wx′ + b0). Denote ∆x = x′ − x and ∆z = z′ − z. If the matrix inequality (1) holds,
we must have [

∆x
∆z

]T [
−ζI WT diag(τ)

diag(τ)W −2 diag(τ) + vTv

] [
∆x
∆z

]
≤ 0

which is equivalent to

∥∆z∥2 − ζ ∥∆x∥2 +
[
∆x
∆z

]T [
0 WT diag(τ)

diag(τ)W −2 diag(τ)

] [
∆x
∆z

]
≤ 0.

The third term on the left side is non-negative since σ is slope-restricted on [0, 1] (see Fazlyab et al.
(2019, section 2.2) and Wang et al. (2022, section 4) for detailed explanations). Then the sum of

3

Published as a conference paper at ICLR 2024

the first two terms has to be non-positive, and one has ∥∆z∥ ≤
√
ζ ∥∆x∥. Hence one just needs to

minimize ζ subject to the matrix inequality (1).

In the primal side, we let Wi denote the i-th row of W , and one starts with the following problem

max
|v∆z|
∥∆x∥

subject to (∆zi −Wi∆x)∆zi ≤ 0, ∀i ∈ [n],

whose solution gives an upper bound for the Lipschitz constant of f due to the fact that σ is slope-
restricted on [0, 1]. Since scaling ∆x and ∆z by the same constant always maintains the constraint,
one can show that the solution for the above problem is further upper bounded by the optimal value
of the following quadratically constrained quadratic program (QCQP):

max v∆z

subject to (∆zi −Wi∆x)∆zi ≤ 0, ∀i ∈ [n]

∥∆x∥ ≤ 1.

(2)

Then Shor’s relaxation of the above QCQP gives the primal form of LipSDP, which is the dual SDP
of (1). Specifically, the dual program of Shor’s relaxation of (2) is the following SDP:

min
ζ,τ,γ

ζ

subject to

γ − ζ 0 v
0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)

 ⪯ 0,

ζ ≥ 0, τ ≥ 0, γ ≥ 0.

(3)

which can be shown to give the same Lipschitz upper bound as (1) via Schur complement and some
rescaling arguments1

The primal and dual forms of LipSDP give the same solution. One can also modify the above
arguments to connect the primal and dual LipSDP forms for the more general case where f is a
multi-layer network with a vector output. In this paper, we will show that the solution to the original
LipSDP for multi-layer networks (Fazlyab et al., 2019, Theorem 2) can be recovered by another
optimization problem that can be efficiently solved using first-order methods.

4 MAIN THEORETICAL RESULTS

The semidefinite constraint in LipSDP is non-trivial to deal with for large-scale problems. One com-
mon idea for improving scalability and memory-efficiency is to move the semidefinite constraint into
the cost function via the exact penalty method (Ruszczynski, 2011). In this section, we derive the
exact penalty form of LipSDP (termed as EP-LipSDP). We show that EP-LipSDP and LipSDP have
the same solutions. In addition, EP-LipSDP is an optimization problem with only box constraints
and hence can be efficiently solved using first-order methods. To illustrate the essence of our tech-
nique, we first present EP-LipSDP for the single-layer setting reviewed in Section 3.1. After that,
we present EP-LipSDP for the multi-layer network case.

4.1 EP-LIPSDP FOR SINGLE-LAYER NEURAL NETWORK

Recall that we have f(x) = vσ(Wx+ b0)+ b1, where x ∈ Rnx , W ∈ Rn×nx , b0 ∈ Rn, v ∈ R1×n,
b1 ∈ R, and f(x) ∈ R. The neural network f : Rnx → R, has n neurons, and σ is assumed to be
slope-restricted on [0, 1]. For now, we consider the output dimension of f to be 1. Due to the page
limit, the discussion on the vector output case is deferred to Appendix F. A naive way to transform
LipSDP to a penalty form is to move the semidefinite constraint in (1) to the cost:

min
ζ≥0,λ≥0

ζ + ρλ+
max

([
−ζI WT diag(τ)

diag(τ)W −2 diag(τ) + vTv

])
, (4)

1Notice that the network f is ζ
2

-Lipschitz if the semidefinite constraint in (3) is feasible. Hence the optimal
value of (3) corresponds to the product of 2 and the square root of the optimal value of (1). For completeness,
we include a detailed proof in Appendix E. Some related arguments are also given in Wang et al. (2022; 2023).

4

Published as a conference paper at ICLR 2024

where λ+
max(·) = max(0, λmax(·)) with λmax(·) denoting the maximum eigenvalue, and ρ > 0 is

a penalty parameter (Ruszczynski, 2011, Theorem 7.21). One can then apply first-order methods to
solve this new nonsmooth optimization problem (4). However, a crucial issue is that it is unclear
how large the penalty parameter ρ has to be such that (4) and (1) can yield the same solution. The
key issue here is that the dual form of (1) (which is the Shor’s SDP relaxation of (2)) does not have
an explicit trace constraint. Based on the discussion in (Liao et al., 2023, Section 3.2), redundant
trace constraints may be used to derive the exact penalty form of SDPs. Next, we will enforce a
redundant trace constraint on the dual program of (3) to derive the exact penalty form of LipSDP.

We need to introduce an explicit trace constraint to the dual program of (1) without affecting its
solution. We start by adding redundant constraints into (2) such that its Shor’s SDP relaxation has
an explicit trace constraint. Specifically, the constraint in (2) already states ∥∆x∥ ≤ 1. Augmenting
the inequality (∆zi −Wi∆x)∆zi ≤ 0 leads to a redundant constraint ∆z2i ≤ ∥Wi∆x∥2 ≤ ∥Wi∥2op
(one interpretation for this redundant constraint is that σ is slope-restricted on [0, 1] and hence has
to be 1-Lipschitz). Therefore, the following QCQP is feasible if and only if (2) is feasible:

max v∆z

subject to (∆zi −Wi∆x)∆zi ≤ 0, ∀i ∈ [n]

∥∆x∥2 ≤ 1

∆z2i ≤ ∥Wi∥2op , ∀i ∈ [n].

(5)

Denote ai = ∥Wi∥2op. Then Shor’s SDP relaxation of (5) has an explicit trace constraint 1+∥∆x∥2+
∥∆z∥2 ≤ 2 +

∑n
i=1 aj . One can verify that the dual of the Shor’s SDP relaxation of (5) reads as

min
ζ,λ,τ,γ

ζ

subject to

∑n
j=1 ajλj + γ − ζ 0 v

0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)− diag(λ)

 ⪯ 0,

ζ ≥ 0, λ ≥ 0, τ ≥ 0, γ ≥ 0.

(6)

Here τ ∈ Rn corresponds to the slope-restricted property, λ ∈ Rn corresponds to the redundant
constraints ∆z2i ≤ ∥Wi∥22, and γ corresponds to the constraint ∥∆x∥2 ≤ 1. Comparing (6) with (3),
the only difference is that the redundant variable λ shows up in the (1, 1)-block and (3, 3)-block.
Intuitively, since the dual program of (6) has an explicit trace constraint, the penalty formulation of
(6) will be exact; see (Liao et al., 2023, Section 3.2) for discussions. For simplicity, we define

C :=

∑n
j=1 ajλj + γ − ζ 0 v

0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)− diag(λ)

 .

Now we can transform (6) to its exact penalty form, leading to the following EP-LipSDP:

min
ζ≥0,λ≥0,τ≥0,γ≥0

ζ +
(
2 +

n∑
j=1

aj

)
λ+
max(C). (7)

The penalty parameter is set as 2 +
∑n

j=1 aj , which is the trace bound in the dual SDP of (6). The
dual programs of (6) and (3) differ by only a redundant trace constraint. Hence EP-LipSDP (7) and
the original LipSDP (1) give the same Lipschitz bounds. This leads to the following main result.
Theorem 1. Let opt1 be the optimal value of Problem (6) and opt2 be the optimal value of Problem
(7). In addition, let opt3 be the optimal value of the original LipSDP (1). We have opt1 = opt2 =
2
√

opt3. Therefore, all three programs give the same Lipschitz bounds.

The detailed proof of the above theorem is presented in Appendix A. The nonsmooth problem (7) can
be solved via subgradient methods and bundle methods (Helmberg & Rendl, 2000; Ding & Grim-
mer, 2023; Liao et al., 2023). In our case of Lipschitz constant estimation, we can utilize autodiff
frameworks such as PyTorch to get (sub)gradients of the cost function (7). Thus, this eigenvalue
transformation opens the door to applying modern machine learning architectures and first-order
techniques based on sparse eigen-solvers and iterative subgradient methods. Finally, if we increase
the penalty parameter such that ρ > 2+

∑n
j=1 aj , then we can ensure that the solutions (not just the

optimal values) of (6) and (7) are equivalent. See Appendix A for a detailed discussion.

5

Published as a conference paper at ICLR 2024

4.2 EP-LIPSDP FOR MULTI-LAYER NEURAL NETWORKS

Next, we present the result for the general multi-layer case. For ease of exposition, we still consider
the scalar output case. The extension to the vector output is explained in Appendix F. Specifically,
consider a multi-layer network:

x(0) = x, x(k) = ϕ(W (k−1)x(k−1) + b(k−1)) k = 1, . . . , d, f(x) = vx(d) + b(d). (8)

Suppose xk ∈ Rnk . Again, we consider the case that v is a row vector and f is a scalar output. The
original LipSDP has the following form:

min
ζ,{τ(k)}d

k=1

ζ

subject to Λk = diag(τ (k)), τ (k) ≥ 0, τ (k) ∈ Rnk , ζ ≥ 0, ζ ∈ R,

−ζI (W (0))TΛ1 0 · · · 0

Λ1W
(0) −2Λ1

.
...

0
. (W (d−2))TΛd−1 0

...
. . . Λd−1W

(d−2) −2Λd−1 (W (d−1))TΛd

0 0 0 ΛdW
(d−1) −2Λd + vTv


⪯ 0.

(9)
Similar to the equivalent relationship between (1) and (3), we can show that the following SDP can
give the same Lipschitz bound to (9):

min
ζ,γ,{τ(k)}d

k=1

ζ

subject to ζ ≥ 0, γ ≥ 0, Λk = diag(τ (k)), τ (k) ≥ 0, τ (k) ∈ Rnk , for k = 1, · · · , d

γ − ζ 0 0 0 · · · v
0 −γI (W (0))TΛ1 0 · · · 0

0 Λ1W
(0) −2Λ1

.
...

0 0
. (W (d−2))TΛd−1 0

...
...

. . . Λd−1W
(d−2) −2Λd−1 (W (d−1))TΛd

vT 0 0 0 ΛdW
(d−1) −2Λd


⪯ 0.

(10)
Notice (10) can be viewed as the multi-layer extension of (3). Denote the i-th row of W k as W (k)

i .

For k = 1, · · · , d, denote ckj =
∥∥∥W (k−1)

j

∥∥∥2
op

·
(∏k−2

i=0

∥∥W (i)
∥∥2
op

)
for j = 1, · · · , nk. Then we

can use the same argument for the single-layer case to show that 2 +
∑d

k=1

∑nk

j=1 ckj provides an
explicit redundant trace constraint to the multi-layer QCQP, and hence can be used to derive the
exact penalty formulation of the multi-layer LipSDP. Specifically, we define Sk = diag(λ(k)) with
λ(k) ≥ 0 being a vector in Rnk . Then we define

C =



∑
k,j ckjλ

(k)
j + γ − ζ 0 0 0 · · · v

0 −γI (W (0))TΛ1 0 · · · 0

0 Λ1W
(0) −2Λ1 − S1

.
...

0 0
. (W (d−2))TΛd−1 0

...
...

. . . Λd−1W
(d−2) −2Λd−1 − Sd−1 (W (d−1))TΛd

vT 0 0 0 ΛdW
(d−1) −2Λd − Sd


.

(11)
With the above choice of C, we can immediately show the following EP-LipSDP for the multi-layer
network case:

min
ζ≥0,λ(k)≥0,τ(k)≥0,γ≥0

ζ +
(
2 +

d∑
k=1

nk∑
j=1

ckj

)
λ+
max(C). (12)

6

Published as a conference paper at ICLR 2024

Now we can use a similar proof for Theorem 1 to show the following result for multi-layer networks.
Theorem 2. Let opt4 be the optimal value of Problem (10) and opt5 be the optimal value of Problem
(12). In addition, let opt6 be the optimal value of the original LipSDP (9). We have opt4 = opt5 =
2
√

opt6. In other words, all three programs give the same Lipschitz bounds.

The proof is similar to the one of Theorem 1 presented in the appendix. Now we have obtained the
exact penalty form of LipSDP which can be solved using first-order methods.

5 ADD-ON TECHNIQUES FOR IMPROVING PRACTICAL PERFORMANCES

In this section, we discuss a few techniques that can further improve the performance in terms of
running time and practical convergence of first-order algorithms for solving EP-LipSDP in Section 4.

Eigenvalue approximation. We formulate the Lipschitz constant estimation as an eigenvalue op-
timization problem that is differentiable almost everywhere. Consequently, estimating the extreme
eigenvalue of a given matrix becomes an important sub-task. There exist various efficient algorithms
to estimate the extreme value of a given matrix, and the efficiency can be significant improved via
compromising the precision a little bit. In this work, we also consider the Lanczos algorithm (Lanc-
zos, 1950) to compute the largest eigenvalue of a matrix as in Dathathri et al. (2020). Lanczos
algorithm is an iterative algorithm used to find the extreme eigenvalues of symmetric matrices. It
computes a small sub-matrix whose extreme eigenvalues are close to those of the original matrix.
One can specify the size of the sub-matrix. The larger the submatrix is, the closer the eigenvalue is
to the original value with a cost of higher computational resources.

Sparse matrix multiplication. When using the Lanczos algorithm to compute the extreme eigen-
value of a matrix A, we only need access x → Ax, instead of the explicit form of A. That is, we
only need to know what is Ax for any vector x. This provides further optimization opportunities
when using the Lanczos algorithm. The matrix considered in this work has a fixed sparse pattern,
i.e., it is almost a tridiagonal matrix, which encodes the computation of the (convolutional) neural
network. For deep/wide (convolutional) networks, the SDP constraint matrix is very sparse. Thus,
we can implement a native sparse matrix multiplication routine, which can significantly improve the
efficiency of our method in addressing large networks on CIFAR10 and ImageNet.

Analytical initialization. Theoretically, we can initialize the variables of our first-order iteration
randomly and apply a (sub)gradient method for infinitely many steps with sufficiently small step
size (learning rate) to ensure the convergence to the global minimum. In practice, we can only run
the first-order subgradient method for finitely many steps. To ensure that our first-order method
is better than the naive matrix norm product bound, we develop a special analytical initialization
scheme. Specifically, we derive a specialized analytical solution to (11), which exactly recovers the
naive norm product bound. This analytical solution is then used to initialize our subgradient method.
Consequently, EP-LipSDP with such an initialization produces at least as tight Lipschitz bound as
the matrix norm product. To derive this analytical initialization, we mainly use the Schur comple-
ment lemma and the block matrix inversion formula. The details are presented in Appendix B.

6 EVALUATION AND DISCUSSION

In this section, we conduct several experiments to empirically evaluate the algorithm proposed in
this work. The evaluation aims to answer the following research questions: (R1) Does EP-LipSDP
produce the same value as the original LipSDP when both problems are fully solved? (R2) Does our
algorithm possess running time and memory advantage compared to LipSDP? (R3) How does each
add-on technique from Section 5 contribute to the overall performance of EP-LipSDP?

Based on the PyTorch package, we developed a first-order implementation of EP-LipSDP, termed
as LipDiff. The pseudocode is described in Appendix C. We use the ADAM optimizer (Kingma &
Ba, 2015) as LipDiff’s gradient descent optimizer and tune the number of gradient steps and step
size (learning rate) accordingly for each problem. We also implemented the following variants (the
details of these variants can be found in Appendix D):

1. LipDiff-Ex is the algorithm using exact eigenvalue instead of the Lanczos approximation.

7

Published as a conference paper at ICLR 2024

Table 2: In this table, we present results comparing different variants of our approach to LipSDP.
In MNIST-DNN experiment, if we compare the benchmark values from LipSDP and LipDiff-Ex,
we can find that their values are very close. By tuning the parameters, we can get results fairly
close to LipSDP value in a much shorter time. For MNIST-CNN, the SDP constraint size is of
4021×4021 and the Mosek solver used for LipSDP triggers the out-of-memory (OOM) error, while
all other LipDiff variants can still run. Furthermore, LipDiff-Ex can reduce the Lipschitz constant
estimation by 48% compared to the norm product method. For CIFAR10-CNN, LipDiff can reduce
the Lipschitz constant by 58% compared to the norm product.

Datasets Models Product LipSDP LipDiff LipDiff-Ex LipDiff-Dense LipDiff-Rand

MNIST DNN
Result 9.31 4.82 4.90 4.86 4.96 5.89
Time (s) 0.13 54.57 28.69 19.27 12.48 29.27
Memory (MB) 1.54 169.83 118 114 114 118

MNIST CNN
Result 24.79 OOM 14.76 13.08 14.66 2201.66
Time (s) 0.16 – 178.99 559.08 185.34 186.89
Memory (MB) 18.77 – 2640 1534 1536 2640

CIFAR10 CNN
Result 35.45 OOM 14.82 18.52 16.12 1731.82
Time (s) 98.08 – 2777.07 36000 25126.01 2723.02
Memory (GB) 0.51 – 60.05 51.39 51.41 60.05

2. LipDiff-Dense implements the Lanczos algorithm with explicit matrix multiplication.
3. LipDiff-Rand initializes the algorithm from a random initialization rather than the analytical

solution and also implements the Lanczos algorithm in the sparse matrix multiplication way.

Baseline. We use two main baselines: 1. Product, the weight matrix norm product, which provides
a naive upper bound for the Lipschitz constant of the neural network, and is currently the only
method for large networks on ImageNet (Leino et al., 2021; Hu et al., 2023); 2. LipSDP (Fazlyab
et al., 2019), which is implemented using the CVXPY package (Diamond & Boyd, 2016) and relies
on the Mosek solver (ApS, 2019) to solve the SDP. In our experiments, the LipSDP implementation
is run on CPU. In contrast, the LipDiff variants are GPU-friendly, and hence run on GPU.

First Part of Experiments: MNIST and CIFAR10.. To provide good sanity checks, we first run
our algorithms on three networks: 1. an MNIST (LeCun & Cortes, 2010) dense network, with a
single hidden layer of 128 ReLU nodes; 2. An MNIST convolutional network, with 1 convolutional
layer, and 2 fully connected layers; 3. CIFAR10 convolutional network with 3 convolutional layers
and 3 fully connected layers. These networks are summarized in Table 1.

Table 1: Models used for the experiments.

Model Structure Parameters Acc. SDP size
MNIST-DNN 1FC 203 530 97% 1041× 1041
MNIST-CNN 1C2FC 314 982 98% 4021× 4021
CIFAR10-CNN 3C3FC 1 344 298 80% 22 529× 22 529

Each of the networks has 10 classes. We will
compute the Lipschitz constant of the function
corresponding to 8th label as in the evaluation
of Wang et al. (2022). For the evaluation, we set
the timeout for each experiment to be 10 hours.
If the running time is over 10 hours, we will
terminate the program and report the best number. To answer RQ1 and RQ2, we will compare the
performances of LipSDP and LipDiff variants in terms of the results, and memory and running time
needed for the computation. To answer RQ3, we will compare the results of LipDiff variants. The
results of the evaluation for this part are summarized in Table 2.

RQ1. If we compare the result for MNIST-DNN in table 2, we can find that LipDiff-Ex computes
almost the same value as LipSDP does. In addition, LipDiff and LipDiff-Dense produce similar
results as LipSDP’s value. These results provide an affirmative answer to RQ1, that our eigenvalue
optimization formulation gives the same value as LipSDP, as showed in Theorem 1.

RQ2. In terms of memory consumption, because LipDiff variants are run on GPU while LipSDP is
run on CPU with different package implementations, a direct comparison between the numbers is
not sensible. However, we can still compare between experiments. Recall that the SDP constraints
for MNIST-DNN, MNIST-CNN and CIFAR10-CNN are of sizes 1041 × 1041, 4021 × 4021 and
22529 × 22529. As we can observe from Table 2, the memory consumption for LipDiff roughly
scales linearly to the size of the SDP constraint. However, for LipSDP, the memory requirement is
much more beyond linear. For example, the total memory of the server is 528 GB, 4000 times larger
than 118 MB, and LipSDP cannot even work on a network with the SDP constraint size 4021×4021,

8

Published as a conference paper at ICLR 2024

0 250 500 750 1000 1250 1500 1750 2000
0

5

10

15

20

25

30

Li
pD

iff

LipDiff

10
0

10
2

10
4

10
6

Li
pD

iff
-R

an
d

(lo
gs

ca
le

)

MNIST-CNN

LipDiff-Rand

(a)

0 250 500 750 1000 1250 1500 1750 2000
0

5

10

15

20

25

30

35

40

Li
pD

iff

LipDiff

10
0

10
2

10
4

10
6

Li
pD

iff
-R

an
d

(lo
gs

ca
le

)

CIFAR-CNN

LipDiff-Rand

(b)

Figure 1: These plots show the minimization of LipDiff and LipDiff-Rand on MNIST-CNN Fig-
ure 1a and CIFAR-CNN models Figure 1b. The left axis of each plot shows LipDiff (blue) and the
right axis shows LipDiff-Rand (orange) in log scale. The x-axis describes the number step of the
optimization. We observe that LipDiff obtains a much lower value than LipDiff-Rand due to its bet-
ter initialization. Additionally, LipDiff shows a sharp decrease at the beginning of the optimization,
making it an efficient method for improving over the product bound when the time budget is limited.

which is roughly 16 times larger than the MNIST-DNN. This comparison establishes the memory
efficiency of LipDiff. For running time, because we can tune the number of steps and step size for
gradient descent, we can obtain a fairly decent result within a short time. This tuning process offers
more flexibility than a closed-form solver.

RQ3. From all experiments in Table 2, we can draw a conclusion that with the analytical solution
initialization, LipDiff is consistently better than LipDiff-Random. This is particularly true when the
network is large and it is hard for the subgradient method from a bad initial state to converge with
many free variables. For approximating extreme eigenvalue using the Lanczos algorithm, we always
save significant running time, at a price of a little potential precision loss. When using the sparse
matrix representation for matrix multiplication, the benefit is only significant when the network
is large enough. For small networks such as the MNIST DNN, matrix multiplication using dense
representation is faster than the sparse representation. The reason is that for small networks, the SDP
constraint is almost always dense rather than sparse. However, at the scale of the CIFAR10 network,
the sparse matrix multiplication can save almost 90% of running time. For memory consumption, we
can consistently find that LipDiff-Ex uses least memory and LipDiff uses the most. This comes from
our design choice: For the implementations using Lanczos algorithm to approximate the maximum
eigenvalue, we also include the original constraint to compute the exact eigenvalue. Therefore, the
Lanczos tools would compute an extra Lanczos submatrix. The sparse representation will further
implement an additional sparse multiplication routine and thus consume even more memory.

Second Part of Experiments: ImageNet . To fully test the scalability of our proposed method,
we additionally applied LipDiff on the pretrained AlexNet (Krizhevsky et al., 2017), which was
designed for ImageNet classification (Deng et al., 2009). AlexNet is composed of a feature ex-
traction sub-network and a classification sub-network. Noticeably, AlexNet is much larger than all
the MNIST/CIFAR10 networks considered in our previous experiments. To address a network at
this scale, we need to combine all the add-on techniques in Section 5. Importantly, we use the
sub-multiplicity of norms to decompose AlexNet, and apply LipDiff on the sub-networks, which
eventually reduces the total Lipschitz constant of AlexNet by 73%, compared to the matrix norm
product bound. To the best of our knowledge, this is the first time that LipSDP is successfully scaled
to ImageNet. More details of our ImageNet experiments can be found in Appendix H.

Conclusion. Overall, we can conclude that LipDiff is much more memory-efficient than the original
default interior point implementation of LipSDP. However, without our specialized analytical solu-
tion, it is hard for LipDiff to converge from a random initialization. With all the add-on techniques
proposed in our work, for the first time, we can estimate the Lipschitz constant of large networks
on CIFAR10 and ImageNet, and this estimation is always at least as good as the naive matrix norm
bound. Our algorithm can terminate at any time, which further offers more flexibility for users with
different time budgets.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

Z. Wang and S. Jha are partially supported by DARPA under agreement number 885000, NSF CCF-
FMiTF-1836978 and ONR N00014-21-1-2492. A. Havens and B. Hu are generously supported by
the NSF award CAREER-2048168 and the AFOSR award FA9550-23-1-0732. Y. Zheng is partially
supported by NSF ECCS-2154650 and NSF CMMI-2320697. Y. Chen is partially supported by
NSF CCF-1704828 and NSF CCF-2233152.

REFERENCES

MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019. URL
http://docs.mosek.com/9.0/toolbox/index.html.

Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A uni-
fied algebraic perspective on lipschitz neural networks. In The Eleventh International Confer-
ence on Learning Representations, 2023a. URL https://openreview.net/forum?id=
k71IGLC8cfc.

Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A uni-
fied algebraic perspective on lipschitz neural networks. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https://openreview.net/forum?id=
k71IGLC8cfc.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf.

Ben Batten, Panagiotis Kouvaros, Alessio Lomuscio, and Yang Zheng. Efficient neural network
verification via layer-based semidefinite relaxations and linear cuts. In Zhi-Hua Zhou (ed.), Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp.
2184–2190. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi:
10.24963/ijcai.2021/301. URL https://doi.org/10.24963/ijcai.2021/301. Main
Track.

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. Society for
Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9780898718829. URL https://
epubs.siam.org/doi/abs/10.1137/1.9780898718829.

Tong Chen, Jean-Bernard Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic optimiza-
tion for lipschitz constants of relu networks. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc. ISBN 9781713829546.

Tong Chen, Jean B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic representation
of monotone deep equilibrium models and applications to certification. Advances in Neural In-
formation Processing Systems, 34:27146–27159, 2021.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Ue-
sato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang, and
Pushmeet Kohli. Enabling certification of verification-agnostic networks via memory-efficient
semidefinite programming. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 5318–5331. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/397d6b4c83c91021fe928a8c4220386b-Paper.pdf.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

10

http://docs.mosek.com/9.0/toolbox/index.html
https://openreview.net/forum?id=k71IGLC8cfc
https://openreview.net/forum?id=k71IGLC8cfc
https://openreview.net/forum?id=k71IGLC8cfc
https://openreview.net/forum?id=k71IGLC8cfc
https://proceedings.neurips.cc/paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://doi.org/10.24963/ijcai.2021/301
https://epubs.siam.org/doi/abs/10.1137/1.9780898718829
https://epubs.siam.org/doi/abs/10.1137/1.9780898718829
https://proceedings.neurips.cc/paper/2020/file/397d6b4c83c91021fe928a8c4220386b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/397d6b4c83c91021fe928a8c4220386b-Paper.pdf

Published as a conference paper at ICLR 2024

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Lijun Ding and Benjamin Grimmer. Revisiting spectral bundle methods: Primal-dual (sub) linear
convergence rates. SIAM Journal on Optimization, 33(2):1305–1332, 2023.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pap-
pas. Efficient and accurate estimation of lipschitz constants for deep neural networks.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
95e1533eb1b20a97777749fb94fdb944-Paper.pdf.

Mahyar Fazlyab, Taha Entesari, Aniket Roy, and Rama Chellappa. Certified robustness via dynamic
margin maximization and improved lipschitz regularization. Advances in Neural Information
Processing Systems, 36, 2024.

Michael Garstka, Mark Cannon, and Paul Goulart. COSMO: A conic operator splitting method
for convex conic problems. Journal of Optimization Theory and Applications, 190(3):779–810,
2021.

Aaron Havens, Alexandre Araujo, Siddharth Garg, Farshad Khorrami, and Bin Hu. Exploiting con-
nections between Lipschitz structures for certifiably robust deep equilibrium models. Advances
in Neural Information Processing Systems, 36, 2023.

Christoph Helmberg and Krzysztof C Kiwiel. A spectral bundle method with bounds. Mathematical
Programming, 93(2):173–194, 2002.

Christoph Helmberg and Franz Rendl. A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization, 10(3):673–696, 2000.

Christoph Helmberg, Michael L Overton, and Franz Rendl. The spectral bundle method with second-
order information. Optimization Methods and Software, 29(4):855–876, 2014.

Kai Hu, Andy Zou, Zifan Wang, Klas Leino, and Matt Fredrikson. Unlocking deterministic robust-
ness certification on imagenet. Advances in Neural Information Processing Systems, 36, 2023.

Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of relu
networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 7344–7353. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
5227fa9a19dce7ba113f50a405dcaf09-Paper.pdf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. Commun. ACM, 60(6):84–90, may 2017. ISSN 0001-0782. doi:
10.1145/3065386. URL https://doi.org/10.1145/3065386.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. 1950.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rJe4_xSFDB.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In International
Conference on Machine Learning (ICML), 2021.

11

https://proceedings.neurips.cc/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5227fa9a19dce7ba113f50a405dcaf09-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5227fa9a19dce7ba113f50a405dcaf09-Paper.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3065386
https://openreview.net/forum?id=rJe4_xSFDB
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Published as a conference paper at ICLR 2024

Claude Lemarechal and Jochem Zowe. A condensed introduction to bundle methods in nonsmooth
optimization. In Algorithms for continuous optimization: the state of the art, pp. 357–382.
Springer, 1994.

Feng-Yi Liao, Lijun Ding, and Yang Zheng. An overview and comparison of spectral bundle meth-
ods for primal and dual semidefinite programs. arXiv preprint arXiv:2307.07651, 2023.

Ngoc Hoang Anh Mai, J. B. Lasserre, Victor Magron, and Jie Wang. Exploiting constant trace
property in large-scale polynomial optimization. ACM Trans. Math. Softw., 48(4), dec 2022.
ISSN 0098-3500. doi: 10.1145/3555309. URL https://doi.org/10.1145/3555309.

Anirudha Majumdar, Georgina Hall, and Amir Ali Ahmadi. Recent scalability improvements for
semidefinite programming with applications in machine learning, control, and robotics. Annual
Review of Control, Robotics, and Autonomous Systems, 3:331–360, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

Matthew Newton and Antonis Papachristodoulou. Exploiting sparsity for neural network veri-
fication. In Ali Jadbabaie, John Lygeros, George J. Pappas, Pablo Parrilo, Benjamin Recht,
Claire J. Tomlin, and Melanie N. Zeilinger (eds.), Proceedings of the 3rd Conference on Learn-
ing for Dynamics and Control, volume 144 of Proceedings of Machine Learning Research, pp.
715–727. PMLR, 07 – 08 June 2021. URL https://proceedings.mlr.press/v144/
newton21a.html.

Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applica-
tions, 169:1042–1068, 2016.

Patricia Pauli, Aaron J Havens, Alexandre Araujo, Siddharth Garg, Farshad Khorrami, Frank
Allgöwer, and Bin Hu. Novel quadratic constraints for extending lipsdp beyond slope-restricted
activations. In The Twelfth International Conference on Learning Representations, 2024.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. Advances in neural information processing systems, 31, 2018.

Andrzej Ruszczynski. Nonlinear optimization. Princeton university press, 2011.

Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: Analysis and
efficient estimation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 3839–3848, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certi-
fication of perturbation invariance for deep neural networks. Advances in neural information
processing systems, 31, 2018.

Ruigang Wang and Ian Manchester. Direct parameterization of lipschitz-bounded deep networks. In
International Conference on Machine Learning, pp. 36093–36110. PMLR, 2023.

Zi Wang, Gautam Prakriya, and Somesh Jha. A quantitative geometric approach to neural-network
smoothness. In Thirty-Sixth Conference on Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=ZQcpYaE1z1r.

Zi Wang, Somesh Jha, and Krishnamurthy (Dj) Dvijotham. Efficient symbolic reasoning for neural-
network verification. arXiv preprint arXiv:2303.13588, 2023.

Zaiwen Wen, Donald Goldfarb, and Wotao Yin. Alternating direction augmented lagrangian meth-
ods for semidefinite programming. Mathematical Programming Computation, 2(3-4):203–230,
2010.

12

https://doi.org/10.1145/3555309
https://proceedings.mlr.press/v144/newton21a.html
https://proceedings.mlr.press/v144/newton21a.html
https://openreview.net/forum?id=ZQcpYaE1z1r

Published as a conference paper at ICLR 2024

Anton Xue, Lars Lindemann, Alexander Robey, Hamed Hassani, George J. Pappas, and Rajeev
Alur. Chordal sparsity for lipschitz constant estimation of deep neural networks. In 2022 IEEE
61st Conference on Decision and Control (CDC), pp. 3389–3396, 2022. doi: 10.1109/CDC51059.
2022.9993136.

Richard Zhang. On the tightness of semidefinite relaxations for certifying robustness to adversarial
examples. Advances in Neural Information Processing Systems, 33:3808–3820, 2020.

Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and Andrew Wynn.
Chordal decomposition in operator-splitting methods for sparse semidefinite programs. Math-
ematical Programming, 180(1-2):489–532, 2020.

Yang Zheng, Giovanni Fantuzzi, and Antonis Papachristodoulou. Chordal and factor-width decom-
positions for scalable semidefinite and polynomial optimization. Annual Reviews in Control, 52:
243–279, 2021.

13

Published as a conference paper at ICLR 2024

A TECHNICAL PROOFS

In this section, we provide a detailed proof for Theorem 1.

Proof. We first prove opt2 ≤ opt1. This direction is straightforward. Suppose that an optimal
solution to Problem (6) is (ζ∗, λ∗, τ∗, γ∗). By definition, this solution is also feasible to Problem (7).
Furthermore, the corresponding matrix C ⪯ 0, and thus λ+

max(C) = 0. Hence we have opt2 ≤ opt1.

Next, we prove opt1 ≤ opt2. Suppose an optimal solution to Problem (7) is (ζ0, τ0, λ0, γ0). If
this solution makes the corresponding matrix C ⪯ 0, then it is also feasible to Problem (6) with the
same cost value 1

2ζ
0. In this case, we have opt1 ≤ opt2. If λmax(C) = α > 0, then this solution is

not feasible to Problem (6). However, we can construct another optimal solution by exploiting the
structure of C. Specifically, we choose

γ′ = γ0 + α, λ′
i = λ0

i + α ζ ′ = ζ0 +
(
2 +

m∑
j=1

aj
)
α, τ ′ = τ0. (13)

We next show that this new solution is optimal for Problem (7) and also feasible for Problem (6).
Denote Λ′

1 = diag(τ ′), Λ′
2 = diag(λ′), Λ0

1 = diag(τ0), and Λ0
2 = diag(λ0). Recall the structure

of C and we have ∑m
j=1 ajλ

′
j + γ′ − ζ ′ 0 v

0 −γ′I WTΛ′
1

vT Λ′
1W −2Λ′

1 − Λ′
2


=

∑m
j=1 ajλ

0
j + γ0 − ζ0 0 v

0 −γ0I WTΛ0
1

vT Λ0
1W −2Λ0

1 − Λ0
2

− αI ⪯ 0.

Thus, the new solution in (13) is feasible for Problem (6). Furthermore, it is easy to verify that the
new solution in (13) has the same cost as the solution (ζ0, τ0, λ0, γ0) in Problem (7), which is

ζ ′

2
=

ζ0

2
+

1

2

(
2 +

m∑
j=1

aj
)
α.

We thus also have opt1 ≤ opt2.

The proof of opt1 = 2
√

opt3 can be seen from the equivalence of various forms of LipSDP, i.e. SDP
forms (1), (3), and (6). See a detailed proof for the equivalence of (1), (3), and (6) in Appendix E.
Now our proof is complete.

Upon choosing ρ > 2+
∑n

j=1 aj as the penalty parameter in Problem (7), one can further show that
any optimal solution to (7) makes the corresponding C ⪯ 0, thus the second case in the proof above
never happens. We put this result as a lemma below.
Lemma 1. Let ρ > 2 +

∑n
j=1 aj as the penalty parameter in Problem (7). Then any optimal

solution to (7) makes the corresponding C ⪯ 0.

Proof. Let (ζ0, λ0, τ0, γ0) be an arbitrary optimal solution to Problem (7). For the sake of deriving
contradiction, suppose the corresponding C0 has λmax

(
C0

)
= α > 0. We construct another

solution (ζ ′, τ ′, λ′, γ′) by

γ′ = γ0 + α, λ′
i = λ0

i + α, ζ ′ = ζ0 +

(m∑
j=1

aj + 2

)
α, τ ′ = τ0. (14)

Then the corresponding C ′ satisfies

C ′ =

∑m
j=1 ajλ

′
j + γ′ − ζ ′ 0 v

0 −γ′I WTΛ′
1

vT Λ′
1W −2Λ′

1 − Λ′
2


=

∑m
j=1 ajλ

0
j + γ0 − ζ0 0 v

0 −γ0I WTΛ0
1

vT Λ0
1W −2Λ0

1 − Λ0
2

− αI ⪯ 0.

14

Published as a conference paper at ICLR 2024

When ρ > 2 +
∑n

j=1 aj , we find that (ζ ′, τ ′, λ′, γ′) has the strictly lower cost than (ζ0, τ0, λ0, γ0):

ζ ′

2
+ ρλ+

max(C
′) =

ζ0

2
+

1

2

(
2 +

m∑
j=1

aj

)
α+ 0 <

ζ0

2
+ ρα =

ζ0

2
+ ρλ+

max

(
C0

)
,

which contradicts the optimality of (ζ0, τ0, λ0, γ0) to Problem (7).

B ANALYTICAL SOLUTION FOR THE EIGENVALUE PROBLEM

Let us start with the two-layer network and derive an initial solution to the SDP problem (Equa-
tion (7)). We use the SDP for a two-layer network as an example. Recall that

C =

∑m
j=1 ajλj + γ − ζ 0 v

0 −γI WTΛ1

vT Λ1W −2Λ1 − Λ2

 ,

where Λ1 = diag(τ), and Λ2 = diag(λ). Clearly, Λ2 comes from redundant constraints. Now we
can let λ = 0, then we basically reduce C to a similar constraint of LipSDP, then we want to find an
analytical solution to

C =

γ − ζ 0 v
0 −γI WTΛ1

vT Λ1W −2Λ1

 ⪯ 0,

and minimize ζ.

Let A =

[
γI −WTΛ1

−Λ1W 2Λ1

]
.

By the Schur complement lemma, to have C ⪯ 0, we need A ≻ 0 and

ζ − γ − (0,−v)A−1((0,−v))T ≥ 0.

We use (A−1)22 to denote the second row and second column block matrix of A−1.

Again, by the Schur complement lemma, to have A ≻ 0, we need γ > 0 and

2Λ1 − Λ1W
TWΛ1/γ ⪰ 0.

We can set Λ1 = aI , and γ = b ∥W∥2op:

2aI − a2

b ∥W∥2op
WTW ⪰ a(2− a

b
)I.

Then we need 2b > a.

From the block matrix inversion formula, we have

(A−1)22 = (2T − TWTWT/γ)−1.

With the choice of Λ1 and γ, we have∥∥(A−1)22
∥∥
op

≤ (a(2− a

b
))−1 =

b

a(2b− a)
.

Then

v(A−1)22v
T ≤ b

a(2b− a)
∥v∥ .

To have ζ − γ − v(A−1)22v
T ≥ 0, we need

ζ − γ − b

a(2b− a)
∥v∥2 ≥ 0,

15

Published as a conference paper at ICLR 2024

then we need

ζ = b ∥W∥2op +
b

a(2b− a)
∥v∥2 .

We can let a = b = ∥v∥
∥W∥op

, then we have

ζ = 2 ∥W∥op ∥v∥ .

Because we will divide the ζ by 2, this recovers the naive upper bound of ℓ2 Lipshitz constant:
∥W∥op ∥v∥.

For general multi-layer networks, the derivation is essentially the same as the two-layer network
case. It is a more careful recursive application of the Schur complement lemma and the block matrix
inversion formula. Let us use a three-layer network to illustrate the recursive structure for multi-layer
networks.

We have

C =

γ − ζ 0 0 v
0 −γI WT

1 Λ1 0
0 Λ1W1 −2Λ1 W2Λ2

vT 0 Λ2W2 −2Λ2

 ⪯ 0

and minimize ζ.

Let

C1 =

 γI −WT
1 Λ1 0

−Λ1W1 2Λ1 −W2Λ2

0 −Λ2W2 2Λ2


and

C2 =

[
γI −WT

1 Λ1

−Λ1W1 2Λ1

]
.

Let

A1 =

 γI −WT
1 Λ1 0

−Λ1W1 Λ1 0
0 0 0


and

A2 =

[
0 0 0
0 Λ1 −W2Λ2

0 −Λ2W2 2Λ2

]
,

so A1 +A2 = C1.

From the Schur complement lemma, we need

ζ − γ − (0, 0,−v)C−1
1 (0, 0, v)T ≥ 0

and C1 ≻ 0.

To have C1 ≻ 0, we can have A1 ⪰ 0 and A2 ⪰ 0 (we need at least one strict inequality, and our
final assignment of the values will achieve this). To have A1 ⪰ 0, we have γ > 0 and

Λ1 − Λ1W
T
1 W1Λ1/γ ⪰ 0.

We can set γ = a(∥W1∥op ∥W2∥op)2 and Λ1 = b ∥W2∥2op I:

b ∥W2∥2op I −
b2 ∥W2∥2op
a ∥W1∥2op

WT
1 W1 ⪰ b ∥W2∥2op (1−

b

a
)I.

To have A2 ≥ 0, we need b > 0 and

2Λ2 − Λ2W
T
2 W2Λ2/(b ∥W2∥2op) ⪰ 0.

16

Published as a conference paper at ICLR 2024

We can set Λ2 = cI:

2cI − c2

b ∥W2∥2op
WT

2 W2 ⪰ c(2− c

b
)I.

As a result, we only need b ≤ a and c ≤ 2b.

To have
ζ − γ − (0, 0,−v)C−1

1 (0, 0, v)T ≥ 0,

we need to use the block inversion formula:

[C−1
1]33 = (−2Λ2 − (0,−Λ2W2)C

−1
2 (0,−Λ2W2)

T)−1.

[C−1
2]22 = (2Λ1 −WT

1 Λ1Λ1W1/γ)
−1.

[C−1
1]33 = (2cI − (Λ2W2(2Λ1 −WTΛ1Λ1W1/γ)

−1WT
2 Λ2))

−1.∥∥[C−1
1]33

∥∥
op

=
∥∥(2cI − (Λ2W2(2Λ1 −WT

1 Λ1Λ1W1/γ)
−1WT

2 Λ2))
−1

∥∥
op

≤ (2c −
c2 ∥W2∥2op (2b ∥W2∥2op − b2 ∥W2∥2op /a)−1)−1.

Notice that this has recursive inequalities to make the constraint work:
∥∥WTTWT

∥∥
op

≤ c ∥W∥op.

To have
ζ − γ − v(C−1

1)33v
T ≥ 0,

we only need

ζ = a(∥W1∥op ∥W2∥op)
2 + ∥v∥2 (2c− c2 ∥W2∥2op (2b ∥W2∥2op − b2 ∥W2∥2op /a)

−1)−1.

We set a = b = c = ∥v∥
∥W1∥op∥W2∥op

. This would recover the naive bound of ∥W1∥op ∥W2∥op ∥v∥.

More generally, if we have a general multiple-layer network, we only need to apply the Schur com-
plement lemma and the matrix inverse formula recursively:

∑
(a

(i)
j)λj + γ − ζ 0 0 . . . v

0 −γI W (1)Λ1 . . . 0
...

. . .
...

vT 0 . . . Λd−1(W
d−1)T −2Λd−1 − Sd−1

 .

We can set all S = 0, and for each Λj = Πd−1
i=j+1c ∥Wi∥2op, where c = ∥v∥

Πd−1
i=1 c∥Wi∥op

. γ =

∥v∥Πd−1
i=j+1c ∥Wi∥op, and ζ = 2 ∥v∥Πd−1

i=1 c ∥Wi∥op.

C PSEUDOCODE OF LIPDIFF

Here we provide the pseudo-code of the LipDiff algorithm (Algorithm 1). Notice that one can
substitute the direct ADAM optimizer with more complicated scheduling methods on learning rates
and other optimizers such as the stochastic gradient descent optimizer.

D OTHER EXPERIMENTAL SPECIFICATIONS

LipDiff variants specification. LipDiff uses all the optimization techniques proposed in Section 5.
LipDiff-Ex uses the explicit matrix formulation to exactly compute the eigenvalue, thus it is a dense
representation, and also it applies the analytical initialization. LipDiff-Dense uses eigenvalue ap-
proximation but implements it using dense matrix multiplication. LipDiff-Rand uses the sparse

17

Published as a conference paper at ICLR 2024

Algorithm 1 The LipDiff Algorithm
Input: The weight matrices [Wi]

d
i=1 of a neural network.

Output: The Lipschitz constant of the neural network.
Hyperparameters: Number of Iterations n; Lanczos steps l; Step size α

1: Declare decision/dual variables as in Equation (11) and assign their values according to Ap-
pendix B

2: Create an ADAM optimizer for the dual variables with learning rate α
3: for n iterations do
4: Create the SDP constraint Equation (11) with [Wi]

d
i=1 and the dual variables.

5: Compute the Lanczos submatrix L of size l × l of C
6: Define the loss function as Equation (12)
7: Compute the subgradient of the loss function via autodiff and update the dual variables
8: end for
9: Return the loss value

matrix multiplication to approximate the eigenvalue but initializes the algorithm with random as-
signments. We made the following design choice: For the implementations using the Lanczos algo-
rithm to approximate the maximum eigenvalue, we also include the original constraint to compute
the exact eigenvalue, and all the reported numbers come from the exact eigenvalue.

Server specification. All the experiments are run on a server with thirty-two AMD EPYC 7313P
16-core processors, 528 GB of memory, and four Nvidia A100 GPUs. Each GPU has 80 GB of
memory.

Training specification. We train all the networks with the SGD optimizer with a learning rate
0.02, momentum 0.9, and weight decay of 0.0008. We train MNIST networks for 50 epochs, and
CIFAR10 networks for 200 epochs.

LipDiff specifications. For LipDiff, we apply the interval scheduling of step sizes. We divide the
number of iterations into n groups. Within each group, we start from a step size α and exponentially
decay the step size to α/10.

For MNIST-DNN, we run LipDiff for a total of 1000 iterations, and divide the 1000 iterations into
2 groups. The step size is initialized to 0.04. We use Lanczos steps 15.

For MNIST-CNN, we run LipDiff for a total of 2000 iterations, and divide the 1000 iterations into 4
groups. The step size is initialized to 0.05. We use Lanczos steps 30.

For CIFAR10-CNN, we run LipDiff for a total of 2000 iterations, and divide the 2000 iterations to
5 groups. The step size is initialized to 0.06. We use Lanczos steps 50.

E ON THE EQUIVALENCE OF DIFFERENT FORMS OF LIPSDP

E.1 ON THE EQUIVALENCE OF SDP FORMS (1) AND (3)

In this section, we establish the equivalence between (1) and (3). To make our proof more readable,
we slightly change the notation of (1). Specifically, (1) is exactly the same as the following problem:

min
ζ̂,τ̂

ζ̂

subject to
[

−ζ̂I WT diag(τ̂)
diag(τ̂)W −2 diag(τ̂) + vTv

]
⪯ 0, τ̂ ≥ 0,

(15)

18

Published as a conference paper at ICLR 2024

We restate (3) below

min
ζ,τ,γ

ζ

subject to

γ − ζ 0 v
0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)

 ⪯ 0,

ζ ≥ 0, τ ≥ 0, γ ≥ 0.

(16)

Next, we will prove the following result which establishes the equivalence of (15) and (16).

Proposition 1. Denote the optimal values of (15) and (16) as ζ̂∗ and ζ∗, respectively. Then ζ∗ =

2

√
ζ̂∗.

Proof. If v = 0, then we trivially have ζ∗ = 2

√
ζ̂∗ = 0. For the rest of the proof, we assume that v

is not a zero vector. In this case, any feasible solution to (16) implies that γ − ζ < 0.

By Schur complement, (16) is equivalent to the following problem:

min
ζ,τ,γ

ζ

subject to
[

−γI WT diag(τ)
diag(τ)W −2 diag(τ) + 1

ζ−γ v
Tv

]
⪯ 0,

γ < ζ, ζ ≥ 0, τ ≥ 0, γ ≥ 0.

(17)

In other words, the optimal solution for (17) is also given by ζ∗.

Let (ζ̂∗, τ̂∗) be the optimal feasible point for (15). If we choose γ =

√
ζ̂∗, ζ = 2γ = 2

√
ζ̂∗, and

τ = γτ̂∗ =

√
ζ̂∗τ̂∗, then we have[

−γI WT diag(τ)
diag(τ)W −2 diag(τ) + 1

ζ−γ v
Tv

]
=

1√
ζ̂∗

[
−ζ̂∗I WT diag(τ̂∗)

diag(τ̂∗)W −2 diag(τ̂∗) + vTv

]
⪯ 0.

Therefore, the above choice of (γ, ζ, τ) must be a feasible point for (17). Consequently, the optimal
value of (17) must be upper bounded by the value of ζ in this feasible point, which is ζ = 2γ =

2

√
ζ̂∗. Therefore, we have ζ∗ ≤ 2

√
ζ̂∗

Next, we show ζ∗ ≥ 2

√
ζ̂∗. Let us introduce the following problem

min
ζ,τ,γ

2
√
γ(ζ − γ)

subject to
[

−γI WT diag(τ)
diag(τ)W −2 diag(τ) + 1

ζ−γ v
Tv

]
⪯ 0,

γ < ζ, ζ ≥ 0, τ ≥ 0, γ ≥ 0.

(18)

This problem has the same feasible set as (17). Note that, for any point in the feasible set, we must
have 2

√
γ(ζ − γ) ≤ ζ (this is equivalent to ζ2 − 4ζγ + 4γ2 ≥ 0). Therefore, considering the same

feasible point, the objective function of (18) is always upper bounded by the objective function of
(17). Denote the optimal solutions of (18) and (17) as (ζ†, τ †, γ†) and (ζ∗, τ∗, γ∗), respectively.
Clearly, (ζ∗, τ∗, γ∗) is also a feasible point for (18). Then we must have

2
√
γ†(ζ† − γ†) ≤ 2

√
γ∗(ζ∗ − γ∗) ≤ ζ∗. (19)

Finally, if we choose τ̂ = (ζ† − γ†)τ † and ζ̂ = γ†(ζ† − γ†). Then we have[
−ζ̂I WT diag(τ̂)

diag(τ̂)W −2 diag(τ̂) + vTv

]
= (ζ† − γ†)

[
−γ†I WT diag(τ †)

diag(τ †)W −2 diag(τ †) + 1
ζ†−γ† v

Tv

]
⪯ 0

19

Published as a conference paper at ICLR 2024

Therefore, this choice of (ζ̂, τ̂) gives a feasible point for (15), and we have

ζ̂∗ ≤ ζ̂ = γ†(ζ† − γ†). (20)

A trivial combination of (19) and (20) leads to the desired conclusion ζ∗ ≥ 2

√
ζ̂∗.

To summarize, we have established that ζ∗ = 2

√
ζ̂∗. Our proof is now complete.

Remark 1. The above proof gives the right scaling between ζ∗ and ζ̂∗. Now we provide a more
intuitive treatment to explain how the factor of 2 appears in the scaling. Specifically, as mentioned
in our main paper, if the semidefinite constraint in (3) is feasible, then the neural network is ξ

2 -
Lipschitz. Now we provide a proof for this fact. Recall that we have f(x) = vσ(Wx + b0) + b1,
where f(x) is a scalar. Obviously, the tightest Lipschitz bound is given by

Lmin = max
x′,x

|f(x′)− f(x)|
∥x′ − x∥

. (21)

For any L ≥ Lmin, we have |f(x′) − f(x)| ≤ L∥x′ − x∥ ∀x′, x. By using the slope-restricted
property of σ, one upper bound for Lmin is provided by the solution of the following problem which
basically replaces σ with the quadratic constraint in Fazlyab et al. (2019, section 2.2):

max
∆x,∆z

|v∆z|
∥∆x∥

s. t.
[
W∆x
∆z

]T [
0 diag(τ)

diag(τ) −2 diag(τ)

] [
W∆x
∆z

]
≥ 0, (22)

where ∆z = σ(Wx′ + b0)− σ(Wx+ b0), ∆x = x′ − x, and τ is any vector whose entrieis are all
non-negative. If we scale ∆x and ∆v with a common factor, the constraint in (22) is maintained,
and the cost remains unchanged . Therefore, (22) is equivalent to the following problem

max
∆x,∆z

v∆z s. t.
[
W∆x
∆z

]T [
0 diag(τ)

diag(τ) −2 diag(τ)

] [
W∆x
∆z

]
≥ 0, ∥∆x∥ = 1.

Notice that the absolute value in the objective is removed due to the fact that scaling (∆x,∆z) with
−1 does not affect feasibility. If we replace the equality constraint ∥∆x∥ = 1 with an inequality
constraint ∥∆x∥ ≤ 1, then we get the following problem whose solution is an upper bound for (22).

max
∆x,∆z

v∆z s. t.
[
W∆x
∆z

]T [
0 diag(τ)

diag(τ) −2 diag(τ)

] [
W∆x
∆z

]
≥ 0, ∥∆x∥ ≤ 1. (23)

Denote the optimal value of the above problem as Lu. Then Lu is an upper bound for Lmin. It is
obvious that any upper bound for Lu will also be Lmin. Next, we will show that if the semidefinite
constraint in (3) is feasible, then we have ζ

2 ≥ Lu ≥ Lmin, and hence f is ζ
2 -Lipschitz. Specifically,

if the semidefinite constraint in (3) is feasible, we immediately have[
1
∆x
∆z

]T
γ − ζ 0 v

0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)

[
1
∆x
∆z

]
≤ 0

which leads to

γ(1− ∥∆x∥2) + 2v∆z − ζ +

[
∆x
∆z

]T [
0 WT diag(τ)

diag(τ)W −2 diag(τ)

] [
∆x
∆z

]
≤ 0

Under the constraints in (23), we have ∥∆x∥ ≤ 1 and[
∆x
∆z

]T [
0 WT diag(τ)

diag(τ)W −2 diag(τ)

] [
∆x
∆z

]
≥ 0.

Therefore, we must have v∆z ≤ ζ
2 and ζ

2 becomes an upper bound of Lu. This leads to the con-
clusion that f is ζ

2 -Lipschitz. The factor of 2 is due to v∆z +∆zTvT = 2v∆ for the scalar output
case.

20

Published as a conference paper at ICLR 2024

E.2 ON THE EQUIVALENCE OF SDP FORMS (3) AND (6)

In this section, we establish the equivalence between (3) and (6). Formally, we have the following
result.
Proposition 2. Denote the optimal values of (3) and (6) as ζ∗ and ζ‡, respectively. Then we have
ζ∗ = ζ‡.

Proof. First, we will prove ζ∗ ≥ ζ‡. Suppose the optimal feasible point for (3) is given by
(ζ∗, τ∗, γ∗). Then we can choose ζ = ζ∗, τ = τ∗, γ = γ∗, and λ = 0, which gives a feasi-
ble point for (6). Then this feasible point whose value is exactly ζ∗ gives an upper bound for the
optimal value of (6). Consequently, we must have ζ∗ ≥ ζ‡.

Next, we will prove ζ∗ ≤ ζ‡. Suppose the optimal feasible point for (6) is given by (ζ‡, λ‡, τ ‡, γ‡).
Then we choose ζ = ζ‡, τ = τ ‡ + λ‡, and γ = γ‡ +

∑n
j=1 ajλ

‡
j , and show this gives a feasible

point for (3) which has the value ζ‡. To show that our choice gives a feasible point for (3), we only
need to verify that the following matrix inequality holds for our choice of (ζ, τ, γ):γ − ζ 0 v

0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)

 ⪯ 0 (24)

To verify (24), we can perform the following calculation:γ − ζ 0 v
0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)


=

γ‡ +
∑n

j=1 ajλ
‡
j − ζ‡ 0 v

0 −(γ‡ +
∑n

j=1 ajλ
‡
j)I WT diag(τ ‡ + λ‡)

vT diag(τ ‡ + λ‡)W −2 diag(τ ‡ + λ‡)


=

γ‡ +
∑n

j=1 ajλ
‡
j − ζ‡ 0 v

0 −γ‡I WT diag(τ ‡)
vT diag(τ ‡)W −2 diag(τ ‡)− diag(λ‡)

+

0 0 0

0 −(
∑n

j=1 ajλ
‡
j)I WT diag(λ‡)

0 diag(λ‡)W −diag(λ‡)


where the first term is known to be negative semidefinite due to the fact that (ζ‡, λ‡, τ ‡, γ‡) gives a
feasible point for (6). Therefore, (24) holds as desired if we can show that the second term is also
negative semidefinite. By Schur complement, this is equivalent to verifying

−(

n∑
j=1

ajλ
‡
j)I +WT diag(λ‡)W ⪯ 0

Since we have WT diag(λ‡)W =
∑n

j=1 λ
‡
jW

T
j Wj , we only need to verify

−(

n∑
j=1

ajλ
‡
j)I +

n∑
j=1

λ‡
jW

T
j Wj ⪯ 0

Since aj = ∥Wj∥2, we do have λ‡
jW

T
j Wj ⪯ λ‡

jajI for all j. This leads to the desired conclusion
that (24) holds. Therefore, we have obtained a feasible point for (3) which gives the value ζ‡, and
the optimal value of (3) can only be smaller than or equal to ζ‡. This proves ζ∗ ≤ ζ‡.

To summarize, we must have ζ∗ = ζ‡, and hence (3) and (6) are equivalent.

F EXTENDING OUR RESULTS TO THE VECTOR OUTPUT CASE

In this section, we discuss how to extend EP-LipSDP for the scalar output case to the vector output
case. The extension is actually quite straightforward. First, we consider the single-layer case. Con-
sider f(x) = V σ(Wx + b0) + b1, where x ∈ Rnx , W ∈ Rn×nx , b0 ∈ Rn, v ∈ Rm×n, b1 ∈ Rm,
and f(x) ∈ Rm. The neural network f : Rnx → Rm, has n neurons, and σ is assumed to be

21

Published as a conference paper at ICLR 2024

slope-restricted on [0, 1]. In this primal domain, the following QCQP provides the Lipschitz upper
bound for f :

max ∥V∆z∥2

subject to (∆zi −Wi∆x)∆zi ≤ 0, ∀i ∈ [n]

∥∆x∥ ≤ 1.

(25)

Obviously, Shor’s relaxation of the above QCQP is the dual program of the original LipSDP (for
the vector output setting). Similar to our previous development, we can introduce redundant trace
constraints to (25) and obtain

max ∥V∆z∥2

subject to (∆zi −Wi∆x)∆zi ≤ 0, ∀i ∈ [n]

∥∆x∥ ≤ 1

∆z2i ≤ ∥Wi∥2op ,∀i ∈ [n].

(26)

Then it is straightforward to verify the dual of the Shor’s SDP relaxation of (26) reads as
min

ζ,λ,τ,γ
ζ

subject to

∑n
j=1 ajλj + γ − ζ 0 0

0 −γI WT diag(τ)
0 diag(τ)W −2 diag(τ)− diag(λ) + V TV

 ⪯ 0,

ζ ≥ 0, λ ≥ 0, τ ≥ 0, γ ≥ 0.

(27)

Since the dual program of the above SDP has an explicit trace constraint, the penalty formulation of
the above SDP will be exact. We define

C :=

∑n
j=1 ajλj + γ − ζ 0 0

0 −γI WT diag(τ)
0 diag(τ)W −2 diag(τ)− diag(λ) + V TV

 .

Then we have the following EP-LipSDP for the vector output case:

min
ζ≥0,λ≥0,τ≥0,γ≥0

ζ +
(
2 +

n∑
j=1

aj

)
λ+
max(C). (28)

The penalty parameter is set as 2+
∑n

j=1 aj , which aligns well with our previous developments. We
can use the same argument that we developed previously to show that the above EP-LipSDP form
has exactly the same optimal value as the original LipSDP.

By slightly modifying the above argument, we can also obtain EP-LipSDP for a multi-layer vector-
output network. Specifically, one just removes v and vT from the matrix C and then add V TV to
the last block of C. Then the rest of the EP-LipSDP formulation will hold exactly the same as the
scalar output case.

F.1 INITIALIZATION FOR THE VECTOR OUTPUT CASE

Recall the SDP for the vector output of a two-layer network is
min

ζ,λ,τ,γ
ζ

subject to

∑n
j=1 ajλj + γ − ζ 0 0

0 −γI WT diag(τ)
0 diag(τ)W −2 diag(τ)− diag(λ) + V TV

 ⪯ 0,

ζ ≥ 0, λ ≥ 0, τ ≥ 0, γ ≥ 0.

(29)

We can choose λj = 0, and then we only need γ−ζ ≤ 0 and
[

−γI WT diag(τ)
diag(τ)W −2 diag(τ) + V TV

]
⪯

0. By Schur’s lemma, we only need: γ > 0 and

2 diag(τ)− V TV − 1

γ
diag(τ)WWT diag(τ) ⪰ 0.

22

Published as a conference paper at ICLR 2024

Let diag(τ) = aI , then we want

2aI − V TV − a2

γ
WWT ⪰ 0.

We can choose a = ∥V ∥op and γ = ∥V ∥2op ∥W∥2op, and ζ = ∥V ∥2op ∥W∥2op. Because we will
square root ζ to estimate the Lipschitz constant, this recovers the naive upper bound of the Lipschitz
constant: ∥V ∥op ∥W∥op.

For 3-layer network, the SDP constraint is:

C =

γ − ζ 0 0 0
0 −γI WT

1 Λ1 0
0 Λ1W1 −2Λ1 W2Λ2

0 0 Λ2W2 −2Λ2 + V TV

 ⪯ 0

Let

C1 =

γ − ζ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

C2 =

0 0 0 0
0 −γI WT

1 Λ1 0
0 Λ1W1 −Λ1 0
0 0 0 0

 ,

and

C3 =

0 0 0 0
0 0 0 0
0 0 −Λ1 W2Λ2

0 0 Λ2W2 −2Λ2 + V TV

 .

Clearly, C = C1 + C2 + C3, then we only need C1, C2, C3 ⪯ 0.

We can have Λ1 = aI , Λ2 = bI . To have C3 ⪯ 0, then by the Schur complement lemma, we need

2bI − V TV − b2

a
W2W

T
2 ⪰ 0.

We can have b = ∥V ∥2op and a = ∥V ∥2op ∥W2∥2op
To have C2 ⪯ 0, we need

aI − a2

γ
W1W

T
1 ⪰ 0.

We can have γ = a ∥W1∥2op = ∥V ∥2op ∥W2∥2op ∥W1∥2op.

In general, for a multi-layer network, we can apply the above argument recursively:
γ − ζ 0 0 . . . 0
0 −γI W (1)Λ1 . . . 0
...

. . .
...

0 0 . . . Λd−1(W
d−1) −2Λd−1 + V TV

 .

We will have γ = ζ = Πd−1
i=1 ∥Wi∥2op ∥V ∥2op and Λi = Πd−1

j=i+1 ∥Wj∥2op ∥V ∥2op · I .

23

Published as a conference paper at ICLR 2024

Table 3: In this table, we present results of comparing different variants of our approach to LipSDP
on a few MNIST DNNs. Among all the results, we can see that if we use the exact eigenvalue
computation instead of Lanczos approximation, LipDiff results in very close values to MOSEK’s
results on all three DNN architectures.

Datasets Models Product LipSDP-MOSEK LipSDP-SCS LipDiff LipDiff-Ex LipDiff-Dense LipDiff-Rand LB

MNIST DNN
Result 9.31 4.82 4.82 4.90 4.86 4.96 5.89 1.57
Time (s) 0.13 54.57 2706.5 28.69 19.27 12.48 29.27 4.86
Memory (MB) 1.54 169.83 256.46 118 114 114 118 2134

MNIST WIDE
Result 9.27 4.87 4.87 4.93 4.89 4.93 5.57 1.51
Time (s) 0.10 214.67 5014.93 65.89 41.85 29.03 64.10 4.88
Memory (MB) 3.23 297.68 415.90 230 192 192 230 2424

MNIST DNN3
Result 17.29 7.43 7.38 7.76 7.51 7.60 11.47 2.03
Time (s) 0.12 649.40 13736.16 238.40 128.50 83.55 241.34 4.95
Memory (GB) 3.23 585.60 810.26 362 284 284 362 2622

G ADDITIONAL EXPERIMENTAL RESULTS

We provide more experiments on two additional architectures on MNIST that the LipSDP-MOSEK
solver can handle: 1. A single hidden layer with 512 hidden nodes (denoted as WIDE); 2. a two-
hidden-layer network (denoted as DNN3), and each of the hidden layers has 512 ReLU nodes.

Additionally, we provide two new baselines: LB and LipSDP-SCS. For LB, we randomly sampled
500, 000 points from the input space and computed the maximum ℓ2 norm of all the gradients in-
duced on these samples, which serve as a lower bound. For SCS, we used the default SCS solver
provided by CVXPY to solve the SDP program, with max iterations of 2, 500. Notice that SCS
solver cannot scale to the MNIST-CNN network, similar to the MOSEK solver. The specification of
MNIST-DNN is included in the main paper.

The results are summarized in Table 3.

Notice that we do not know how good the lower bound is because the number of samples is un-
likely to be sufficient. For example, even if we only consider the vertices of the input on the [0,1]-
hypercube, there would be 2784 vertices for MNIST and 23072 vertices for CIFAR10, which are
much greater than 500,000.

For SCS, we notice that if we set the max iterations too small (for example, 50), the result can
be very unstable. It can return either 0 or inf, which is not useful at all. On MNIST-DNN3, SCS
provided a value smaller than the MOSEK solver, which we do not know whether it is a valid upper
bound for the Lipschitz constant. However, LipDiff always returns a valid upper bound.

On the other hand, because the network is relatively small compared to CNNs, computing exact
eigenvalue and using the dense representation of the matrix is more efficient than the sparse repre-
sentation. The results from LipDiff-Ex and LipDiff-Dense are more desirable. However, because
the main goal of LipDiff is to scale LipSDP to huge networks that the general SDP solver cannot
handle at all, sparse representation and the Lanczos approximation would be more appropriate for
these cases, as shown in Table 2.

H ALEXNET EXPERIMENTAL RESULT

AlexNet consists of two parts: a feature extraction sub-network and a classifier sub-network. Be-
cause the operator norm is sub-multiplicative, we apply the scalar LipDiff on the classifier, and also
the vector output version of LipDiff on the feature extraction network. More specifically, the feature
extraction network contains three separated convolutional parts, and we apply LipDiff on the final
convolutional part, which consists of three consecutive convolutional layers, and all of them have
3× 3 kernels and padding 1. For the classifier sub-network, it contains 3 fully connected layers.

For the classifier, we again choose class 8 as in the evaluations of MNIST and CIFAR10. If we
expand the matrix of the classifier, the SDP has a size of 17 409× 17 409. The matrix norm product
bound of the classifier is 67.77, while LipDiff produces the Lipschitz constant of 22.41, which leads
to a 66.9% decrease.

For the three convolutional layers, if we expand the matrix of the classifier, the SDP has a size
of 140 609 × 140 609. The matrix norm product bound of the classifier is 2886.73, while LipDiff

24

Published as a conference paper at ICLR 2024

Table 4: We summarize AlexNet experimental results: we run scalar-LipDiff on the classifier part,
and vector-LipDiff on a sub-network of the feature extractor. On the classifier, LipDiff achieves
a 66.9% improvement on the Lipschitz constant estimation; and on the feature extractor, LipDiff
decreases the Lipschitz constant by 18.4%, compared to the matrix-norm bound. Combining these
two results, LipDiff achieves a total of 73% improvement for AlexNet Lipschitz constant estimation
compared to the matrix norm product bound.

Model Structure SDP size Matrix Norm Bound LipDiff Improvement
classifier 3FC 17 409× 17 409 67.77 22.41 66.9%
feature extractor 3C 140 609× 140 609 2886.73 2354.77 18.4%

produces the Lipschitz constant of 2354.77, which leads to a 18.4% decrease. In this experiment,
because the matrix is very large, we are unable to get the exact eigenvalue, instead we used Lanczos
algorithm to estimate the eigenvalue with Lanczos steps 9200. The initialization for the vector ex-
LipSDP comes from appendix F.1.

Combining the results from both parts, LipDiff reduces the Lipschitz constant of AlexNet by 73%
compared to the naive matrix norm product bound.

I FURTHER DISCUSSIONS AND EXPLANATIONS

I.1 TECHNICAL NOVELTY

In this section, we briefly summarize the technical novelty of our work.

Adding redundant trace constraint: To obtain the exact penalty form of LipSDP, we need to add
an explicit redundant trace constraint to the primal form of LipSDP. How to add this explicit trace
constraint highly depends on the network structure, and there is no general recipe for doing this.
We delicately exploit the structure of the neural network to add the redundant trace constraint in a
layer-by-layer manner, leading to the first exact penalty form of LipSDP.

Proof techniques beyond Liao et al. (2023) and Ding & Grimmer (2023): Our exact penalized
SDP formulation is motivated by the recent advances on first-order methods for convex nonsmooth
optimization (Liao et al., 2023; Ding & Grimmer, 2023). However, our result is not simply a direct
application of their results. In particular, all the existing results from Liao et al. (2023) and Ding
& Grimmer (2023) require the penalty parameter to be strictly larger than the trace bound of the
semidefinite variable, while our main technical results in Theorem 1 and Theorem 2 allow for the
non-strict inequality, i.e., our penalty parameter only needs to be larger than or equal to the trace
bound. Also, our proofs for Theorem 1 and Theorem 2 directly exploit the neural network structure,
and consequently our argument is simpler than those in Liao et al. (2023) and Ding & Grimmer
(2023). Our proof is also self-contained, while those of Liao et al. (2023); Ding & Grimmer (2023)
reply on other technical results, such as strong duality and a general penalized result in Ruszczynski
(2011, Theorem 7.21).

Network-dependent tricks for making our algorithm LipDiff work on practical problems:
In Section 5, we provide further network-dependent tricks for making our method LipDiff work on
practical problems. Our tricks include analytically deriving an initialization with nontrivial matrix
analysis (see Appendix B) and utilizing the sparse structure of the constraint to faster approximate
the maximum eigenvalue. This analytical initialization guarantees that our method is always as good
as the matrix norm product (which is currently the state-of-the-art technique for estimating Lipschitz
bounds of large neural networks) and makes LipDiff practical. From our empirical evaluation, for
large networks (MNIST/CIFAR10-CNNs), if we randomly initialize the variables, it is very hard
for LipDiff to find a good solution. We propose to initialize from a feasible point that exactly cor-
responds to the matrix norm product bound, and we leverage matrix analysis tools to derive the
analytical form of this initial point. Such a development depends on the network structure, and is
completely a new contribution.

25

Published as a conference paper at ICLR 2024

I.2 POSSIBILITY OF TIGHTENING LIPSDP

To the best of our knowledge, LipSDP is recognized as the method that can give the least conser-
vative ℓ2-Lipschitz upper bound with polynomial time guarantees. On small-scale problems where
LipSDP can be efficiently solved, numerically it has been very difficult to find a polynomial-time
algorithm that can give less conservative ℓ2-Lipschitz upper bounds than LipSDP. Therefore, it is
reasonable to focus on how to make LipSDP scalable and memory-efficient. How to tighten LipSDP
is beyond the scope of this paper. Tightening LipSDP is an interesting problem and hence should be
pursued in the future. In the meantime, given the current redundant trace constraint, tuning the pa-
rameter ρ may not be the right way to tighten LipSDP. Specifically, we have theoretically proved that
LipSDP with or without the redundant trace constraint (i.e. (3) and (6) in our paper) actually give
the same solution (see Appendix E for a detailed proof). It is true that adding redundant constraints
can refine the solutions for many SDP relaxations. However, for LipSDP, it is quite unfortunate that
the current redundant trace constraint does not refine the solution quality. Consequently, given the
current redundant trace constraint, tuning ρ does not seem to be the plausible way to tighten LipSDP.
We agree that it is possible to develop other redundant constraints that may be incorporated into the
original QCQP formulation to tighten LipSDP. This will be a future direction for us.

I.3 RELATION BETWEEN SDPS IN LIPSCHITZ ESTIMATION AND LOCAL ROBUSTNESS
VERIFICATION

There are recent advances in SDP formulation for the robustness verification of neural networks.
One of the early formulations appeared in Raghunathan et al. (2018). Indeed, the high-level ideas in
both robustness verification and Lipschitz constant estimation are very similar: both of them formu-
late the problems into a QCQP form and then relax the QCQP using standard Lagrangian relaxation
or Shor’r relaxation. In principle, if one can formulate a better QCQP form (i.e., adding some ef-
fective redundant constraints, see e.g., Batten et al. (2021)), the resulting SDP formulation would
provide a better estimation. Some tightness analysis was carried out in Zhang (2020), however, the
assumptions therein are very restrictive, which may not hold for practical neural networks. The
paper by Dathathri et al. (2020) aims to develop a customized first-order solver to improve the scal-
ability of the SDP in Raghunathan et al. (2018). Our work is also partially motivated by Dathathri
et al. (2020). We note that the SDP formulations for the robustness verification of neural networks
and Lipshcitz estimation are indeed very different. The line of work on robustness verification may
give new insights, but it is nontrivial to directly apply those advances. For example, we have proved
that adding some redundant constraints in our formulation does not improve the tightness of the
resulting SDP formulation. It is a promising direction to unify the QCQP and SDP formulations and
their solutions for both robustness verification and Lipchitz constant estimation.

I.4 RELATED WORK ON POLYNOMIAL OPTIMIZATION

Mai et al. (2022) considers a constant trace property in polynomial optimization. In particular, the
variable X satisfies trace(X) = c, which is a constant. Then, Mai et al. (2022) translate this con-
stant trace formulation into an eigenvalue problem via a standard procedure in Helmberg & Kiwiel
(2002). However, this property does not hold in LipSDP arising from the Lipschitz constant estima-
tion of neural networks. Indeed, our first theoretical guarantees in Theorem 1 and Theorem 2 offer
new exact penalty SDP formulations that are suitable for the application of first-order subgradient
methods. Our penalized SDP formulation is motivated by the recent advances in convex nons-
mooth optimization (Liao et al., 2023; Ding & Grimmer, 2023). We exploit the problem structure
(especially the neural network structure) to provide a simple elegant proof of our main theoretical
guarantees in Theorem 1 and Theorem 2.

I.5 IPM VS FIRST-ORDER METHODS

The per iteration computation of first-order methods is much cheaper than IPM, while IPM requires
much less iterations in total to achieve an ϵ-solution. To achieve an ϵ-approximate solution, the total
iteration number required by IPM is on the order of O(log(1/ϵ)). For LipDiff, we are applying
a subgradient method to solve a convex nonsmooth optimization problem, and the total iteration
number needed to get an ϵ solution is on the order of O(1/ϵ2). However, for each iteration, the
computational/memory efficiency for IPM is much worse than our first-order subgradient method.

26

Published as a conference paper at ICLR 2024

In practice, Lipschitz estimation of neural networks typically does not require using very small ϵ,
i.e. ϵ is typically set to be on the order of 0.1 or at most 0.01. Therefore, we argue that per iteration
complexity/efficiency matters more for the Lipschitz estimation problem of larger neural networks.
In addition, we have developed the special analytical initialization to reduce the iteration number
needed by LipDiff (see Appendix B). This justifies the significance of our contribution.

I.6 COMPARISON WITH COSMO

We have tried COSMO in some additional experiments, and it did not work well. The COSMO
solver is implemented in Julia and may be called by the JuMP optimization modeling framework.
We implemented LipSDP in Julia with the COSMO solver which gave an accurate solution (identical
to MOSEK) for small networks with SDP dim 10 × 10. Unfortunately, for small MNIST networks
of just two layers (resulting in an SDP of dim 800 × 800), COSMO appears to be unstable and
will not converge. Finally, we want to comment that COSMO aims to solve the KKT condition of
conic programs, and does not guarantee the returned solution to be valid Lipschitz upper bounds. In
contrast, our proposed first-order method LipDiff (EP-LipSDP) guarantees that any value returned
by LipDiff is always a valid upper bound higher than or equal to LipSDP’s optimal value, because
the iterations of LipDiff naturally correspond to feasible points of LipSDP which directly gives
Lipschitz upper bounds.

I.7 CONVEX NONSMOOTH OPTIMIZATION VS. MINIMAX FORMULATION

Here we clarify that we treat EP-LipSDP as a convex nonsmooth optimization problem instead of a
minimax problem. For simplicity, we restate the EP-LipSDP problem here as

min
ζ≥0,λ≥0,τ≥0,γ≥0

J(ζ, λ, τ, γ) := ζ +
(
2 +

n∑
j=1

aj

)
λ+
max(C(ζ, λ, τ, γ)).

where C(ζ, λ, τ, γ) is defined as

C(ζ, λ, τ, γ) :=

∑n
j=1 ajλj + γ − ζ 0 v

0 −γI WT diag(τ)
vT diag(τ)W −2 diag(τ)− diag(λ)

 .

Since C is linear in (ζ, λ, τ, γ), one can show that J is a convex nonsmooth function of (ζ, λ, τ, γ).
The nonsmoothness is introduced by the operation λ+

max. We emphasize that J is a function of
(ζ, λ, τ, γ). Although J is nonsmooth, we can still apply the subgradient method with box projection
to solve the above problem. Notice that the operation λ+

max is not performing a maximization over
(ζ, λ, τ, γ), and hence we are not solving a minimax problem.

27

	introduction
	related work
	Background
	A Brief Review of LipSDP

	Main Theoretical Results
	EP-LipSDP for Single-Layer Neural Network
	EP-LipSDP for Multi-layer Neural networks

	Add-on Techniques for Improving Practical Performances
	evaluation and discussion
	Technical proofs
	Analytical solution for the eigenvalue problem
	Pseudocode of LipDiff
	Other experimental specifications
	On the equivalence of different forms of LipSDP
	On the Equivalence of SDP Forms (1) and (3)
	On the Equivalence of SDP Forms (3) and (6)

	Extending Our Results to the Vector Output Case
	Initialization for the Vector Output Case

	Additional experimental results
	AlexNet experimental result
	Further Discussions and Explanations
	Technical Novelty
	Possibility of Tightening LipSDP
	Relation between SDPs in Lipschitz Estimation and Local Robustness Verification
	Related work on polynomial optimization
	IPM vs first-order methods
	Comparison with COSMO
	Convex nonsmooth optimization vs. Minimax Formulation

