
Published as a conference paper at ICLR 2021

SEQ2TENS: AN EFFICIENT REPRESENTATION OF SE-
QUENCES BY LOW-RANK TENSOR PROJECTIONS

Csaba Toth? Patric Bonnier? Harald Oberhauser?

?Mathematical Institute, University of Oxford
{toth, bonnier, oberhauser}@maths.ox.ac.uk

ABSTRACT

Sequential data such as time series, video, or text can be challenging to analyse
as the ordered structure gives rise to complex dependencies. At the heart of this
is non-commutativity, in the sense that reordering the elements of a sequence can
completely change its meaning. We use a classical mathematical object – the free
algebra – to capture this non-commutativity. To address the innate computational
complexity of this algebra, we use compositions of low-rank tensor projections.
This yields modular and scalable building blocks that give state-of-the-art per-
formance on standard benchmarks such as multivariate time series classification,
mortality prediction and generative models for video. Code and benchmarks are
publically available at https://github.com/tgcsaba/seq2tens.

1 INTRODUCTION

A central task of learning is to find representations of the underlying data that efficiently and faith-
fully capture their structure. In the case of sequential data, one data point consists of a sequence of
objects. This is a rich and non-homogeneous class of data and includes classical uni- or multi-variate
time series (sequences of scalars or vectors), video (sequences of images), and text (sequences of
letters). Particular challenges of sequential data are that each sequence entry can itself be a highly
structured object and that data sets typically include sequences of different length which makes naive
vectorization troublesome.

Contribution. Our main result is a generic method that takes a static feature map for a class of
objects (e.g. a feature map for vectors, images, or letters) as input and turns this into a feature map for
sequences of arbitrary length of such objects (e.g. a feature map for time series, video, or text). We
call this feature map for sequences Seq2Tens for reasons that will become clear; among its attractive
properties are that it (i) provides a structured, parsimonious description of sequences; generalizing
classical methods for strings, (ii) comes with theoretical guarantees such as universality, (iii) can be
turned into modular and flexible neural network (NN) layers for sequence data. The key ingredient
to our approach is to embed the feature space of the static feature map into a larger linear space that
forms an algebra (a vector space equipped with a multiplication). The product in this algebra is then
used to “stitch together” the static features of the individual sequence entries in a structured way.
The construction that allows to do all this is classical in mathematics, and known as the free algebra
(over the static feature space).

Outline. Section 2 formalizes the main ideas of Seq2Tens and introduces the free algebra T(V)
over a space V as well as the associated product, the so-called convolution tensor product. Section
3 shows how low rank (LR) constructions combined with sequence-to-sequence transforms allows
one to efficiently use this rich algebraic structure. Section 4 applies the results of Sections 2 and
3 to build modular and scalable NN layers for sequential data. Section 5 demonstrates the flexibil-
ity and modularity of this approach on both discriminative and generative benchmarks. Section 6
makes connections with previous work and summarizes this article. In the appendices we provide
mathematical background, extensions, and detailed proofs for our theoretical results.

1

https://github.com/tgcsaba/seq2tens

Published as a conference paper at ICLR 2021

2 CAPTURING ORDER BY NON-COMMUTATIVE MULTIPLICATION

We denote the set of sequences of elements in a set X by

Seq(X) = {x = (xi)i=1,...,L : xi ∈ X , L ≥ 1} (1)

where L ≥ 1 is some arbitrary length. Even if X itself is a linear space, e.g. X = R, Seq(X) is
never a linear space since there is no natural addition of two sequences of different length.

Seq2Tens in a nutshell. Given any vector space V we may construct the so-called free algebra
T(V) over V . We describe the space T(V) in detail below, but as for now the only thing that is
important is that T(V) is also a vector space that includes V , and that it carries a non-commutative
product, which is, in a precise sense, “the most general product” on V .

The main idea of Seq2Tens is that any “static feature map” for elements in X

φ : X → V

can be used to construct a new feature map Φ : Seq(X) → T(V) for sequences in X by using the
algebraic structure of T(V): the non-commutative product on T(V) makes it possible to “stitch to-
gether” the individual features φ(x1), . . . , φ(xL) ∈ V ⊂ T(V) of the sequence x in the larger space
T(V) by multiplication in T(V). With this we may define the feature map Φ(x) for a sequences
x = (x1, . . . ,xL) ∈ Seq(X) as follows

(i) lift the map φ : X → V to a map ϕ : X → T(V),
(ii) map Seq(X)→ Seq(T(V)) by (x1, . . . ,xL) 7→ (ϕ(x1), . . . , ϕ(xL)),

(iii) map Seq(T(V))→ T(V) by multiplication (ϕ(x1), . . . , ϕ(xL)) 7→ ϕ(x1) · · ·ϕ(xL).

In a more concise form, we define Φ as

Φ : Seq(X)→ T(V), Φ(x) =

L∏
i=1

ϕ(xi) (2)

where
∏

denotes multiplication in T(V). We refer to the resulting map Φ as the Seq2Tens map,
which stands short for Sequences-2-Tensors. Why is this construction a good idea? First note, that
step (i) is always possible since V ⊂ T(V) and we discuss the simplest such lift before Theorem 2.1
as well as other choices in Appendix B. Further, if φ, respectively ϕ, provides a faithful represen-
tation of objects in X , then there is no loss of information in step (ii). Finally, since step (iii) uses
“the most general product” to multiply ϕ(x1) · · ·ϕ(xL) one expects that Φ(x) ∈ T(V) faithfully
represents the sequence x as an element of T(V).

Indeed in Theorem 2.1 below we show an even stronger statement, namely that if the static feature
map φ : X → V contains enough non-linearities so that non-linear functions from X to R can be
approximated as linear functions of the static feature map φ, then the above construction extends
this property to functions of sequences. Put differently, if φ is a universal feature map for X , then Φ
is a universal feature map for Seq(X); that is, any non-linear function f(x) of a sequence x can be
approximated as a linear functional of Φ(x), f(x) ≈ 〈`,Φ(x)〉. We also emphasize that the domain
of Φ is the space Seq(X) of sequences of arbitrary (finite) length. The remainder of this Section
gives more details about steps (i),(ii),(iii) for the construction of Φ.

The free algebra T(V) over a vector space V . Let V be a vector space. We denote by T(V) the
set of sequences of tensors indexed by their degree m,

T(V) := {t = (tm)m≥0 | tm ∈ V ⊗m} (3)

where by convention V ⊗0 = R. For example, if V = Rd and t = (tm)m≥0 is some element of
T(Rd), then its degreem = 1 component is a d-dimensional vector t1, its degreem = 2 component
is a d× d matrix t2, and its degree m = 3 component is a degree 3 tensor t3. By defining addition
and scalar multiplication as

s + t := (sm + tm)m≥0, c · t = (ctm)m≥0 (4)

2

Published as a conference paper at ICLR 2021

the set T(V) becomes a linear space. By identifying v ∈ V as the element (0, v, 0, . . . , 0) ∈ T(V)
we see that V is a linear subspace of T(V). Moreover, while V is only a linear space, T(V) carries
a product that turns T(V) into an algebra. This product is the so-called tensor convolution product,
and is defined for s, t ∈ T(V) as

s · t :=
(m∑
i=0

si ⊗ tm−i
)
m≥0 =

(
1, s1 + t1, s2 + s1 ⊗ t1 + t2, . . .

)
∈ T(V) (5)

where ⊗ denotes the usual outer tensor product; e.g. for vectors u = (ui), v = (vi) ∈ Rd the outer
tensor product u ⊗ v is the d × d matrix (uivj)i,j=1,...,d. We emphasize that like the outer tensor
product⊗, the tensor convolution product · is non-commutative, i.e. s ·t 6= t ·s. In a mathematically
precise sense, T(V) is the most general algebra that contains V ; it is a “free construction”. Since
T(V) is realized as series of tensors of increasing degree, the free algebra T(V) is also known as the
tensor algebra in the literature. Appendix A contains background on tensors and further examples.

Lifting static feature maps. Step (i) in the construction of Φ requires turning a given feature map
φ : X → V into a map ϕ : X → T(V). Throughout the rest of this article we use the lift

ϕ(x) = (1, φ(x), 0, 0 . . .) ∈ T(V). (6)

We discuss other choices in Appendix B, but attractive properties of the lift 6 are that (a) the evalu-
ation of Φ against low rank tensors becomes a simple recursive formula (Proposition 3.3, (b) it is a
generalization of sequence sub-pattern matching as used in string kernels (Appendix B.3, (c) despite
its simplicity it performs exceedingly well in practice (Section 4).

Extending to sequences of arbitrary length. Steps (i) and (ii) in the construction specify how
the map Φ : X → T(V) behaves on sequences of length-1, that is, single observations. Step (iii)
amounts to the requirement that for any two sequences x = (x1, . . . ,xK),y = (y1, . . . ,yL) ∈
Seq(V), their concatenation defined as z = (x1, . . . ,xK ,y1, . . . ,yL) ∈ Seq(V) can be understood
in the feature space as (non-commutative) multiplication of their corresponding features

Φ(z) = Φ(x) · Φ(y). (7)

In other words, we inductively extend the lift ϕ to sequences of arbitrary length by starting from
sequences consisting of a single observation, which is given in equation 2. Repeatedly applying the
definition of the tensor convolution product in equation 5 leads to the following explicit formula

Φm(x) =
∑

1≤i1<···<im≤L
xi1 ⊗ · · · ⊗ xim ∈ V ⊗m, Φ(x) = (Φm(x))m≥0, (8)

where x = (x1, . . . ,xL) ∈ Seq(V) and the summation is over non-contiguous subsequences of x.

Some intuition: generalized pattern matching. Our derivation of the feature map Φ(x) =
(1,Φ1(x),Φ2(x), . . .) ∈ T(V) was guided by general algebraic principles, but equation 8 pro-
vides an intuitive interpretation. It shows that for each m ≥ 1, the entry Φm(x) ∈ V ⊗m constructs
a summary of a long sequence x = (x1, . . . ,xL) ∈ Seq(V) based on subsequences (xi1 , . . . ,xim)
of x of length-m. It does this by taking the usual outer tensor product xi1 ⊗ · · · ⊗ xim ∈ V ⊗m and
summing over all possible subsequences. This is completely analogous to how string kernels provide
a structured description of text by looking at non-contiguous substrings of length-m (indeed, Ap-
pendix B.3 makes this rigorous). However, the main difference is that the above construction works
for arbitrary sequences and not just sequences of discrete letters. Readers with less mathematical
background might simply take this as motivation and regard equation 8 as definition. However, the
algebraic background allows to prove that Φ is universal, see Theorem 2.1 below.

Universality. A function φ : X → V is said to be universal for X if all continuous functions on
X can be approximated as linear functions on the image of φ. One of the most powerful features of
neural nets is their universality (Hornik, 1991). A very attractive property of Φ is that it preserves
universality: if φ : X → V is universal forX , then Φ : Seq(X)→ T(V) is universal for Seq(X). To
make this precise, note that V ⊗m is a linear space and therefore any ` = (`0, `1, . . . , `M , 0, 0, . . .) ∈

3

Published as a conference paper at ICLR 2021

T(V) consisting of M tensors `m ∈ V ⊗m, yields a linear functional on T(V); e.g. if V = Rd and
we identify `m in coordinates as `m = (`i1,...,imm)i1,...,im∈{1,...,d} then

〈`, t〉 :=

M∑
m=0

〈`m, tm〉 =

M∑
m=0

∑
i1,...,im∈{1,...,d}

`i1,...,imm ti1,...,imm . (9)

Thus linear functionals of the feature map Φ, are real-valued functions of sequences. Theorem 2.1
below shows that any continuous function f : Seq(X) → R can by arbitrary well approximated by
a ` ∈ T(V), f(x) ≈ 〈`,Φ(x)〉.
Theorem 2.1. Let φ : X → V be a universal map with a lift that satisfies some mild constraints,
then the following map is universal:

Φ : Seq(X)→ T(V), x 7→ Φ(x). (10)

A detailed proof and the precise statement of Theorem 2.1 is given in Appendix B.

3 APPROXIMATION BY LOW-RANK LINEAR FUNCTIONALS

The combinatorial explosion of tensor coordinates and what to do about it. The universal-
ity of Φ suggests the following approach to represent a function f : Seq(X) → R of sequences:
First compute Φ(x) and then optimize over ` (and possibly also the hyperparameters of φ) such that
f(x) ≈ 〈`,Φ(x)〉 =

∑M
m=0〈`m,Φm(x)〉. Unfortunately, tensors suffer from a combinatorial explo-

sion in complexity in the sense that even just storing Φm(x) ∈ V ⊗m ⊂ T(V) requiresO(dim(V)m)
real numbers. Below we resolve this computational bottleneck as follows: in Proposition 3.3 we
show that for a special class of low-rank elements ` ∈ T(V), the functional x 7→ 〈`,Φ(x)〉 can be
efficiently computed in both time and memory. This is somewhat analogous to a kernel trick since it
shows that 〈`,Φ(x)〉 can be cheaply computed without explicitly computing the feature map Φ(x).
However, Theorem 2.1 guarantees universality under no restriction on `, thus restriction to rank-1
functionals limits the class of functions f(x) that can be approximated. Nevertheless, by iterating
these “low-rank functional” constructions in the form of sequence-to-sequence transformations this
can be ameliorated. We give the details below but to gain intuition, we invite the reader to think
of this iteration analogous to stacking layers in a neural network: each layer is a relatively sim-
ple non-linearity (e.g. a sigmoid composed with an affine function) but by composing such layers,
complicated functions can be efficiently approximated.

Rank-1 functionals are computationally cheap. Degree m = 2 tensors are matrices and low-
rank (LR) approximations of matrices are widely used in practice (Udell & Townsend, 2019) to
address the quadratic complexity. The definition below generalizes the rank of matrices (tensors of
degree m = 2) to tensors of any degree m.
Definition 3.1. The rank (also called CP rank (Carroll & Chang, 1970)) of a degree-m tensor
tm ∈ V ⊗m is the smallest number r ≥ 0 such that one may write

tm =

r∑
i=0

v1
i ⊗ · · · ⊗ vmi , v1

i , . . . ,v
m
i ∈ V. (11)

We say that t = (tm)m≥0 ∈ T(V) has rank-1 (and degree-M) if each tm ∈ V ⊗m is a rank-1 tensor
and ti = 0 for i > M .
Remark 3.2. For x = (x1, . . . ,xL) ∈ Seq(V), the rank rm ∈ N of Φm(x) satisfies rm ≤

(
L
m

)
,

while the rank and degree r, d ∈ N of Φ(x) satisfy r ≤
(
L
K

)
for K =

⌊
L
2

⌋
and d ≤ L.

A direct calculation shows that if ` is of rank-1, then 〈`,Φ(x)〉 can be computed very efficiently by
inner product evaluations in V .
Proposition 3.3. Let ` = (`m)m≥0 ∈ T(V) be of rank-1 and degree-M . If φ is lifted to ϕ as in
equation 6, then

〈`,Φ(x)〉 =

M∑
m=0

∑
1≤i1<···<im≤L

m∏
k=1

〈vmk , φ(xik)〉 (12)

where `m = vm1 ⊗ · · · ⊗ vmm ∈ V ⊗m, vmi ∈ V and m = 0, . . . ,M .

4

Published as a conference paper at ICLR 2021

Note that the inner sum is taken over all non-contiguous subsequences of x of length-m, analogously
to m-mers of strings and we make this connection precise in Appendix B.3; the proof of Proposition
3.3 is given in Appendix B.1.1. While equation 12 looks expensive, by casting it into a recursive
formulation over time, it can be computed inO(M2 ·L ·d) time andO(M2 ·(L+c)) memory, where
d is the inner product evaluation time on V , while c is the memory footprint of a v ∈ V . This can
further be reduced to O(M ·L · d) time and O(M · (L+ c)) memory by an efficient parametrization
of the rank-1 element ` ∈ T(V). We give further details in Appendices D.2, D.3, D.4.

Low-rank Seq2Tens maps. The composition of a linear map L : T(V) → RN with Φ can be
computed cheaply in parallel using equation 12 when L is specified through a collection of N ∈ N
rank-1 elements `1, . . . , `N ∈ T(V) such that

Φ̃θ̃(x1, . . . ,xL) := L ◦ Φ(x1, . . . ,xL) = (〈`j ,Φ(x1, . . . ,xL))Nj=1 ∈ RN . (13)

We call the resulting map Φ̃θ̃ : Seq(X)→ RN a Low-rank Seq2Tens map of width-N and order-M ,
where M ∈ N is the maximal degree of `1, . . . , `N such that `ji = 0 for i > M . The LS2T map is
parametrized by (1) the component vectors vkj,m ∈ V of the rank-1 elements `jm = v1

j,m⊗· · ·⊗vmj,m,
(2) by any parameters θ that the static feature map φθ : X → V may depend on. We jointly denote
these parameters by θ̃ = (θ, `1, . . . , `N). In addition, by the subsequent composition of Φ̃θ̃ with a
linear functional RN → R, we get the following function subspace as hypothesis class for the LS2T

H̃ =
{
〈
N∑
j=1

αj`
j ,Φ(x1, . . . ,xL)〉 |αj ∈ R

}
(H =

{
〈`,Φ(x1, . . . ,xL) | ` ∈ T(V)

}
(14)

Hence, we acquire an intuitive explanation of the (hyper)parameters: the width of the LS2T, N ∈ N
specifies the maximal rank of the low-rank linear functionals of Φ that the LS2T can represent, while
the span of the rank-1 elements, span(`1, . . . , `N) determine anN -dimensional subspace of the dual
space of T(V) consisting of at most rank-N functionals.

Recall now that without rank restrictions on the linear functionals of Seq2Tens features, Theo-
rem 2.1 would guarantee that any real-valued function f : Seq(X) → R could be approximated
by f(x) ≈ 〈`,Φ(x1, . . . ,xL)〉. As pointed out before, the restriction of the hypothesis class to low-
rank linear functionals of Φ(x1, . . . ,xL) would limit the class of functions of sequences that can be
approximated. To ameliorate this, we use LS2T transforms in a sequence-to-sequence fashion that
allows us to stack such low-rank functionals, significantly recovering expressiveness.

Sequence-to-sequence transforms. We can use LS2T to build sequence-to-sequence transforma-
tions in the following way: fix the static map φθ : X → V parametrized by θ and rank-1 elements
such that θ̃ = (θ, `1, . . . , `N) and apply the resulting LS2T map Φ̃θ̃ over expanding windows of x:

Seq(X)→ Seq(RN), x 7→
(
Φ̃θ̃(x1), Φ̃θ̃(x1,x2), . . . , Φ̃θ̃(x1, . . . ,xL)

)
. (15)

Note that the cost of computing the expanding window sequence-to-sequence transform in equa-
tion 15 is no more expensive than computing Φ̃θ̃(x1, . . . ,xL) itself due to the recursive nature of
our algorithms, for further details see Appendices D.2, D.3, D.4.

Deep sequence-to-sequence transforms. Inspired by the empirical successes of deep RNNs
(Graves et al., 2013b;a; Sutskever et al., 2014), we iterate the transformation 15 D-times:

Seq(X)→ Seq(RN1)→ Seq(RN2)→ · · · → Seq(RND). (16)

Each of these mappings Seq(RNi) → Seq(RNi+1) is parametrized by the parameters θ̃i of a static
feature map φθi and a linear map Li specified by Ni rank-1 elements of T(V); these parameters are
collectively denoted by θ̃i = (θi, `

1
i , . . . , `

Ni
i). Evaluating the final sequence in Seq(RND) at the

last observation-time t = L, we get the deep LS2T map with depth-D

Φ̃θ̃1,...,θ̃D : Seq(X)→ RnD . (17)

Making precise how the stacking of such low-rank sequence-to-sequence transformations approx-
imates general functions requires more tools from algebra, and we provide a rigorous quantitative
statement in Appendix C. Here, we just appeal to the analogy made with adding depth in neural
networks mentioned earlier and empirically validate this in our experiments in Section 4.

5

Published as a conference paper at ICLR 2021

4 BUILDING NEURAL NETWORKS WITH LS2T LAYERS

The Seq2Tens map Φ built from a static feature map φ is universal if φ is universal, Theorem 2.1.
NNs form a flexible class of universal feature maps with strong empirical success for data in X =
Rd, and thus make a natural choice for φ. Combined with standard deep learning constructions, the
framework of Sections 2 and 3 can build modular and expressive layers for sequence learning.

Neural LS2T layers. The simplest choice among many is to use as static feature map φ : X =
Rd → Rh a feedforward network with depth-P , φ = φP ◦· · ·◦φ1 where φj(x) = σ(Wjx+bj) for
Wj ∈ Rh×d, bj ∈ Rh. We can then lift this to a map ϕ : Rd → T(Rh) as prescribed in equation 6.
Hence, the resulting LS2T layer x 7→ (Φ̃θ̃(x1, . . . ,xi))i=1,...,L is a sequence-to-sequence transform
Seq(Rd)→ Seq(Rh) that is parametrized by θ̃ = (W1,b1, . . . ,WP ,bP , `

1
1, . . . , `

N1
1).

Bidirectional LS2T layers. The transformation in equation 15 is completely causal in the sense
that each step of the output sequence depends only on past information. For generative models, it can
behove us to make the output depend on both past and future information, see Graves et al. (2013a);
Baldi et al. (1999); Li & Mandt (2018). Similarly to bidirectional RNNs and LSTMs (Schuster &
Paliwal, 1997; Graves & Schmidhuber, 2005), we may achieve this by defining a bidirectional layer,

Φ̃b
(θ̃1,θ̃2)

(x) : Seq(Rd)→ Seq(RN+N ′), x 7→ (Φ̃θ̃1(x1, . . . ,xi), Φ̃θ̃2(xi, . . . ,xL))Li=1. (18)

The sequential nature is kept intact by making the distinction between what classifies as past (the
firstN coordinates) and future (the lastN ′ coordinates) information. This amounts to having a form
of precognition in the model, and has been applied in e.g. dynamics generation (Li & Mandt, 2018),
machine translation (Sundermeyer et al., 2014), and speech processing (Graves et al., 2013a).

Convolutions and LS2T. We motivate to replace the time-distributed feedforward layers proposed
in the paragraph above by temporal convolutions (CNN) instead. Although theory only requires the
preprocessing layer of the LS2T to be a static feature map, we find that it is beneficial to capture some
of the sequential information in the preprocessing layer as well, e.g. using CNNs or RNNs. From a
mathematical point of view, CNNs are a straightforward extension since they can be interpreted as
time-distributed feedforward layers applied to the input sequence augmented with a p ∈ N number
of its lags for CNN kernel size p (see Appendix D.1 for further discussion).

In the following, we precede our deep LS2T blocks by one or more CNN layers. Intuitively, CNNs
and LS2Ts are similar in that both transformations operate on subsequences of their input sequence.
The main difference between the two lies in that CNNs operate on contiguous subsequences, and
therefore, capture local, short-range nonlinear interactions between timesteps; while LS2Ts (equa-
tion 12) use all non-contiguous subsequences, and hence, learn global, long-range interactions in
time. This observation motivates that the inductive biases of the two types of layers (local/global
time-interactions) are highly complementary in nature, and we suggest that the improvement in the
experiments on the models containing vanilla CNN blocks are due to this complementarity.

5 EXPERIMENTS

We demonstrate the modularity and flexibility of the above LS2T and its variants by applying it to
(i) multivariate time series classification, (ii) mortality prediction in healthcare, (iii) generative mod-
elling of sequential data. In all cases, we take a strong baseline model (FCN and GP-VAE, as detailed
below) and upgrade it with LS2T layers. As Thm. 2.1 requires the Seq2Tens layers to be preceded
by at least a static feature map, we expect these layers to perform best as an add-on on top of other
models, which however can be quite simple, such as a CNN. The additional computation time is
negligible (in fact, for FCN it allows to reduce the number of parameters significantly, while retain-
ing performance), but it can yield substantial improvements. This is remarkable, since the original
models are already state-of-the-art on well-established (frequentist and Bayesian) benchmarks.

5.1 MULTIVARIATE TIME SERIES CLASSIFICATION

As the first task, we consider multivariate time series classification (TSC) on an archive of bench-
mark datasets collected by Baydogan (2015). Numerous previous publications report results on this

6

Published as a conference paper at ICLR 2021

Table 1: Posterior probabilities given by a Bayesian signed-rank test comparison of the proposed
methods against the baselines. {>}, {<}, {=} refer to the respective events that the row method is
better, the column method is better, or that they are equivalent.

MODEL
LS2T3

64 FCN64-LS2T3
64 FCN128-LS2T3

64

p(>) p(=) p(<) p(>) p(=) p(<) p(>) p(=) p(<)

SMTS (BAYDOGAN & RUNGER, 2015A) 0.180 0.000 0.820 0.010 0.000 0.990 0.008 0.000 0.992
LPS (BAYDOGAN & RUNGER, 2015B) 0.191 0.002 0.807 0.012 0.001 0.987 0.006 0.001 0.993
MVARF (TUNCEL & BAYDOGAN, 2018) 0.011 0.140 0.849 0.000 0.126 0.874 0.000 0.088 0.912
DTW (SAKOE & CHIBA, 1978) 0.033 0.000 0.967 0.001 0.000 0.999 0.000 0.000 1.000
ARKERNEL (CUTURI & DOUCET, 2011) 0.100 0.097 0.803 0.000 0.021 0.979 0.000 0.015 0.985
GRSF (KARLSSON ET AL., 2016) 0.481 0.011 0.508 0.028 0.013 0.960 0.022 0.013 0.965
MUSE (SCHÄFER & LESER, 2017) 0.405 0.128 0.467 0.001 0.074 0.925 0.001 0.077 0.922
MLSTMFCN (KARIM ET AL., 2019) 0.916 0.043 0.041 0.123 0.071 0.807 0.055 0.110 0.835
FCN128 (WANG ET AL., 2017) 0.998 0.002 0.000 0.363 0.186 0.451 0.169 0.011 0.820
RESNET (WANG ET AL., 2017) 0.998 0.002 0.001 0.056 0.240 0.704 0.016 0.048 0.935
LS2T3

64 - - - 0.000 0.001 0.999 0.000 0.001 0.999
FCN64-LS2T3

64 0.999 0.001 0.000 - - - 0.020 0.387 0.593

archive, which makes it possible to compare against several well-performing competitor methods
from the TSC community. These baselines are detailed in Appendix E.1. This archive was also
considered in a recent popular survey paper on DL for TSC (Ismail Fawaz et al., 2019), from where
we borrow the two best performing models as DL baselines: FCN and ResNet. The FCN is a
fully convolutional network which stacks 3 convolutional layers of kernel sizes (8, 5, 3) and filters
(128, 256, 128) followed by a global average pooling (GAP) layer, hence employing global param-
eter sharing. We refer to this model as FCN128. The ResNet is a residual network stacking 3 FCN
blocks of various widths with skip-connections in between (He et al., 2016) and a final GAP layer.

The FCN is an interesting model to upgrade with LS2T layers, since the LS2T also employs pa-
rameter sharing across the sequence length, and as noted previously, convolutions are only able
to learn local interactions in time, that in particular makes them ill-suited to picking up on long-
range autocorrelations, which is exactly where the LS2T can provide improvements. As our models,
we consider three simple architectures: (i) LS2T3

64 stacks 3 LS2T layers of order-2 and width-64;
(ii) FCN64-LS2T3

64 precedes the LS2T3
64 block by an FCN64 block; a downsized version of FCN128;

(iii) FCN128-LS2T3
64 uses the full FCN128 and follows it by a LS2T3

64 block as before. Also, both
FCN-LS2T models employ skip-connections from the input to the LS2T block and from the FCN
to the classification layer, allowing for the LS2T to directly see the input, and for the FCN to di-
rectly affect the final prediction. These hyperparameters were only subject to hand-tuning on a
subset of the datasets, and the values we considered were H,N ∈ {32, 64, 128}, M ∈ {2, 3, 4}
and D ∈ {1, 2, 3}, where H,N ∈ N is the FCN and LS2T width, resp., while M ∈ N is the LS2T
order and D ∈ N is the LS2T depth. We also employ techniques such as time-embeddings (Liu
et al., 2018a), sequence differencing and batch normalization, see Appendix D.1; Appendix E.1 for
further details on the experiment and Figure 2 in thereof for a visualization of the architectures.

Results. We trained the models, FCN128, ResNet, LS2T3
64, FCN64-LS2T3

64, FCN128-LS2T3
64 on

each of the 16 datasets 5 times while results for other methods were borrowed from the cited pub-
lications. In Appendix E.1, Figure 3 depicts the box-plot of distributions of accuracies and a CD
diagram using the Nemenyi test (Nemenyi, 1963), while Table 7 shows the full list of results. Since
mean-ranks based tests raise some paradoxical issues (Benavoli et al., 2016), it is customary to
conduct pairwise comparisons using frequentist (Demšar, 2006) or Bayesian (Benavoli et al., 2017)
hypothesis tests. We adopted the Bayesian signed-rank test from Benavoli et al. (2014), the poste-
rior probabilities of which are displayed in Table 1, while the Bayesian posteriors are visualized on
Figure 4 in App. E.1. The results of the signed-rank test can be summarized as follows: (1) LS2T3

64
already outperforms some classic TS classifiers with high probability (p ≥ 0.8), but it is not compet-
itive with other DL classifiers. This observation is not surprising since even theory requires at least
a static feature map to precede the LS2T. (2) FCN64-LS2T3

64 outperforms almost all models with
high probability (p ≥ 0.8), except for ResNet (which is stil outperformed by p ≥ 0.7), FCN128 and
FCN128-LS2T3

64. When compared with FCN128, the test is unable to decide between the two, which
upon inspection of the individual results in Table 7 can be explained by that on some datasets the
benefit of the added LS2T block is high enough that it outweighs the loss of flexibility incurred by
reducing the width of the FCN - arguably these are the datasets where long-range autocorrelations

7

Published as a conference paper at ICLR 2021

are present in the input time series, and picking up on these improve the performance - however, on
a few datasets the contrary is true. (3) Lastly, FCN128-LS2T3

64, outperforms all baseline methods
with high probability (p ≥ 0.8), and hence successfully improves on the FCN128 via its added abil-
ity to learn long-range time-interactions. We remark that FCN64-LS2T3

64 has fewer parameters than
FCN128 by more than 50%, hence we managed to compress the FCN to a fraction of its original
size, while on average still slightly improving its performance, a nontrivial feat by its own accord.

5.2 MORTALITY PREDICTION

We consider the PHYSIONET2012 challenge dataset (Goldberger et al., 2000) for mortality predic-
tion, which is a case of medical TSC as the task is to predict in-hospital mortality of patients after
their admission to the ICU. This is a difficult ML task due to missingness in the data, low signal-
to-noise ratio (SNR), and imbalanced class distributions with a prevalence ratio of around 14%. We
extend the experiments conducted in Horn et al. (2020), which we also use as very strong baselines.
Under the same experimental setting, we train two models: FCN-LS2T as ours and the FCN as
another baseline. For both models, we conduct a random search for all hyperparameters with 20
samples from a pre-specified search space, and the setting with best validation performance is used
for model evaluation on the test set over 5 independent model trains, exactly the same way as it was
done in Horn et al. (2020). We preprocess the data using the same method as in Che et al. (2018,
eq. (9)) and additionally handle static features by tiling them along the time axis and adding them
as extra coordinates. We additionally introduce in both models a SpatialDropout1D layer after
all CNN and LS2T layers with the same tunable dropout rate to mitigate the low SNR of the dataset.

Table 2: Comparison of FCN-LS2T and FCN on PHY-
SIONET2012 with the results from Horn et al. (2020).

MODEL ACCURACY AUPRC AUROC

FCN-LS2T 84.1± 1.6 53.9± 0.5 85.6± 0.5
FCN 80.7± 1.7 52.8± 1.3 85.6± 0.2
GRU-D 80.0± 2.9 53 .7 ± 0 .9 86.3± 0.3
GRU-SIMPLE 82.2± 0.2 42.2± 0.6 80.8± 1.1
IP-NETS 79.4± 0.3 51.0± 0.6 86 .0 ± 0 .2
PHASED-LSTM 76.8± 5.2 38.7± 1.5 79.0± 1.0
TRANSFORMER 83 .7 ± 3 .5 52.8± 2.2 86.3± 0.8
LATENT-ODE 76.0± 0.1 50.7± 1.7 85.7± 0.6
SEFT-ATTN. 75.3± 3.5 52.4± 1.1 85.1± 0.4

Results. Table 2 compares the perfor-
mance of FCN-LS2T with that of FCN
and the results from Horn et al. (2020) on
3 metrics: (1) ACCURACY, (2) area un-
der the precision-recall curve (AUPRC),
(3) area under the ROC curve (AUROC).
We can observe that FCN-LS2T takes
on average first place according to both
ACCURACY and AUPRC, outperforming
FCN and all SOTA methods, e.g. TRANS-
FORMER (Vaswani et al., 2017), GRU-D
Che et al. (2018), SEFT (Horn et al., 2020), and also being competitive in terms of AUROC. This
is very promising, and it suggests that LS2T layers might be particularly well-suited to complex
and heterogenous datasets, such as medical time series, since the FCN-LS2T models significantly
improved accuracy on ECG as well, another medical dataset in the previous experiment.

5.3 GENERATING SEQUENTIAL DATA

Finally, we demonstrate on sequential data imputation for time series and video that LS2Ts do not
only provide good representations of sequences in discriminative, but also generative models.

The GP-VAE model. In this experiment, we take as base model the recent GP-VAE (Fortuin
et al., 2020), that provides state-of-the-art results for probabilistic sequential data imputation. The
GP-VAE is essentially based on the HI-VAE (Nazabal et al., 2018) for handling missing data in
variational autoencoders (VAEs) (Kingma & Welling, 2013) adapted to the handling of time series
data by the use of a Gaussian process (GP) prior (Williams & Rasmussen, 2006) across time in
the latent sequence space to capture temporal dynamics. Since the GP-VAE is a highly advanced
model, its in-depth description is deferred to Appendix E.3.We extend the experiments conducted in
Fortuin et al. (2020), and we make one simple change to the GP-VAE architecture without changing
any other hyperparameters or aspects: we introduce a single bidirectional LS2T layer (B-LS2T)
into the encoder network that is used in the amortized representation of the means and covariances
of the variational posterior. The B-LS2T layer is preceded by a time-embedding and differencing
block, and succeeded by channel flattening and layer normalization as depicted in Figure 5. The
idea behind this experiment is to see if we can improve the performance of a highly complicated
model that is composed of many interacting submodels, by the naive introduction of LS2T layers.

8

Published as a conference paper at ICLR 2021

Table 3: Performance comparison of GP-VAE (B-LS2T) with the baseline methods

METHOD
HMNIST SPRITES PHYSIONET

NLL MSE AUROC MSE AUROC

MEAN IMPUTATION - 0.168 ± 0.000 0.938 ± 0.000 0.013 ± 0.000 0.703 ± 0.000
FORWARD IMPUTATION - 0.177 ± 0.000 0.935 ± 0.000 0.028 ± 0.000 0.710 ± 0.000
VAE 0.599 ± 0.002 0.232 ± 0.000 0.922 ± 0.000 0.028 ± 0.000 0.677 ± 0.002
HI-VAE 0.372 ± 0.008 0.134 ± 0.003 0.962± 0.001 0.007 ± 0.000 0.686 ± 0.010
GP-VAE 0.350 ± 0.007 0.114 ± 0.002 0.960± 0.002 0.002± 0.000 0.730 ± 0.006
GP-VAE (B-LS2T) 0.251± 0.008 0.092± 0.003 0.962± 0.001 0.002± 0.000 0.743± 0.007
BRITS - - - - 0.742± 0.008

Results. To make the comparison, we ceteris paribus re-ran all experiments the authors originally
included in their paper (Fortuin et al., 2020), which are imputation of Healing MNIST, Sprites,
and Physionet 2012. The results are in Table 3, which report the same metrics as used in Fortuin
et al. (2020), i.e. negative log-likelihood (NLL, lower is better), mean squared error (MSE, lower
is better) on test sets, and downstream classification performance of a linear classifier (AUROC,
higher is better). For all other models beside our GP-VAE (B-LS2T), the results were borrowed
from Fortuin et al. (2020). We observe that simply adding the B-LS2T layer improved the result
in almost all cases, except for Sprites, where the GP-VAE already achieved a very low MSE score.
Additionally, when comparing GP-VAE to BRITS on Physionet, the authors argue that although the
BRITS achieves a higher AUROC score, the GP-VAE should not be disregarded as it fits a generative
model to the data that enjoys the usual Bayesian benefits of predicting distributions instead of point
predictions. The results display that by simply adding our layer into the architecture, we managed
to elevate the performance of GP-VAE to the same level while retaining these same benefits. We
believe the reason for the improvement is a tighter amortization gap in the variational approximation
(Cremer et al., 2018) achieved by increasing the expressiveness of the encoder by the LS2T allowing
it to pick up on long-range interactions in time. We provide further discussion in Appendix E.3.

6 RELATED WORK AND SUMMARY

Related Work. The literature on tensor models in ML is vast. Related to our approach we mention
pars-pro-toto Tensor Networks (Cichocki et al., 2016), that use classical LR decompositions, such
as CP (Carroll & Chang, 1970), Tucker (Tucker, 1966), tensor trains (Oseledets, 2011) and tensor
rings (Zhao et al., 2019); further, CNNs have been combined with LR tensor techniques (Cohen
et al., 2016; Kossaifi et al., 2017) and extended to RNNs (Khrulkov et al., 2019); Tensor Fusion
Networks (Zadeh et al., 2017) and its LR variants (Liu et al., 2018b; Liang et al., 2019; Hou et al.,
2019); tensor-based gait recognition (Tao et al., 2007). Our main contribution to this literature is the
use of the free algebra T(V) with its convolution product ·, instead of V ⊗m with the outer product
⊗ that is used in the above papers. While counter-intuitive to work in a larger space T(V), the
additional algebra structure of (T(V), ·) is the main reason for the nice properties of Φ (universality,
making sequences of arbitrary length comparable, convergence in the continuous time limit; see
Appendix B) which we believe are in turn the main reason for the strong benchmark performance.
Stacked LR sequence transforms allow to exploit this rich algebraic structure with little computa-
tional overhead. Another related literature are path signatures in ML (Lyons, 2014; Chevyrev &
Kormilitzin, 2016; Graham, 2013; Bonnier et al., 2019; Toth & Oberhauser, 2020). These arise as
special case of Seq2Tens (Appendix B) and our main contribution to this literature is that Seq2Tens
resolves a well-known computational bottleneck in this literature since it never needs to compute
and store a signature, instead it directly and efficiently learns the functional of the signature.

Summary. We used a classical non-commutative structure to construct a feature map for se-
quences of arbitrary length. By stacking sequence transforms we turned this into scalable and mod-
ular NN layers for sequence data. The main novelty is the use of the free algebra T(V) constructed
from the static feature space V . While free algebras are classical in mathematics, their use in ML
seems novel and underexplored. We would like to re-emphasize that (T(V), ·) is not a mysterious
abstract space: if you know the outer tensor product ⊗ then you can easily switch to the tensor
convolution product · by taking sums of outer tensor products, as defined in equation 5. As our ex-
periments show, the benefits of this algebraic structure are not just theoretical but can significantly
elevate performance of already strong-performing models.

9

Published as a conference paper at ICLR 2021

REFERENCES

Pierre Baldi, Søren Brunak, Paolo Frasconi, Giovanni Soda, and Gianluca Pollastri. Exploiting the
past and the future in protein secondary structure prediction. Bioinformatics, 15(11):937–946,
1999.

Robert Bamler and Stephan Mandt. Dynamic word embeddings. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, pp. 380–389. JMLR. org, 2017.

Mustafa Baydogan. Multivariate time series classification datasets. http://
mustafabaydogan.com, 2015. [Accessed: 2020-06-11].

Mustafa Gokce Baydogan and George Runger. Learning a symbolic representation for multivariate
time series classification. Data Mining and Knowledge Discovery, 29(2):400–422, 2015a.

Mustafa Gokce Baydogan and George C. Runger. Time series representation and similarity based
on local autopatterns. Data Mining and Knowledge Discovery, 30:476–509, 2015b.

Alessio Benavoli, Giorgio Corani, Francesca Mangili, Marco Zaffalon, and Fabrizio Ruggeri. A
bayesian wilcoxon signed-rank test based on the dirichlet process. In International conference on
machine learning, pp. 1026–1034, 2014.

Alessio Benavoli, Giorgio Corani, and Francesca Mangili. Should we really use post-hoc tests based
on mean-ranks? The Journal of Machine Learning Research, 17(1):152–161, January 2016. ISSN
1532-4435.

Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon. Time for a change: a tutorial
for comparing multiple classifiers through bayesian analysis. The Journal of Machine Learning
Research, 18(1):2653–2688, 2017.

David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the 23rd international
conference on Machine learning, pp. 113–120, 2006.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

P Bonnier, C Liu, and H Oberhauser. Adapted topologies and higher rank signatures. arXiv preprint
arXiv:2005.08897, 2020.

Patric Bonnier, Patrick Kidger, Imanol Perez Arribas, Cristopher Salvi, and Terry Lyons. Deep
signature transforms. 33rd Conference on Neural Information Processing Systems, NeurIPS,
2019.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 6775–
6785. Curran Associates, Inc., 2018.

J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-young” decomposition. Psychometrika, 35(3):283–319,
1970.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):1–12,
2018.

K. T. Chen. Iterated integrals and exponential homomorphisms. Proc. London Math. Soc, 4, 502–
512, 1954.

K. T. Chen. Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula.
Ann. of Math. (2), 65:163–178, 1957.

K. T. Chen. Integration of paths - a faithful representation of paths by non-commutative formal
power series. Trans. Amer. Math. Soc. 89 (1958), 395–407, 1958.

10

http://mustafabaydogan.com
http://mustafabaydogan.com

Published as a conference paper at ICLR 2021

I. Chevyrev and A. Kormilitzin. A primer on the signature method in machine learning. arXiv
preprint arXiv:1603.03788, 2016.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, and Danilo P Mandic.
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on learning theory, pp. 698–728, 2016.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoen-
coders. In Proceedings of the 35th International Conference on Machine Learning, pp. 1078–
1086, 2018.

N Cristianini and J Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge, 2000.

Marco Cuturi and Arnaud Doucet. Autoregressive Kernels For Time Series. arXiv e-prints, art.
arXiv:1101.0673, Jan 2011.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1–30, 2006.

J Diehl, K Ebrahimi-Fard, and N Tapia. Time-warping invariants of multidimensional time series.
arXiv preprint arXiv:1906.05823, 2019.

Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill DF Campbell, and Ivor Simpson. Structured
uncertainty prediction networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5477–5485, 2018.

K. Ebrahimi-Fard and F. Patras. Cumulants, free cumulants and half-shuffles. Proceedings of the
Royal Society, 2015.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. GP-VAE: Deep probabilis-
tic time series imputation. In International Conference on Artificial Intelligence and Statistics,
pp. 1651–1661. PMLR, 2020.

Samuel J. Gershman and Noah D. Goodman. Amortized inference in probabilistic reasoning. Cog-
nitive Science, 36, 2014.

R Giles. A generalization of the strict topology. Transactions of the American Mathematical Society,
1971.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

AL Goldberger, LAN Amaral, L Glass, JM Hausdorff, P Ch Ivanov, RG Mark, JE Mietus,
GB Moody, CK Peng, and HE Stanley. Components of a new research resource for complex
physiologic signals. PhysioBank, PhysioToolkit, and Physionet, 2000.

Benjamin Graham. Sparse arrays of signatures for online character recognition. arXiv preprint
arXiv:1308.0371, 2013.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Networks, 18(5):602 – 610, 2005.

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recognition with deep
bidirectional lstm. In 2013 IEEE workshop on automatic speech recognition and understanding,
pp. 273–278. IEEE, 2013a.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pp. 6645–6649. IEEE, 2013b.

11

Published as a conference paper at ICLR 2021

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

I. Higgins, Loı̈c Matthey, A. Pal, C. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In ICLR, 2017.

Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set functions for
time series. In ICML, 2020.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Ming Hou, Jiajia Tang, Jianhai Zhang, Wanzeng Kong, and Qibin Zhao. Deep multimodal multi-
linear fusion with high-order polynomial pooling. In Advances in Neural Information Processing
Systems, pp. 12136–12145, 2019.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963, Jul 2019. ISSN 1573-756X.

Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. Multivariate lstm-fcns
for time series classification. Neural Networks, 116:237 – 245, 2019. ISSN 0893-6080.

Isak Karlsson, Panagiotis Papapetrou, and Henrik Boström. Generalized random shapelet forests.
Data Min. Knowl. Discov., 30(5):1053–1085, September 2016. ISSN 1384-5810.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to SGD. arXiv preprint arXiv:1712.07628, 2017.

Valentin Khrulkov, Oleksii Hrinchuk, and Ivan Oseledets. Generalized tensor models for recurrent
neural networks. arXiv preprint arXiv:1901.10801, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Franz J Király and Harald Oberhauser. Kernels for sequentially ordered data. Journal of Machine
Learning Research, 2019.

Jean Kossaifi, Zachary C Lipton, Aran Khanna, Tommaso Furlanello, and Anima Anandkumar.
Tensor regression networks. arXiv preprint arXiv:1707.08308, 2017.

Serge Lang. Algebra. Springer-Verlag New York, 2002.

C Leslie and R Kuang. Fast string kernels using inexact matching for protein sequences. Journal of
Machine Learning Research, 2004.

Yingzhen Li and Stephan Mandt. Disentangled sequential autoencoder, 2018.

Paul Pu Liang, Zhun Liu, Yao-Hung Hubert Tsai, Qibin Zhao, Ruslan Salakhutdinov, and Louis-
Philippe Morency. Learning representations from imperfect time series data via tensor rank reg-
ularization. arXiv preprint arXiv:1907.01011, 2019.

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and Jason
Yosinski. An intriguing failing of convolutional neural networks and the coordconv solution. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pp. 9628–9639, Red Hook, NY, USA, 2018a. Curran Associates Inc.

Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, Amir Zadeh, and
Louis-Philippe Morency. Efficient low-rank multimodal fusion with modality-specific factors.
arXiv preprint arXiv:1806.00064, 2018b.

12

Published as a conference paper at ICLR 2021

Terry Lyons. Rough paths, signatures and the modelling of functions on streams. arXiv preprint
arXiv:1405.4537, 2014.

Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking parameter counting in
deep models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139, 2020.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422,
2015.

James Morrill, Adeline Fermanian, Patrick Kidger, and Terry Lyons. A generalised signature method
for time series. arXiv preprint arXiv:2006.00873, 2020.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete
heterogeneous data using vaes. arXiv preprint arXiv:1807.03653, 2018.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran As-
sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
5bce843dd76db8c939d5323dd3e54ec9-Paper.pdf.

P. Nemenyi. Distribution-free Multiple Comparisons. Princeton University, 1963. URL https:
//books.google.nl/books?id=nhDMtgAACAAJ.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

C Reutenauer. Free Lie Algebras. Clarendon press – Oxford, 1993.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.

W. Rudin. Principles of Mathematical Analysis. Cambridge University Press, 1965.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.

Tim Sauer, James A Yorke, and Martin Casdagli. Embedology. Journal of statistical Physics, 65
(3-4):579–616, 1991.

Patrick Schäfer and Ulf Leser. Multivariate time series classification with weasel+muse. ArXiv,
abs/1711.11343, 2017.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681, 1997.

Satya Narayan Shukla and Benjamin M Marlin. Interpolation-prediction networks for irregularly
sampled time series. arXiv preprint arXiv:1909.07782, 2019.

Martin Sundermeyer, Tamer Alkhouli, Joern Wuebker, and Hermann Ney. Translation modeling
with bidirectional recurrent neural networks. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 14–25, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp.
3104–3112. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbulence,
Warwick 1980, pp. 366–381. Springer, 1981.

13

https://proceedings.neurips.cc/paper/2016/file/5bce843dd76db8c939d5323dd3e54ec9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5bce843dd76db8c939d5323dd3e54ec9-Paper.pdf
https://books.google.nl/books?id=nhDMtgAACAAJ
https://books.google.nl/books?id=nhDMtgAACAAJ
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Published as a conference paper at ICLR 2021

Dacheng Tao, Xuelong Li, Xindong Wu, and Stephen J Maybank. General tensor discriminant anal-
ysis and gabor features for gait recognition. IEEE transactions on pattern analysis and machine
intelligence, 29(10):1700–1715, 2007.

C Toth and H Oberhauser. Bayesian learning from sequential data using gaussian processes with
signature covariances. ICML, 2020.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

Kerem Sinan Tuncel and Mustafa Gokce Baydogan. Autoregressive forests for multivariate time
series modeling. Pattern Recognition, 73:202–215, 2018.

Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank? SIAM
Journal on Mathematics of Data Science, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with deep neural networks:
A strong baseline. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
1578–1585, 2017.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Tensor
fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250, 2017.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026,
2018.

Qibin Zhao, Masashi Sugiyama, Longhao Yuan, and Andrzej Cichocki. Learning efficient tensor
representations with ring-structured networks. In ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 8608–8612. IEEE, 2019.

14

Published as a conference paper at ICLR 2021

HOW TO USE THIS APPENDIX

For practitioners, we recommend a look at Section A for a refresher on tensor notation and an
introduction to T(V); further, the introduction of Section B contains a brief summary of the main
theoretical properties of Seq2Tens that make it an attractive feature map for sequence data. Sec-
tions D and E contain details on algorithms and experiments.

For theoreticians, we recommend Section B for a proof that Φ is universal (Theorem B.3), how
the Seq2Tens map behaves in the high-frequency limit as one goes from discrete to continuous time
(Proposition B.10), and to Section C for a quantitative statement of low-rank functionals can be
turned into high-rank functionals with sequence-to-sequence transformations. We re-emphasize that
these more algebra-heavy sections are not needed for practitioners.

A TENSORS AND THE FREE ALGEBRA

This section recalls some basics on the tensor product ⊗ and the convolution product that turns the
linear space T(V) into an algebra – the so-called free algebra or free algebra over V . We refer to
(Lang, 2002, Chapter 16) for more on tensors, to Reutenauer (1993) for free algebras. Put briefly,
for any linear space V there exists a linear space T(V) that contains V but that also carries a non-
commutative product.

Tensor products on Rd. If x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , ye) ∈ Re are two vectors,
then their tensor product x ⊗ y is defined as the (d × e)-matrix, or degree 2 tensor, with entries
(x ⊗ y)i,j = xiyj . This is also commonly called the outer product of the two vectors. The space
Rd ⊗ Re is defined as the linear span of all degree 2 tensors x ⊗ y for x ∈ Rd, y ∈ Re. If z ∈ Rf
is another vector, then one may form a degree 3 tensor x ⊗ y ⊗ z with shape (d × e × f) defined
to have entries (x ⊗ y ⊗ z)i,j,k = xiyjzk. The space Rd ⊗ Re ⊗ Rf is analogously defined as the
linear span of all degree 3 tensors x⊗ y ⊗ z for x ∈ Rd, y ∈ Re, z ∈ Rf .

The tensor product of two general vector spaces V and W can be defined even if they are infinite
dimensional, see (Lang, 2002, Chapter 16), but we invite readers unfamiliar with general tensor
spaces to think of V as Rd below.

The free algebra T(V). Ultimately we are not only interested in tensors of some fixed degree m
– that is an element of V ⊗m – but sequences of tensors of increasing degree. Given some linear
space V , the linear space T(V) is defined as set of all tensors of any degree over V . Formally

T(V) :=
∏
m≥0

V ⊗m = {t = (tm)m≥0 | t ∈ V ⊗m} (19)

where we use the notation V ⊗1 = V , V ⊗2 = V ⊗V, V ⊗3 = V ⊗V ⊗V and so on; by convention we
let V ⊗0 = R. We normally write elements of T(V) as t = (t0, t1, t2, t3, . . .) such that tm ∈ V ⊗m,
that is, t0 is a scalar, t1 is a vector, t2 is a matrix, t3 is a 3-tensor and so on. Note that T(V) is again
a linear space if we define addition and scalar multiplication as

s + t = (sm + tm)m≥0 ∈ T(V) and c · t = (ctm)m≥0 ∈ T(V) (20)

for s, t ∈ T(V) and c ∈ R.
Example A.1. Let V = Rd. For v = (vi)i=1,...,d ∈ Rd consider t = (v⊗m)m≥0 ∈ T(Rd) where
we denote for brevity

tm := v⊗m := v ⊗ · · · ⊗ v︸ ︷︷ ︸
m many tensor products⊗

∈ (Rd)⊗m and by convention we set v⊗0 := 1 ∈ (Rd)⊗0.

That is, t1 = v⊗1 = v is a d-dimensional vector, with the i coordinate equal to vi; t2 = v⊗2

is d × d-matrix with the (i, j)-coordinate equal to vivj ; t3 = v⊗3 is degree 3-tensor with the
(i, j, k)-coordinate equal to vivjvk. In this special case, the element t ∈ T(Rd) consists of entries
tm = v⊗m ∈ (Rd)⊗m that are symmetric tensors, that is the (i1, . . . , im)-th coordinate is the same
as the (iσ(1), . . . , iσ(d)) coordinate if σ is a permutation of {1, . . . , d}. However, we emphasize that
in general an element of T(Rd) does not need to be made up of symmetric tensors.

15

Published as a conference paper at ICLR 2021

A product on T(V). Key to our approach is that T(V) is not only a linear space, but what dis-
tinguishes it as a feature space for sequences is that it carries a non-commutative product. In other
words, T(V) is not just a vector space but a (non-commutative) algebra (an algebra is a vector space
where one can multiply elements). This is the so-called tensor convolution product and defined as
follows

s · t :=
(m∑
i=0

si ⊗ tm−i
)
m≥0 =

(
1, s1 + t1, s2 + s1 ⊗ t1 + t2, . . .

)
. (21)

In a precise mathematical sense, T(V) is the most general algebra containing V , namely T(V) is
the “free algebra” that contains V ; see (Lang, 2002, Chapter 16) for the precise definition of free
objects.

B A UNIVERSAL FEATURE MAP FOR SEQUENCES OF ARBITRARY LENGTH

Recall from Section 2, that given a map defined on a set X
φ : X → V

we lift φ to a map ϕ : X → T(V) and define the Seq2Tens feature map for sequences in X of
arbitrary length as

Φ : Seq(X)→ T(V), x→
T∏
i=1

ϕ(xi).

The remainder of Section B makes the following statements mathematically rigorous:

(i) Φ is a universal feature map whenever φ is a universal (Section B.1 and B.2),
(ii) Φ makes sequences of different length comparable analogous to how m-mers make strings

of different length comparable (Section B.3),
(iii) Φ converges to a well-defined object when we go from discrete to continuous time (se-

quences converge to paths) (Section B.4).

B.1 THE UNIVERSALITY OF Φ.

Definition B.1. Let X be a topological space (the “data space”) and W a linear space (“the feature
space”). We say that a function f : X →W is universal (to Cb(X)) if the the set of functions

{x 7→ 〈`, f(x)〉 : ` ∈W ′} ⊆ Cb(X) (22)

is dense in Cb(X).
Example B.2. Classic examples of this in ML are

• For X ⊂ Rd bounded and W = T(Rd), the polynomial map p : Rd → T(Rd),x 7→
(1,x,x⊗2,x⊗3,x⊗4, . . .) is universal (Rudin, 1965).

• The 1-layer neural net map x 7→
∏
θNθ(x) where θ runs over all configurations of param-

eters is universal under some very mild conditions (Hornik, 1991).

We now prove the main result of this section
Theorem B.3. Let ϕ : X → T(V),x 7→ (ϕm(x))m≥0, ϕm(x) ∈ V ⊗m be such that:

1. For any n ≥ 1 the support of (ϕ0, ϕ1, . . . , ϕm1
)⊗n and ϕm2

are disjoint if 1 ≤ m1 < m2.

2. ϕ0 = 1 and ϕ1 : X → V is a bounded universal map with at least one constant term.

Then

Φ : Seq(X)→ T(V), (x1, . . . ,xL) 7→
L∏
i=1

ϕ(xi) (23)

is universal.

16

Published as a conference paper at ICLR 2021

Remark B.4.

(i) TheoremB.3 implies that x 7→
∏L
i=1(1, φ(x), 0, . . .) is universal whenever φ : X → V is

universal. This is the lift we use throughout the main text, see equation 6.

(ii) By taking ϕ : Rd → T(Rd),x 7→ (1,x, x
⊗2

2! ,
x⊗3

3! , . . .) one recovers Chen’s signature
(Chen, 1954; 1957; 1958) as used in rough paths.

(iii) By taking ϕ : Rd → T(V), ϕ1(x) the polynomial map and ϕm(x) = 0 for m ≥ 2 one
recovers the iterated sums of Diehl et al. (2019) and Király & Oberhauser (2019).

(iv) By taking each ϕm to be a trainable Neural Network one gets a trainable universal map Φ
for sequences that includes all of the above,

B.1.1 THE ALGEBRA OF LINEAR FUNCTIONALS ON Φ.

The proof of Theorem B.3 uses that if ϕ is universal, then the space of linear functionals on Φ(x)
forms a commutative algebra, that is for two linear functionals `1, `2 there exists another linear
functional ` such that

〈`1,Φ(x)〉〈`2,Φ(x)〉 = 〈`,Φ(x)〉. (24)
This new functional ` is constructed in explicit way from `1 and `2, with a so-called quasi-shuffle
product. In the remainder of this section B.1, we prepare and give the proof of Theorem B.3: subsec-
tion B.1.1 introduces the quasi-shuffle product, and subsection B.1.1 uses this to prove Theorem B.3.

We spell out the proof for the case ϕ = (1, φ, 0, 0, . . .) ∈ T(V) since this is the form we use in the
main text, Proposition 2.1, and the other cases follow similarly. In fact, without loss of generality
we can take φ = id since this does not change the algebraic structure in any way. That is, we take

Φ : Seq(V)→ T(V), Φ(x1, . . . ,xL) :=

L∏
i=1

ϕ(xi) (25)

with ϕ(x) = (1,x, 0, 0, . . .). By using the definition of the product in T(V) and expanding equa-
tion 25 we get

Φ(x1, . . . ,xL) = (1,

L∑
i=1

xi︸︷︷︸
V

,
∑

1≤i1<i2≤L
xi1 ⊗ xi2︸ ︷︷ ︸

V ⊗2

,
∑

1≤i1<i2<i3≤L
xi1 ⊗ xi2 ⊗ xi3︸ ︷︷ ︸

V ⊗3

, · · ·) (26)

In general, writing Φm(x) for the projection of Φ(x) onto V ⊗m, we have

Φm(x) =
∑

1≤i1<···<im≤L
xi1 ⊗ · · · ⊗ xim . (27)

So if ` = (0, 0, . . . ,v1 ⊗ · · · ⊗ vm, 0, . . .) with v1, . . . ,vm ∈ V , then

〈`,Φm(x)〉 = 〈v1 ⊗ · · · ⊗ vm,
∑

1≤i1<···<im≤L
xi1 ⊗ · · · ⊗ xim〉 (28)

=
∑

1≤i1<···<im≤L
〈v1 ⊗ · · · ⊗ vm,xi1 ⊗ · · · ⊗ xim〉 =

∑
1≤i1<···<im≤L

〈v1,xi1〉 · · · 〈vm,xim〉.

(29)

Hence 〈`,Φm(x)〉 can be computed efficiently without computing Φ(x). Proposition 3.3 follows by
linearity since by definition 〈`,Φ(x)〉 =

∑
m≥0〈`m,Φ(x)〉 and for each of the terms we can use the

above formula when ` = (`0, `1, `2, . . . , `M , 0, . . .) is of rank-1 and of degree M (Definition 3.1).

Non-linear functionals acting on Φ. We now investigate what happens when one applies non-
linear functions to Φ(x). To do this, we first note that since T(V) is a vector space, we may form
the free algebra over T(V), denoted by T(T(V)), or T2(V). It may be decomposed as

T2(V) =
∏

n1,...,nk≥0
V ⊗n1

∣∣ · · · ∣∣V ⊗nk (30)

where we use the notation ⊗ for the tensor product on V and the bar | for the tensor product on
T(V). See Ebrahimi-Fard & Patras (2015) for more on T2(V) and the bar notation.

17

Published as a conference paper at ICLR 2021

Definition B.5. If x ∈ V is a vector, we denote by x? its extension

x? := (x⊗m)m≥0 = (1, x, x⊗2, x⊗3, . . .) (31)

and if x = (x1, . . . ,xL) ∈ Seq(V) is a sequence, then

x? := (x?1, . . . ,x
?
L) ∈ Seq(T(V)) (32)

Since x? is a sequence in T(V), we may compute Φ(x?) which takes values in T(T(V)) = T2(V).

The reason for the above definition is that when products of linear functions in T(V) act on Φ(x),
they may be described as linear functions in T2(V) acting on Φ(x?). That is, T(V) is not big
enough to capture all non-linear functions acting on Φ(x), but T2(V) is.
Definition B.6. Assume that V has basis e1, . . . , ed. The quasi-shuffle product

? : T2(V)× T2(V)→ T2(V) (33)

is defined inductively on rank 1 elements `1 = ei1 | · · · |eim , `2 = ej1 | · · · |ejn by

(`1|ei) ? (`2|ej) = (`1|ei ? `2)|ej + (`1 ? `2|ej)|ei + (`1 ? `2)|(ei ⊗ ej). (34)

By linearity ? extends to a product on all of T(V).
Lemma B.7. The map Φ satisfies the following

〈`1,Φ(x)〉〈`2,Φ(x)〉 = 〈`1 ? `2,Φ(x?)〉. (35)

Proof. By writing out equation 27 in coordinates we get

〈ei1 | · · · |eim ,Φ(x)〉 =
∑

1≤k1<···<km≤L
〈ei1 ,xk1〉 · · · 〈eim ,xkm〉. (36)

which shows that Φ satisfies a recurrence equation. The proof follows by induction.

The space T2(V) might seem very large and difficult to work with at first. The power of this
representation comes from the fact that one may leverage this in proving strong statements about the
original map Φ : Seq(V)→ T(V), and we will use this in the next subsection.

B.2 PROOF OF THEOREM B.3.

We prepare the proof of Theorem B.3 with the following lemma.

Lemma B.8. Let Seq1(V) be the set of all x = (x1, . . . ,xL) ∈ Seq(V) with the form xi =
(1, x1i , . . . , x

d
i). That is, all sequences where one of the terms is constant. Then the map

Seq1(V)→ T(V), (x1, . . . ,xL)→
L∏
i=1

(1 + xi) (37)

is injective.

Proof. Follows from an induction argument over L. For L = 1 it is clear since

〈ei,Φ(x)〉 = xi. (38)

Assume that it is true for L, let x = (x1, . . . ,xL+1),y = (y1, . . . ,yL+1), where we may assume
that both have length L + 1 by taking any number of components to be 0 if necessary. Let `1 be
some linear function that separates Φ(x1, . . . ,xL) and Φ(y1, . . . ,yL) and `2 some linear function
that separates Φ(x2, . . . ,xL+1) and Φ(y2, . . . ,yL+1), then by fixing some γ ∈ R:

〈`1 ⊗ e0 + γe0 ⊗ `2,Φ(x)− Φ(y)〉 (39)
= 〈`1,Φ(x1, . . . ,xL)− Φ(y1, . . . ,yL)〉+ γ〈`2,Φ(x2, . . . ,xL+1)− Φ(y2, . . . ,yL+1)〉. (40)

Since neither 〈`1,Φ(x1, . . . ,xL)−Φ(y1, . . . ,yL)〉 nor 〈`2,Φ(x2, . . . ,xL+1)−Φ(y2, . . . ,yL+1)〉
are 0 by assumption there exists some γ ∈ R such that 〈`1 ⊗ e0 + γe0 ⊗ `2,Φ(x) − Φ(y)〉 6= 0.
This shows the assertion.

18

Published as a conference paper at ICLR 2021

We now have everything to give a proof of Theorem B.3.

Proof of Theorem B.3. We will show that linear functionals on Φ are dense in the strict topology
(Giles, 1971). By Theorem (Giles, 1971, Theorem 3.1) it is enough to show that linear functions
on Φ form an algebra since by Lemma B.8 they separates the points of Seq(X). Since they clearly
form a vector space it is enough to show that they are closed under point-wise multiplication. Let
`1, `2 be two such, then by Lemma B.7

〈`1,Φ(x)〉〈`2,Φ(x)〉 = 〈`1 ? `2,
L∏
i=1

φ(xi)
?〉 (41)

so it is enough to show that `1?`2 also is a linear function on Φ(x). Note that inductively it is enough
to show that if ei, ej are unit vectors, then ei ⊗ ej is a linear function on Φ(x). By assumption
φ is bounded and universal, so the continuous bounded function x 7→ 〈ei, φ(xk)〉〈ej , φ(xk)〉 is
approximately linear, and we may write

〈ei, φ(xk)〉〈ej , φ(xk)〉 = 〈h, φ(xk)〉+ ε(xk) (42)

where ε(xk) can be made arbitrarily small in the strict topology. The assertion now follows since

〈ei ⊗ ej ,
L∏
i=1

φ(xi)
?)〉 =

L∑
k=1

〈ei, φ(xk)〉〈ej , φ(xk)〉 =

L∑
k=1

〈h, φ(xk)〉+ ε(xk) (43)

= 〈eh,Φ(x)〉+ n max
1≤k≤n

ε(xk). (44)

B.3 SEQ2TENS MAKES SEQUENCES OF DIFFERENT LENGTH COMPARABLE

The simplest kind of a sequence is a string, that is a sequence of letters. Strings are determined by

(i) what letters appear in them,
(ii) in what order the letters appear.

A classical way to produce a graded description of strings is by counting their non-contiguous sub-
strings. These are the so-called m-mers; for example,

The string ”aabc” has the 2-mers {aa, ab, ac, ab, ac, bc}. (45)

Measuring similarity between strings by counting how many substrings they have in common is a
sensible similarity measure, even if the strings have different length; we refer to Leslie & Kuang
(2004) for applications and to (Cristianini & Shawe-Taylor, 2000, Chapter 11) for detailed introduc-
tion to the use of substrings in ML.

Our Seq2Tens feature map can be regarded as a vast generalization of such subpattern matching:
if Φ(x) = (Φm(x))m≥0 ∈ T(V) then the tensor Φm(x) ∈ V ⊗m represents non-contiguous sub-
sequences of x = (x1, . . . ,xT) of length m and thus comparing Φm(x) and Φm(y) is meaningful
even when x and y are of different length. It is instructive to spell out in detail how m-mers are a
special case of Seq2Tens, Example B.9, and how it generalizes, Example B.11.
Example B.9. Let X = {a, b, c} and φ : X → V = R3 defined by mapping a, b, c ∈ X to the unit
vectors e1, e2, e3 ∈ V , so that ϕ(a) = (1, e1, 0, 0, ...) ∈ T(V), ϕ(b) = (1, e2, 0, . . .) ∈ T(V), and
ϕ(c) = (1, e3, 0, . . .) ∈ T(V). For the sequence x = (a, a, b, c) ∈ Seq(X) we get

Φ(x) =ϕ(a)ϕ(a)ϕ(b)ϕ(c) (46)
=(1, e1, 0, 0, . . . ,) · (1, e1, 0, 0, . . .) · (1, e2, 0, 0, . . .) · (1, e3, 0, 0, . . .) (47)
=(1, 2e1 + e2 + e3︸ ︷︷ ︸

∈V

, e1 ⊗ e1 + 2e1 ⊗ e2 + 2e1 ⊗ e3 + e2 ⊗ e3︸ ︷︷ ︸
∈V ⊗2

, (48)

e1 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e3, e1 ⊗ e1 ⊗ e3 ⊗ e4︸ ︷︷ ︸
∈V ⊗3

, e1 ⊗ e1 ⊗ e2 ⊗ e3︸ ︷︷ ︸
∈V ⊗4

, 0, . . .). (49)

19

Published as a conference paper at ICLR 2021

We see that the tensor Φ(x) ∈ V ⊗m of degree m contains the m-mers, that is the coordinates of
Φm(x) count how often a subsequence of length m in x = (a, a, b, c) appears; e.g. the coordinate
e1 ⊗ e2 of Φ2(x) equals 2 because the substring “a,b” appears twice but the e1 ⊗ e1 coordinate of
Φ2(x) equals 1 since the substring “a,a” appears only once in (a, a, b, c), etc. Similarly, the only
non-zero coordinate of Φ4(x) is e1⊗ e1⊗ e2⊗ e3 since ”a,a,b,c” is the only substring of (a, a, b, c)
and consequently all coordinate of Φm(x) are 0 for m ≥ 5.

An analogous calculation shows that for continuous domain such as X = Rd the coordinates of
Φm(x) ∈ (Rd)⊗m measure movement patterns in these coordinates. Section B.4 below shows that
this interpretation also holds when we go from discrete time (sequences) to continuous time (paths);
Example B.11.

B.4 CONVERGENCE FROM DISCRETE TO CONTINUOUS TIME

A common source of of sequence data is to measure a quantity (x(t))t∈[0,T] that evolves in contin-
uous time at fixed times t1, . . . , tL to produce a sequence x = (x(t1), . . . , x(tL)) ∈ Seq(X). Often
the measurements are of high-frequency (|ti+1 − ti| → 0 and L → ∞) and is interesting to un-
derstand how our Seq2Tens approach behaves in this limiting case. As it turns out, when combined
with taking finite differences1 our feature map Φ(x) converges to a classical object in analysis, the
so-called signature of the path x in this limit, (Chevyrev & Kormilitzin, 2016) . For brevity, we spell
it out here for smooth paths and with the lift ϕ(x) = (1, φ(x), 0, . . .), but readers familiar with rough
paths will notice that the result generalizes even to non-smooth paths such as Brownian motion.
Proposition B.10. Let x ∈ C1([0, 1],Rd) and for every L ≥ 1 define

xL := (x(tL0), x(tL1)− x(tL0), . . . , x(tLL)− x(tLL−1)) (50)

where ti := i
L for i = 0, . . . , L. Then for every m ≥ 0 we have

Φm(xL)→
∫
0≤t1≤···≤tm≤1

dx

dt
(t1)⊗ · · · ⊗ dx

dt
(tm)dt1 · · · dtm as L→∞. (51)

Proof. Using the recurrence relation from the proof of Lemma B.7 we may write

Φm(xL) =

L∑
i=1

Φm−1(xLi)⊗
(
x(ti+1)− x(ti)

)
(52)

where xLi denotes the sequence (x(tL0), x(tL1)−x(tL0), . . . , x(tLi)−x(tLi−1)). By a Taylor expansion
this is equal to

Φm(xL) =

L∑
i=1

Φm−1(xLi)⊗ dx

dt
(ti)(ti+1 − ti) +O(1/L), (53)

so by unravelling the recurrence relation we may write

Φm(xL) =
∑

1≤i1<...<im≤L

dx

dt
(ti1)⊗ · · · ⊗ dx

dt
(tim)(ti1+1 − ti1) · · · (tim+1 − tim) +O(1/L),

(54)

which is a Riemann sum, and thus converges to the asserted limit.

The interpretation of Φm(x) as counting sub-patterns remains even in the continuous time case:
Example B.11. Let x ∈ C1([0, 1],Rd) and e1, . . . , ed the standard basis of V = Rd. For m = 1
the e1 coordinate equals

〈e1,
∫ 1

t=0

dx

dt
(t)dt〉 = 〈e1, x(1)− x(0)〉

1This is necessary to counteract the fact the magnitude of Φ grows with the sum of the elements in the
sequence

20

Published as a conference paper at ICLR 2021

x · · ·

Φ(x) · · ·

Φ2(x) · · ·

...
...

...
...

...
...

...

Output · · ·

Figure 1: The sequence-to-sequence transformation. The bottom row is the original sequence x and
subsequent ones apply the map Φ in the sequence-to-sequence manner.

which measures the total movement of the path x in the direction e1. Analogously, for m = 2 the
e1 ⊗ e2 coordinate equals

〈e1 ⊗ e2,
∫
0≤t1≤···≤tm≤1

x(t1)

dt1
⊗ x(t2)

dt2
dt1dt2 =

∫
0≤t1≤t2≤1

〈e1,
x(t1)

dt1
〉〈e2,

x(t2)

dt2
〉dt1dt2. (55)

which measure the number of ordered tuples (t1, t2), t1 < t2, such that x moves in direction e1 at
time t1 and subsequently in direction e2 at time t2.

C STACKING SEQUENCE-TO-SEQUENCE TRANSFORMS

As Φ applies to sequences of any length, we may use it to map the original sequence to another
sequence in feature space,

Seq(V)→ Seq(T(V)) (56)

(x1,x2,x3, . . . ,xL) 7→
(

Φ(x1),Φ(x1,x2),Φ(x1,x2,x3), . . . ,Φ(x1, . . . ,xL)
)
. (57)

Since T(V) is again a linear space, we can repeat this procedure to map Seq(T(V)) to
Seq(T(T(V))). By repeating this D times, we have constructed sequence-to-sequence transforms

Seq(V) = Seq(T(V))→ Seq(T(T(V)))→ · · · → Seq(T (· · ·T︸ ︷︷ ︸
D times

(V) · · ·)). (58)

See Figure 1 for an illustration. We emphasize that in each step of the iteration, the newly created
sequence evolves in a much richer space than in the previous step. To make this precise we now
introduce the higher rank free algebras.

Higher rank free algebras. Just like in Appendix B we need to enlarge the ambient space T(V).
Recall that we defined T2(V) := T(T(V)). This construction can be iterated indefinitely and leads
to the higher rank free algebras, recursively defined as follows:
Definition C.1. Define the spaces

T0(V) = V, TD(V) =
∏
m≥0

(
TD−1(V)

)⊗m
. (59)

We use the notation⊗(D) for the tensor product on TD−1(V) which makes
(
TD(V),+,⊗(D)

)
into

a multi-graded algebra over s. See Bonnier et al. (2020) for more on this iterated construction.

Half-shuffles. By iterating the sequence-to-sequence D times, one gets a map

ΦD : Seq(V)→ TD(V). (60)

21

Published as a conference paper at ICLR 2021

These are very large spaces, but as we will see in Proposition C.3 below, linear functionals on the
full map Seq(V) → TD(V) can be de-constructed into so called half-quasi-shuffle on the original
map Φ : Seq(V)→ T(V).

Just like in Appendix B we consider the sequence x as its extension x? taking values in T(V). Hence
linear functionals can be written as linear combinations of elements of the form ei1⊗(2) · · ·⊗(2) ein .
Definition C.2. The half-quasi-shuffle product is defined on rank 1 tensors by

`1 ≺ (`2 ⊗(2) ei) = (`1 ? `2)⊗(2) ei (61)

and extends by bi-linearity to a map T2(V)× T2(V)→ T2(V).

Proposition C.3 shows that by composing Φ with itself, low degree tensors on the second level can
be rewritten as higher degree tensors on the first level. This indicates that iterated compositions of
Φ can be much more efficient than computing everything on the first level. We show this for the first
level, but by iterating the statement it can be applied for any number D ≥ 2.
Proposition C.3. Let Φ be the sequence-to-sequence transformation:

Seq(V)→ Seq(T(V)), (x1, . . . ,xL) 7→ (Φ(x1), . . . ,Φ(x, . . . ,xL)) (62)

and let ∆(x0, . . . ,xL) = (x1 − x0, . . . ,xL − xL−1). Then

〈e`1 ⊗(3) e`2 ,Φ(∆Φ(x))〉 = 〈`1 ≺ `2,Φ(x)〉 (63)

Proof. We use the notation Φ(x)k = Φ(x1, . . . ,xk). By induction:

〈e`1 ⊗(3) e`2⊗(2)ei ,Φ(∆Φ(x))〉 (64)

=
∑

1≤k1<k2≤L

(
〈`1,Φ(x)k1 − 〈`1,Φ(x)k1−1

)
〉
(
〈`2 ⊗(2) ei,Φ(x)k2〉 − 〈`2 ⊗(2) ei,Φ(x)k2−1〉

)
(65)

=

L−1∑
k=1

〈`1,Φ(x)k〉
(
〈`2 ⊗(2) ei,Φ(x)k+1〉 − 〈`2 ⊗(2) ei,Φ(x)k〉

)
(66)

=

L−1∑
k=1

〈`1,Φ(x)k〉
(∑
1≤l≤k

〈`2,Φ(x)l〉xil+1 − 〈`2,Φ(x)l−1〉xil
)

(67)

=

L−1∑
k=1

〈`1,Φ(x)k〉〈`2,Φ(x)k〉xik+1 =

L−1∑
k=1

〈`1 ? `2,Φ(x)k〉xik+1 (68)

= 〈(`1 ? `2)⊗(2) ei,Φ(x)L〉. (69)

D DETAILS ON COMPUTATIONS

Here we give further information on the implementation of LS2T layers detailed in the main text.
For simplicity, we fix the state-space of sequences to be V = Rd from here onwards. We also
remark that although some of the following considerations and techniques might look unusual for
the standard ML audience, they are well-known in the signatures community (Morrill et al., 2020)

D.1 VARIATIONS

Truncation degree. To reiterate from Section 2, for a given static feature map φ : Rd → V the
Seq2Tens feature map Φ : Seq(Rd) → T(V) represents a sequence x = (x1, . . . ,xL) ∈ Seq(Rd)
as a tensor in T (V),

Φ(x) = (Φm(x))m≥0, Φm(x) =
∑

1≤i1<···<im≤L
φ(xi1)⊗ · · · ⊗ φ(xim), (70)

22

Published as a conference paper at ICLR 2021

where Φm : Seq(Rd) → V ⊗m is given by a summation over all noncontiguous length-m subse-
quences of x with non-repeating indices. Therefore, for a sequence of length L ∈ N, Φm can have
potentially non-zero terms for m ≤ L. An empirical observation is that for most datasets computing
everything up to the Lth level is redundant in the sense that usually the first M ∈ N levels already
contain most of the information a discriminative or a generative model picks up on where M � L.
It is thus better treated as a hyperparameter, which we call “order” in the main text.

Below we take for brevity φ(xi) = xi ∈ V = Rd since with other maps φ simply amounts to
replacing xi ∈ Rd by φ(xi) ∈ Re.

Distinguishing functionals across levels. Let us consider the LS2T map Φ̃θ̃, each output coordi-
nate of which is given by a linear functional of Φ, i.e. Φ̃θ̃(x) =

(
〈`1,Φ(x)〉, . . . , 〈`n,Φ(x), 〉

)
for a

sequence x ∈ Seq(Rd) and a collection of rank-1 elements θ = (`k)nk=1 ⊂ T (Rd). Then, a single
output coordinate of Φ̃θ may be written for 1 ≤ k ≤ n as

〈`k,Φ(x)〉 =
∑
m=0

〈`km,Φm(x)〉, (71)

for `k = (`km)m≥0, i.e. we take inner products of tensors that are of the same degree, and then sum
these up. We found that rather than taking the summation across tensor levels, it is beneficial to treat
the linear functional on each level of the free algebra as an independent output to have

Φ̃m,θ̃(x) = (〈`1m,Φm(x), . . . , 〈`nm,Φm(x)〉) and Φ̃θ̃(x) = (Φ̃m,θ̃(x))m≥0, (72)

where now Φ̃θ̃ has output dimensionality (M × n) with M ∈ N the truncation degree of Φ as
detailed in the previous paragraph. Hence this modification scales the output dimension by M , but
it will be important for the next step we discuss. It is for this modification that in Figure 2, each
output of a LS2T layer has dimensionality n ×m for a width-n and order-m LS2T map, while in
Figure 5 the B-LS2T layer has output dimensionality h× 4, since we set n = h and m = 4.

The need for normalization. Here we motivate the need to follow each LS2T layer by some form
of normalization. Let x = (x1, . . . ,xL) ∈ Seq(Rd) be a sequence. Let α ∈ R be a scalar and define
y = αx ∈ Seq(Rd) a scaled version of x. Let us investigate how the features change:

Φm(y) =
∑

1≤i1<···<iM≤L
yi1 ⊗ · · · ⊗ yim =

∑
1≤i1<···<iM≤L

(αxi1)⊗ · · · ⊗ (αxim) (73)

= αm
∑

1≤i1<···<iM≤L
xi1 ⊗ · · · ⊗ xim , (74)

and therefore we have Φ(y) = (Φm(y))m≥0 = (αmΦm(x))m≥0, which analogously translates into
the low-rank Seq2Tens map since

Φ̃m,θ̃(y) = (〈`1m,Φm(y)〉, . . . , 〈`nm,Φm(y)〉) = (〈`1m, αmΦm(x)〉, . . . , 〈`nm, αmΦm(x)〉) (75)

= αm(〈`1m,Φm(x)〉, . . . , 〈`nm,Φm(x)〉). (76)

From this point alone, it is easy to see that Φm, and thus Φ̃m,θ̃ will move across wildly different
scales for different values of m, which is inconvenient for the training of neural networks. To
counterbalance this, we used a batch normalization layer after each LS2T layer in Sections 5.1, 5.2
that computes mean and variance statistics across time and the batch itself, while for the GP-VAE in
Section 5.3 we used a layer normalization that computes the statistics only across time.

Sequence differencing. In both Section 5.1 and Section 5.3, we precede each LS2T layer by a
differencing layer and a time-embedding layer.

Let ∆ : Seq(Rd) → Seq(Rd) be the discrete difference operator defined for a sequence x =
(x1, . . . ,xL) ∈ Seq(Rd) as

∆x := (x1,x2 − x1, . . . ,xL − xL−1) ∈ Seq(Rd), (77)

23

Published as a conference paper at ICLR 2021

where we made the simple identification that x0 ≡ 0, i.e. for all sequences we first concatenate
a 0 observation along the time axis, in the signature learning community this is called basepoint
augmentation Morrill et al. (2020), which is beneficial for two reasons: (i) now ∆ preserves the
length L of a sequence, (ii) now ∆ is one-to-one, since otherwise ∆ would be translation invariant,
i.e. it would map all sequences which are translations of each other to the same output.

To motivate differencing, first let us consider Φm(x) for m = 1, and for brevity denote ∆xi =
xi − xi−1 for i = 1, . . . , L and the convention x0 = 0. Then, we may write

Φ1(x) =

L∑
i=1

∆xi = xL, (78)

which means that now the first level of the Seq2Tens map is simply point-wise evaluation at the last
observation time, and when used as a sequence-to-sequence transformation over expanding windows
(i.e. equation 15), it is simply the identity map of the sequence.

Analogously, for the low-rank map we have

Φ̃1,θ(x) =

L∑
i=1

(〈`11,∆xi〉, . . . , 〈`n1 ,∆xi〉) = (〈`11,xL〉, . . . , 〈`n1 ,xL〉), (79)

which is simply a linear map applied to x in an observation-wise manner. The higher order terms,
Φm(x) and Φ̃m,θ̃(x) can generally be written as

Φm(x) =
∑

1≤i1<...im≤L
∆xi1 ⊗ · · · ⊗∆xim , (80)

and

Φ̃m,θ̃ =
∑

1≤i1<···<im≤L
(〈z1m,1,∆xi1〉 · · · 〈z1m,m,∆xim〉, . . . , 〈znm,1,∆xi1〉 · · · 〈znm,m,∆xim〉)

(81)

for some rank-1 degree-m tensors `km = zkm,1⊗ · · · ⊗ zkm,m for k = 1, . . . , n. We observed that this
way the higher order terms are relatively stable across time as the length of a sequence increases,
while without differencing they can become unstable, exhibit high oscillations, or simply blow-up.

An additional benefit of taking differences is that the maps Φ and Φ̃θ̃ become warping invariant, that
is, invariant to time warpings. It is easy to see this by checking that if xi = xi−1 then ∆xi = 0 and
all the corresponding terms in the summations equation 80 and equation 81 are zeros.

Time-embeddings. By time-embedding, we mean adding as an extra coordinate to an input se-
quence the observation times (ti,xi)i=1,...,L ∈ Seq(Rd+1). Some datasets already come with a
pre-specified observation-grid, in which case we can use that as a time-coordinate at every use of a
time-embedding layer. If there is no pre-specified observation grid, we can simply add a normalized
and equispaced coordinate, i.e. ti = i/L.

Time-embeddings can be beneficial preceding both convolutional layers and LS2T layers. For con-
volutions, it allows to learn features that are not translation invariant (Liu et al., 2018a). For the LS2T
layer, the interpretation is slightly different. Note that in both Sections 5.1 and 5.3, we employ the
time-embedding before the differencing block. This can be equivalently reformulated as after differ-
encing adding an additional constant coordinate to the sequence, i.e. (ti−ti−1,xi−xi−1)i=1,...,L ∈
Seq(Rd+1), where ti − ti−1 = 1/L is simply a constant. This is motivated by Lemma B.8, which
states that the map Φ : Seq(Rd) → T (V) is injective for sequences with a constant coordinate.
Thus, the time-embedding before the differencing block is equivalent to adding a constant coordi-
nate after the differencing block, and its purpose is to guarantee injectivity of Φ.

Delay embeddings and convolutions. A useful preprocessing technique for time series are delay
embeddings, which simply amount to augmenting the state-space of sequences with a certain number
of previous observations, motivated by Takens’ theorem (Takens, 1981; Sauer et al., 1991), which
ensures that a high-dimensional dynamical system can be reconstructed from low-dimensional ob-
servations. Theorem 2.1 guarantees that if φ is a universal feature map on the state-space then Φ is

24

Published as a conference paper at ICLR 2021

universal. The most straightforward nonlinearity to take as φ is a multilayer perceptron (MLP), that
is, φ = φD◦· · ·◦φ1 with φj(x) = σ(Wjx+bj). By combining such dense layers with delay embed-

dings (lags), one recovers a temporal convolution layer, i.e. φj(xli) = σ
(∑l

k=0 Wj,kxi−k + bj

)
,

which motivates the use of convolutions in the preprocessing layers.

D.2 RECURSIVE COMPUTATIONS

Next, we show how the computation of the maps Φm and Φm,θ can be formulated as a joint recursion
over the tensor levels and the sequence itself.

Since Φm is given by a summation over all noncontiguous length-m subsequences with non-
repetitions of a sequence x ∈ Seq(Rd), simple reasoning shows that Φm obeys the recursion across
m and time for 2 ≤ l ≤ L and 1 ≤ m

Φm(x1, . . .xl) = Φm(x1, . . .xl−1) + Φm−1(x1, . . . ,xl−1)⊗ xl, (82)

with the initial conditions Φ0 ≡ 1, Φ1(x1) = x1 and Φm(x1) = 0 for m ≥ 2.

Let ` = (`m)m≥0 ∈ T (Rd) be a sequence of rank-1 tensors with `m = zm,1⊗· · ·⊗zm,m ∈ (Rd)⊗m
a rank-1 tensor of degree-m. Then, 〈`m,Φm(x)〉may be computed analogously to equation 82 using
the recursion for 2 ≤ l ≤ L, 1 ≤ m

〈`m,Φm(x1, . . . ,xl)〉 =〈zm,1 ⊗ · · · ⊗ zm,m,Φm(x1, . . . ,xl)〉 (83)
=〈zm,1 ⊗ · · · ⊗ zm,m,Φm(x1, . . . ,xl−1)〉 (84)

+ 〈zm,1 ⊗ · · · ⊗ zm,m−1,Φm−1(x1, . . . ,xl−1)〉〈zm,m,xl〉 (85)
=〈`m,Φm(x1, . . .xl−1)〉 (86)

+ 〈zm,1 ⊗ · · · ⊗ zm,m−1,Φm−1(x1, . . . ,xl−1)〉〈zm,m,xl〉 (87)

and the initial conditions can be rewritten as the identities 〈z0,0,Φ0〉 = 1, 〈zm,1,Φ1(x)〉 = 〈zm,1,x〉
and 〈zm,1 ⊗ · · · ⊗ zm,m,Φm(x1)〉 = 0 for 2 ≤ m.

A slight inefficiency of the previous recursion given in equation 86, equation 87 is that one generally
cannot substitute 〈`m−1,Φm(x1, . . . ,xl−1)〉 for the 〈zm,1 ⊗ · · · ⊗ zm,m−1,Φm(x1, . . . ,xl−1)〉〉
term in equation 87, since `m−1 6= zm,1⊗ · · · ⊗ zm,m−1 generally. This means that to construct the
degree-m linear functional 〈`m,Φm(x1, . . . ,xl)〉, one has to start from scratch by first constructing
the degree-1 term 〈zm,1,Φ1〉 first, then the degree-2 term 〈zm,1 ⊗ zm,2,Φ2〉, and so forth. This
further means in terms of complexities that while equation 82 has linear complexity in the largest
value of m, henceforth denoted by M ∈ N, equation 86, equation 87 has a quadratic complexity in
M due to the non-recursiveness of the rank-1 tensors (`m)m = (zm,1 ⊗ · · · ⊗ zm,m)m.

The previous observation indicates that an even more memory and time efficient recursion can be
devised by parametrizing the rank-1 tensors (`m)m in a recursive way as follows: let `1 = z1 ∈ Rd
and define `m = `m−1⊗zm ∈ (Rd)⊗m for 2 ≤ m, i.e. `m = z1⊗· · ·⊗zm for {z1, . . . zm} ⊂ Rd.
This parametrization indeed allows to substitute `m−1 in equation 87, which now becomes

〈`m,Φm(x1, . . . ,xl)〉 = 〈`m,Φm(x1, . . . ,xl−1〉+ 〈`m−1,Φm−1(x1, . . . ,xl−1)〉〈zm,xl〉, (88)

and hence, due to the recursion acrossm for both `m and Φm, it is now linear in the maximal value of
m, denoted by M ∈ N. This results in a less flexible, but more efficient LS2T, due to the additional
added recursivity constraint on the rank-1 elements. We refer to this version as the recursive variant,
while to the non-recursive construction as the independent variant.

Next, we show how the previous computations can be rewritten as a simple RNN-like discrete dy-
namical system. For simplicity, we consider the recursive formulation, but the independent variant
can also be formulated as such with a larger latent state size. Let (`j)j=1,...,n be n ∈ N differ-
ent rank-1 recursive elements, i.e. `j = (`jm)m≥0, `jm = zj1 ⊗ . . . zjm for zjm ∈ Rd, m ≥ 0 and
j = 1, . . . , n. Also, denote hjm,i := 〈`jm,Φm(x1, . . . ,xi)〉 ∈ R, a scalar corresponding to the output
of the jth linear functional on themth tensor level for the sequence (x1, . . . ,xi). We collect all such
functionals for given m and i into hm,i := (h1m,i, . . . h

n
m,i) ∈ Rn, i.e. hm,i = Φ̃m,θ̃(x1, . . . ,xi).

25

Published as a conference paper at ICLR 2021

Algorithm 1 Computing the LS2T layer with independent tensors across levels

1: Input: Sequences (xj)j=1,...,nx = (xj1, . . . ,x
j
L)j=1,...,nx ⊂ Seq(Rd),

rank-1 tensors (`k)k=1,...,n` = (zkm,1 ⊗ · · · ⊗ zkm,m)k=1,...,n`
m=1,...,M ⊂ T (Rd), LS2T order M ∈ N

2: Compute A[m, i, j, l, k]← 〈zjm,k,xil〉 for m ∈ {1, . . . ,M}, i ∈ {1, . . . , nx}, j ∈ {1, . . . , n`},
l ∈ {1, . . . , L} and k ∈ {1, . . . ,m}

3: for m = 1 to M do
4: Assign R← A[m, :, :, :, 1]
5: for k = 2 to m do
6: Iterate R← A[m, :, :, :, k]�R[:, :,� + 1]
7: end for
8: Save Ym ← ·R[:, :,�]
9: end for

10: Output: Sequences (Y1, . . . , YM) each of shape (nx × L× n`)

Algorithm 2 Computing the LS2T layer with recursive tensors across levels

1: Input: Sequences (xj)j=1,...,nx = (xj1, . . . ,x
j
L)j=1,...,nx ⊂ Seq(Rd),

rank-1 tensors (`k)k=1,...,n` = (zk1 ⊗ · · · ⊗ zkm)k=1,...,n`
m=1,...,M ⊂ T (Rd), LS2T order M ∈ N

2: Compute A[m, i, j, l] ← 〈zjm,xil〉 for m ∈ {1, . . . ,M}, i ∈ {1, . . . , nx}, j ∈ {1, . . . , n`} and
l ∈ {1, . . . , L}

3: Assign R← A[1, :, :, :]
4: Save Y1 ← R[:, :,�]
5: for m = 2 to M do
6: Update R← A[m, :, :, :]�R[:, :,� + 1]
7: Save Ym ← R[:, :,�]
8: end for
9: Output: Sequences (Y1, . . . , YM) each of shape (nx × L× n`)

Additionally, we collect all weight vectors zjm ∈ Rd for a given m ∈ N into the matrix Zm :=
(z1m, . . . , z

n
m)> ∈ Rn×d. Then, we may write the following vectorized version of equation 88:

h1,i = h1,i−1 + Z1xi, (89)
hm,i = hm,i−1 + hm−1,i−1 � Zmxi for m ≥ 2, (90)

with the initial conditions hm,0 = 0 ∈ Rn for all m ≥ 1, and � denoting the Hadamard product.

D.3 ALGORITHMS

We have shown previously that one may compute Φθ(x1, . . . ,xi) = (Φm,θ(x1, . . . ,xi))m≥0 recur-
sively in a vectorized way for a given sequence (x1, . . . ,xi) ∈ Seq(Rd). Now, in Algorithms
1 and 2, we additionally show how to further vectorize the previous computations across time
and the batch. For this purpose, let (xj)j=1,...,nX

⊂ Seq(Rd) be nX ∈ N sequences in Rd and
(`k)k=1,...,n` ⊂ T (Rd) be n` be rank-1 tensors in T (Rd).

Additionally, we adopted the notation for describing algorithms from Király & Oberhauser (2019).
For arrays, 1-based indexing is used. LetA andB be k-dimensional arrays with size (n1×· · ·×nk),
and let ij ∈ {1, . . . , nj} for j ∈ {1, . . . , k}. Then, the following operations are defined:

(i) The cumulative sum along axis j:

A[. . . , :,�, :, . . .][. . . , ij−1, ij , , ij+1 . . .] :=

ij∑
κ=1

A[. . . , ij−1, κ, ij+1, . . .].

(ii) The slice-wise sum along axis j:

A[. . . , :,Σ, :, . . .][. . . , ij−1, ij+1, . . .] :=

nj∑
κ=1

A[. . . , ij−1, κ, ij+1, . . .].

26

Published as a conference paper at ICLR 2021

Table 4: Forward pass computation time in seconds on a Gefore 2080Ti GPU for varying sequence
length L, fixed batch size N = 32, state-space dimension d = 64 and output dimension h = 64.

L Conv1D LSTM LS2T LS2T-R

M = 2 M = 6 M = 10 M = 2 M = 6 M = 10

32 8.1 × 10−4 1.2 × 10−1 1.7 × 10−3 4.5 × 10−3 9.9 × 10−3 1.7 × 10−3 2.5 × 10−3 3.4 × 10−3

64 8.5 × 10−4 2.3 × 10−1 1.8 × 10−3 4.5 × 10−3 9.9 × 10−3 1.8 × 10−3 2.6 × 10−3 3.4 × 10−3

128 9.7 × 10−4 4.6 × 10−1 2.1 × 10−3 4.9 × 10−3 1.0 × 10−2 2.1 × 10−3 2.9 × 10−3 3.8 × 10−3

256 1.1 × 10−3 9.3 × 10−1 2.4 × 10−3 5.2 × 10−3 1.1 × 10−2 2.4 × 10−3 3.2 × 10−3 4.0 × 10−3

512 1.3 × 10−3 1.8 × 100 3.2 × 10−3 6.0 × 10−3 1.1 × 10−2 3.0 × 10−3 4.0 × 10−3 4.8 × 10−3

1024 1.9 × 10−3 3.7 × 100 4.4 × 10−3 7.1 × 10−3 1.2 × 10−2 4.4 × 10−3 5.1 × 10−3 6.0 × 10−3

(iii) The shift along axis j by +m for m ∈ N:

A[. . . , :,+m, :, . . .][. . . , ij−1, ij , ij+1, . . .] :=

{
A[. . . , ij−1, ij −m, ij+1, . . .], if ij > m,
0, if ij ≤ m.

(iv) The Hadamard product of arrays A and B:

(A�B)[i1, . . . , ik] := A[i1, . . . , ik] ·B[i1, . . . , ik].

D.4 COMPLEXITY ANALYSIS

We give a complexity analysis of Algorithms 1 and 2. Inspection of Algorithm 1 says that it has
O(M2 · nx · L · n` · d) complexity in both time and memory with an additional memory cost of
storing the O(M2 · n` · d) number of parameters, the rank-1 elements (`km)m, which are stored in
terms of their components zkm,j ∈ Rd. In contrast, Algorithm 1 has a time and memory cost of
O(M ·nx ·L ·n` ·d), thus linear in M , and the recursive rank-1 elements are now only an additional
O(M · n` · d) number of parameters.

Additionally to the big-O bounds on complexities, another important question is how well the com-
putations can be parallelized, which can have a larger impact on computations when e.g. running
on GPUs. Observing the algorithms, we can see that they are not completely parallelizable due to
the cumsum (�) operations in Lines 6, 8 (Algorithm 1) and Lines 4, 6 (Algorithm 2). The cumu-
lative sum operates recursively on the whole time axis, therefore it is not parallelizable, but can be
computed very efficiently on modern architectures.

To gain further intuition about what kind of performance one can expect for our LS2T layers, we
benchmarked the computation time of a forward pass for varying sequence lengths and varying
hyperparameters of the model. For comparison, we ran the same experiment with an LSTM layer
and a Conv1D layer with a filter size of 32. The input is a batch of sequences of shape (nX×L×d),
while the output has shape (nX × L × h), where d ∈ N is the state-space dimension of the input
sequences, while h ∈ N is simply the number of channels or hidden units in the layer. For our layers,
we used our own implementation in Tensorflow, while for LSTM and Conv1D, we used the Keras
implementation using the Tensorflow backend.

In Table 4, we report the average computation time of a forward pass over 100 trials, for fixed batch
size nX = 32, state-space dimension d = 64, output dimension h = 64 and varying sequence
lengths L ∈ {32, 64, 128, 256, 512, 1024}. LS2T and LS2T-R respectively refer to the independent
and recursive variants, and M ∈ N denotes the truncation degree. We can observe that while the
LSTM practically scales linearly in L, the scaling of LS2T is sublinear for all practical purposes,
exhibiting a growth rate that is more close to that of the Conv1D layer, that is fully parallelizable.
Specifically, while the LSTM takes 3.7 seconds to make a forward pass for L = 1024, all variants
of the LS2T layer take less time than that by a factor of at least a 100. This suggests that its
computations are highly parallelizable across time. Additionally, we observe that LS2T exhibits a
more aggressive growth rate with respect to the parameter M due to the quadratic complexity in M
(although the numbers show only linear growth), while LS2T-R scales very favourably in M as well
due to the linear complexity (the results indicate a sublinear growth rate).

27

Published as a conference paper at ICLR 2021

D.5 INITIALIZATION

Below we detail the initialization procedure used by our models for the parameters θ of the LS2T
layer, where θ = (`k)n`k=1 ⊂ T (Rd). As before, each `k = (`km)m≥0 ∈ T (Rd) is given as a sequence
of rank-1 tensors, such that `km = zkm,1 ⊗ · · · ⊗ zkm,m with zkm,j ∈ Rd for the independent variant,
while `km = zk1 ⊗ · · · ⊗ zkm with zm ∈ Rd for the recursive variant. Hence, by initialization, we
mean the initialization of the components zkm,j or zkm.

To find a satisfactory initialization scheme, we took as starting point the Glorot (Glorot & Bengio,
2010) initialization, which specifies that for a layer with input dimension nin and output dimension
nout, the weights should be independently drawn from a centered distribution with variance 2/(nin+
nout), where the distribution that is used is usually a uniform or a Gaussian.

Independent variant. We first consider the independent variant of the algorithm. The weights are
given as the rank-1 tensors

`km = zkm,1 ⊗ · · · ⊗ zkm,m ∈ (Rd)⊗m for k = 1, . . . , n` and m ≥ 0. (91)

Denote zkm,j = (zkm,j,1, . . . , z
k
m,j,d) ∈ Rd, and assume that for a given m ∈ N that each of zkm,j,p

are drawn independently from some distribution with
E[zkm,j,p] = 0 and E[zkm,j,p]

2 = σ2
m for j = 1, . . . ,m and p = 1, . . . , d. (92)

Then, for a given multi-index i = (i1, . . . , im) ∈ {1, . . . , d}m, the ith coordinate of `km is given as
`km,i = zkm,1,i1 · · · z

k
m,m,im (93)

and has as its first two moments
E[`km,i] = 0 and E[`km,i]

2 = σ2m
m (94)

due to the independence of the corresponding terms in the product. Therefore, to have E[`km,i]
2 =

2/(dm + n`), where we made the substitutions nin = dm and nout = n`, we can simply set

σ2
m = m

√
2

dm + n`
. (95)

Recursive variant. In the recursive variant, the weights themselves are constructed recursively as
`km = zk1 ⊗ · · · ⊗ zkm for k = 1, . . . , n` and m ≥ 0. (96)

Thus, for i = (i1, . . . , im) ∈ {1, . . . , d}m, the ith component of `km is given as
`km,i = zk1,i1 · · · z

k
m,im , (97)

and if we assume that for a given m ∈ N, zkm,im is drawn from a centered distribution with variance
σ2
m, then we have

E[`km,i] = 0 and E[`km,i]
2 = σ2

1 · · ·σ2
m, (98)

which means that now our goal is to have σ2
1 · · ·σ2

m = 2/(dm + n`) for all m ≥ 1, which is
achievable inductively by

σ2
1 =

2

d+ n`
and σ2

m+1 =
dm + n`
dm+1 + n`

for m ≥ 1. (99)

For both variants of the algorithms, we used the above described initialization schemes, where the
tensor component z’s were drawn from a centered uniform or a Gaussian distribution with the spec-
ified variances. Although the resulting weight tensors `km were of neither distribution, they had
the pre-specified first two moments, that seemed sufficient to successfully train models with LS2T
layers when combined with succeeding normalization layers as described in Appendix D.1.

However, we remark that when Glorot & Bengio (2010) derived their weight initialization scheme,
they considered a fully linear regime across layers, while for x = (x1, . . . ,xL) ∈ Seq(Rd), the
features Φm(x1, . . .xL) on which the weight tensors `km act will be highly nonlinear for any given
m ≥ 2 with increasing levels of nonlinearity for larger values of m. Therefore, it is highly likely
that better initialization schemes can be derived by studying the distribution of Φm(x), that might
also make it possible to abandon the normalization layers succeeding the LS2T layers and still retain
the layers’ ability to learn relevant features of the data. Alternatively, data dependent initializations
could also prove useful here, such as the LSUV initialization (Mishkin & Matas, 2015).

28

Published as a conference paper at ICLR 2021

E DETAILS ON EXPERIMENTS

In the following, we give details on the time series classification (Appendix E.1), mortality predic-
tion (Appendix E.2) and sequential data imputation (Appendix E.3) experiments. For running all
experiments, we used GPU-based computations on a set of computing nodes, that were equipped
with 11 NVIDIA GPUs in total: 4 Tesla K40Ms, 5 Geforce 2080 TIs and 2 Quadro GP100 GPUs.
The benchmarks and code used to run the experiments using Tensorflow as backend are available at
https://github.com/tgcsaba/seq2tens.

E.1 TIME SERIES CLASSIFICATION

Problem formulation. Classification is a traditional task in discriminative supervised machine
learning: let X be the data space and Y = {1, . . . , c} the discrete output space that consists of
only categorical values with c ∈ N the total number of classes. The problem is then to predict the
corresponding labels of a set of unlabelled examples X? = (x?i)

nX?

i=1 given a set of labelled examples
(X,y) = (xi, yi)

nX
i=1 ⊆ X × Y . In the context of time series classification (TSC), the data space

X = Seq(Rd) is the space of multivariate sequences, i.e. xi = (xi,j)
lxi
j=1 where lxi ∈ N is the

length of the sequence xi that can change from instance from instance.

Table 5: Specification of datasets used for benchmarking

DATASET nc d Lx nX nX?

ARABIC DIGITS 10 13 4–93 6600 2200
AUSLAN 95 22 45–136 1140 1425
CHAR. TRAJ. 20 3 109–205 300 2558
CMUSUBJECT16 2 62 127–580 29 29
DIGITSHAPES 4 2 30–98 24 16
ECG 2 2 39–152 100 100
JAP. VOWELS 9 12 7–29 270 370
KICK VS PUNCH 2 62 274–841 16 10
LIBRAS 15 2 45 180 180
NETFLOW 2 4 50–997 803 534
PEMS 7 963 144 267 173
PENDIGITS 10 2 8 300 10692
SHAPES 3 2 52–98 18 12
UWAVE 8 3 315 896 3582
WAFER 2 6 104–198 298 896
WALK VS RUN 2 62 128–1918 28 16

Datasets. Table 5 details the
datasets from Baydogan (2015) that
were used for the TSC experiment.
The columns are defined as follows:
nc denotes the number of classes,
d the dimension of the state space,
Lx the range of sequence lengths,
nX and nX? respectively denote
the number of examples in the
prespecified training and testing
sets. As preprocessing, the state
space dimensions were normalized
to zero mean and unit variance.
From the experiment, we excluded
the datasets LP1, LP2, . . . LP5,
because all of these contain a very
low number of training examples
(nX < 50 for 4 out of 5), and also
a low signal-to-noise ratio (around 60%-80% accuracy achieved by non-DL, classic time series
classifiers), which is arguably not the setting when deep learning becomes particularly relevant.

Baselines. The benefit of the multivariate TSC archive (Baydogan, 2015) is that there exist sev-
eral publications which report the test set results of their respective TSC models, which makes it
possible to directly compare against them. We included all results among the comparison that we
are aware of: DTWi (Sakoe & Chiba, 1978), ARKernel (Cuturi & Doucet, 2011), SMTS (Baydo-
gan & Runger, 2015a), LPS (Baydogan & Runger, 2015b), gRSF (Karlsson et al., 2016), mvARF
(Tuncel & Baydogan, 2018), MUSE (Schäfer & Leser, 2017), MLSTMFCN (Karim et al., 2019).
Additionally, a recent survey paper (Ismail Fawaz et al., 2019) benchmarked a range of DL models
for TSC, however, they only considered a subset of these multivariate datasets. Therefore, so as to
have results across the whole archive, we borrow the two strongest models as baselines, FCN and
ResNet, and train them across the whole archive. In fact, we also chose the FCN as the base model
to upgrade with LS2T layers, specifically for its strong performance and simplicity, since FCN is a
vanilla CNN model consisting of three temporal convolution layers with kernel sizes (8, 5, 3) and
filters (128, 256, 128), where each layer is succeeded by batch normalization and relu activation.
We denote this as FCN128, while FCNh refers to an FCN with filters (h, 2h, h). The ResNet is
a more complicated, residual network (He et al., 2016) consisting of three FCN blocks of widths
(64, 128, 128) with skip-connections in-between, where the width of the convolutional layers in
each FCN block are now uniform (hence, the middle convolutional layer also has h filters rather

29

https://github.com/tgcsaba/seq2tens

Published as a conference paper at ICLR 2021

IN
P

U
T

`

d

T
IM

E
+

C
O

N
V

(8
)

h

B
N

+
A

C
T

(R
E

L
U

)

h

T
IM

E
+

C
O

N
V

(5
)

2h

B
N

+
A

C
T

(R
E

L
U

)

2h

T
IM

E
+

C
O

N
V

(3
)

h

B
N

+
A

C
T

(R
E

L
U

)

h

T
IM

E
+

D
IF

F

h+1

+

INPUT SHORTCUT

L
S

2T

n×m

B
N

+
R

E
S

H
A

P
E

nm

. . .

T
IM

E
+

D
IF

F

nm+1

LS2T
n×m

BN + RSHP

nm

1

FCN SHORTCUT

+

FCN BLOCK DEEP LS2T BLOCK

Figure 2: Depiction of the models used for time series classification. LS2T3 only consists of a deep
LS2T block (yellow), while FCN-LS2T3 also precedes it with an FCN block (green).

than 2h). For more details, refer to Ismail Fawaz et al. (2019); Wang et al. (2017). Also note that
for MLSTMFCN the same results are reported as the ones in Schäfer & Leser (2017).

Architecture. The structure of a generic FCNh-LS2Tdn model of FCN width-h, LS2T width-n,
LS2T-depth d and LS2T-order m is visualized on Figure 2, where the FCN block is additionally
augmented with a time-embedding preceding each convolution compared to the vanilla FCN, while
the deep LS2T block uses both time-embedding and difference layers before each LS2T layer. The
usefulness of these is discussed in Appendix D.1. There is a shortcut connection coming from the
INPUT layer, that is added to the input of the first TIME + DIFF layer in the LS2T block, allowing
the first LS2T layer to access the input data additionally to the FCN output. Also, there is another
shortcut connection coming from the output of the FCN block and added to the output of the LS2T
block, which allows the FCN to directly affect the classification performance, hence, allowing the
LS2T block to focus on learning global temporal interactions with the localized interactions coming
from the FCN block. Both skip-connections use a time-distributed linear projection layer to match
the dimension of the residual branch, and the shortcut from the FCN output also uses a GAP layer
to pool over the time axis before being added to the final output that the classification layer receives.

Table 6: Number of trainable parameters

MODEL
TRAINABLE PARAMETERS

MEDIAN MED. ABS. DEV.

LS2T3
64 3.5 × 104 1.5 × 103

FCN64-LS2T3
64 1.2 × 105 2.4 × 103

FCN128 2.7 × 105 3.5 × 103

FCN128-LS2T3
64 3.4 × 105 3.7 × 103

RESNET 5.2 × 105 2.4 × 103

Parameter comparison. Table 6 depicts the
median number of trainable parameters for
the models considered by us in this exper-
iment and their median absolute deviation.
While the smallest model, LS2T3

64, has about
the third of the parameters as FCN64-LS2T3

64
due to the added FCN64 block in the latter,
FCN64-LS2T3

64 still has about half as many pa-
rameters as FCN128 as it is a much thinner net-
work. On the other hand, FCN128-LS2T3

64 uses
an FCN128 block with a LS2T3

64 block on top and additional skip-connections, so it is not surprising
that its number of parameters are between FCN128 and ResNet, with ResNet being the largest model
due to it being a residual network of three FCN blocks of various sizes. At the same time, param-
eter counting might not be a good proxy for measuring the size of deep learning models generally
(Maddox et al., 2020), and even more so when the layer types constituting the different models also
vary additionally to the number of parameters.

Training details. For the training of all models, an ADAM optimizer (Kingma & Ba, 2015) was
used with an initial learning rate of α = 1×10−3, and we employed a learning rate decay of β = 1/2
after 100 epochs of no improvement in the training loss, and stopping early after no improvement
over 500 epochs in the loss, after which the lowest loss parameter set was used. The maximum
number of epochs for all were set to 2000, except for ResNet it was set to 1500, since that is what Is-
mail Fawaz et al. (2019) used. The batch size was set to b = max(min(0.1·nX, bmax), bmin), where
for the models LS2T3

64, FCN128, FCN64-LS2T3
64, FCN128-LS2T3

64 the values were bmax = 16 and
bmin = 4, for ResNet bmax = 64 and bmin = 4 were used. This is also the same setting as how

30

Published as a conference paper at ICLR 2021

Table 7: Classifier accuracies on the multivariate TSC datasets with the best and second best high-
lighted for each row in bold and italic, respectively.

DATASET ARKERNEL DTW LPS SMTS GRSF MVARF MUSE MLSTMFCN FCN128 RESNET LS2T3
64 FCN64-LS2T3

64 FCN128-LS2T3
64

ARABICDIGITS 0.988 0.908 0.971 0.964 0.975 0.952 0.992 0.990 0.995(0.001) 0.995(0.002) 0.979(0.002) 0 .996 (0.001) 0.997(0.001)
AUSLAN 0.918 0.727 0.754 0.947 0.955 0.934 0.970 0.950 0.979(0.003) 0.971(0.003) 0.987(0.002) 0.996(0.001) 0 .995 (0.001)
CHAR. TRAJ. 0.900 0.948 0.965 0.992 0 .994 0.928 0.937 0.990 0.992(0.001) 0.985(0.002) 0.980(0.003) 0.993(0.001) 0.995(0.000)
CMUSUBJECT16 1.000 0.930 1.000 0 .997 1.000 1.000 1.000 1.000 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
DIGITSHAPES 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
ECG 0.820 0.790 0.820 0.818 0.880 0.785 0.880 0.870 0.860(0.018) 0.856(0.010) 0.824(0.016) 0.892(0.015) 0 .886 (0.014)
JAP. VOWELS 0.984 0.962 0.951 0.969 0.800 0.959 0.976 1.000 0.990(0.003) 0.989(0.003) 0.984(0.005) 0.991(0.003) 0 .994 (0.003)
KICK VS PUNCH 0.927 0.600 0.900 0.820 1.000 0 .976 1.000 0.900 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
LIBRAS 0.952 0.888 0.903 0.909 0.911 0.945 0.894 0.970 0 .966 (0.002) 0 .966 (0.008) 0.859(0.008) 0.946(0.005) 0.956(0.008)
NETFLOW NAN 0.976 0.968 0.977 0.914 NAN 0.961 0.950 0.970(0.003) 0.953(0.006) 0.921(0.014) 0.962(0.006) 0.962(0.005)
PEMS 0.750 0.832 0.844 0.896 1.000 NAN NAN NAN 0.775(0.019) 0.787(0.008) 0.725(0.013) 0.788(0.025) 0.802(0.017)
PENDIGITS 0.952 0.927 0.908 0.917 0.932 0.923 0.912 0.970 0 .967 (0.002) 0.963(0.001) 0.956(0.002) 0.963(0.003) 0.962(0.002)
SHAPES 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
UWAVE 0.904 0.916 0.980 0.941 0.929 0.952 0.916 0.970 0 .979 (0.001) 0.978(0.001) 0.958(0.001) 0.975(0.002) 0.976(0.001)
WAFER 0.968 0.974 0.962 0.965 0 .992 0.931 0.997 0.990 0.987(0.005) 0.989(0.002) 0.983(0.003) 0.988(0.001) 0.990(0.001)
WALK VS RUN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)

AVG. ACC. 0.938 0.899 0.933 0.945 0.955 0.949 0.962 0.970 0.966 0.964 0.947 0.968 0.970
MED. ACC. 0.952 0.929 0.964 0.964 0.984 0.952 0.976 0.990 0.988 0.987 0.982 0 .992 0.994
SD. ACC. 0.073 0.111 0.073 0.059 0.058 0.055 0.043 0.039 0.061 0.059 0.079 0.056 0.054
AVG. RANK 6.000 6.812 6.000 5.625 4.625 6.714 4.933 3.333 3.000 3.500 5.312 2 .750 2.312
MED. RANK 6.000 8.000 6.000 6.500 2.500 8.500 4.000 3.000 2 .500 3.000 6.500 2 .500 2.000
SD. RANK 4.071 4.246 4.397 3.810 3.964 4.514 4.044 2.610 2.066 2.251 3.591 1.880 1.493

AR
Ke

rn
el

D
TW LP

S

SM
TS

gR
SF

m
vA

R
F

M
U

SE

M
LS

TM
FC

N

FC
N

12
8

R
es

N
et

LS
2T

3 64

FC
N

64
-L

S2
T3 64

FC
N

12
8-

LS
2T

3 64

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

12345678910111213

DTW
mvARF

LPS
ARKernel

SMTS
LS2T3

64
MUSE

gRSF
ResNet
MLSTMFCN
FCN128

FCN64-LS2T3
64

FCN128-LS2T3
64

CD

Figure 3: Box-plot of classification accuracies (left) and critical difference diagram (right).

FCN128 and ResNet were trained in Ismail Fawaz et al. (2019) with the exception that they did not
cap the batch size at bmin = 4 that for small datasets (nX < 40) made their training unstable,
which is why on some of these datasets our baselines, FCN128 and ResNet are stronger. We also
remark that before we introduced the skip-connections in the FCN-LS2T architecture (Figure 2),
training was considerably more unstable for this model, and at that point, using the SWATS opti-
mizer (Keskar & Socher, 2017) in place of ADAM could provide some improvements on the results;
while after upgrading the architecture, changing the optimizer did not seem to make a difference.

Results. The full table of results is in in Table 7, where for the models that we trained our-
selves, i.e. FCN128, ResNet, LS2T3

64, FCN64-LS2T3
64, FCN128-LS2T3

64, we report the mean and
standard deviation of test set accuracies over 5 model trains. Figure 3 depicts the box-plot
distributions of classification accuracies and the corresponding critical difference (CD) diagram.
The CD diagram depicts the mean ranks of each method averaged over datasets with a cal-
culated CD region using the Nemenyi test (Nemenyi, 1963) for an alpha value of α = 0.1.
For the Bayesian signed-rank test (Benavoli et al., 2014), we used the implementation from
https://github.com/janezd/baycomp, and the resulting posterior probabilities are com-
pared in Table 1, Section 5.1. The posterior distributions themselves are visualized on Figure 4 The
region of practical equivalence (rope) was set to rope = 1 × 10−3, that is, two accuracies were
practically equivalent if they are at most the given distance from each other. For the visualizations
and computation of probabilities, the posteriors were evaluated using n = 105 Monte Carlo samples.

31

Published as a conference paper at ICLR 2021

Figure 4: Posterior distribution plots of pairwise Bayesian signed-rank test comparisons

32

Published as a conference paper at ICLR 2021

E.2 MORTALITY PREDICTION

Problem formulation. Mortality prediction in healthcare is a form of binary classification using
medical datasets. This kind of data is very heterogenous with the input space being a combination
of dynamic and static features, i.e. X = Seq(Rd)

⊕
Re, and the class distributions often also

being highly imbalanced. Also among the dynamic features there can often be missing values, in
fact they are usually only observed very sparsely. Hence, it is not guaranteed that for a time series
x ∈ Seq(Rd), all coordinates of an observation xi,tj are observed for a given time-point tj . In other
words, we are given for every xi ∈ Seq(Rd) an additional observation mask mi = (mi,tj)

Li
j=1 ∈

Seq({0, 1}d), that specifies whether a given coordinate of xi was observed at time tj or not.

Dataset. We consider the PHYSIONET2012 dataset for this task, that consists of medical time
series of 12,000 ICU stays over at least 48 hours. Overall, 6 static features were recorded and
potentially up to 37 TS values were measured both irregularly and asynchronously for each stay with
certain dimensions completely missing in some cases. The task is to predict the in-hospital mortality
of patients during their hospital stay. From an ML point of view, this is a difficult dataset due missing
values, low signal-to-noise ratio, and imbalanced class distributions with a prevalence ratio of around
14%. For comparability of results, we use the same train-val-test split as in Horn et al. (2020)
available at https://github.com/ExpectationMax/medical_ts_datasets, where
the 12,000 examples were split in a ratio of 64-16-20. Additionally, examples not containing any TS
information were excluded from the dataset, for a list of these see Horn et al. (2020, App. A.1).

Preprocessing. For missing TS values, we use a three-step imputation method: (1) compute the
mean value of each dynamic feature across the training dataset, (2) if a TS value is missing at time
t = 0, impute it with the mean, (3) for missing TS values at time t > 0, use forward imputation on a
roll-forward basis. We remark that it would have also been possible to use the GP-VAE imputation
from the following experiment, but our aim was to keep the two experiments separate, in particular,
to allow fair comparability with the results in Horn et al. (2020). Furthermore, we make the informa-
tion about missing values available to the model using the augmentation defined in Che et al. (2018,
eq. 9), which consists of adding as extra coordinates the observation mask and the number of time
steps elapsed since an observation was made, both for each dynamic feature. The static features are
handled by tiling along the time axis and adding them as extra coordintaes. Finally, all static and
dynamic features are normalized to zero mean and unit variance using the training set statistics.

Baselines. As baselines, we use the experiments conducted in Horn et al. (2020), that includes
SOTA architectures for irregularly sampled data such as their SEFT-ATTN, GRU-D (Che et al.,
2018), IP-NETS (Shukla & Marlin, 2019), PHASED-LSTM (Neil et al., 2016), TRANSFORMER
(Vaswani et al., 2017) and LATENT-ODE (Rubanova et al., 2019). Together these methods make
up a very strong baseline to compare against. However, the main question for us still is whether we
can improve on the vanilla FCN model with the FCN-LS2T architecture (Figure 2), since our aim is
simply to demonstrate that LS2T layers can serve as useful building blocks in deep learning models
via their ability to capture non-local interactions in heterogeneous time series and sequences.

Hyperparameter selection. We train two models on this task, FCN and FCN-LS2T. To keep the
experiment fair, we align with the experimental setting in Horn et al. (2020) and follow their hyper-
parameter selection procedure using randomized search. For both models, we uniformly sample 20
hyperparameter settings from the hyperparameter grid specified as follows: (1) for FCN-LS2T, the
FCN width from h ∈ {64, 128, 256}. the LS2T width from n ∈ {64, 128, 256}, the LS2T order
from m ∈ {2, 3, 4}, LS2T depth from d ∈ {1, 2, 3} and whether to use the recursive or independent
LS2T formulation (see Appendix D.2); (2) for FCN, the width from h ∈ {64, 128, 256}; (3) for both
models, we sample the dropout preceding the classification layer from r1 ∈ {0.0, 0.1, 0.2, 0.3, 0.4},
the spatial dropout that follows all convolutional and LS2T layers from r2 ∈ {0.0, 0.1, 0.2, 0.3, 0.4}.
For training, we also sample for both models the batch size used from b ∈ {4, 8, 16, 32} and the ini-
tial learning rate from α ∈ {1× 10−3, 5× 10−4, 2.5× 10−4, 1× 10−4}. For both architectures, we
train a model for each of the 20 hyperparameter settings, and then select the setting which provides
the best performance on the validation set. The best model is selected by computing a composite
z-score on the validation set, which consists of computing a z-score across the realizations for each
metric, that is, ACCURACY, AUPRC, AUROC, and then taking a sum of these z-scores.

33

https://github.com/ExpectationMax/medical_ts_datasets

Published as a conference paper at ICLR 2021

Training details. Last but not least, we specify the training methodology. Similarly to Horn et al.
(2020), rather than utilizing class weights during training to deal with unbalanced class distributions,
we use a generator which feeds balanced batches to the model during each training iteration. This
approach is more beneficial for small batch training on such heavily unbalanced datasets, such as
the current one. Then, we define an epoch as the number of training iterations required to see all
examples from the class with the lowest prevalence ratio. The maximum number of epochs is set
to 200, and we stop early after 50 epochs of no improvement over the validation AUPRC, after
which the model is restored to the best parameter set according to this metric. We also employ a
learning rate decay of β = 1/2 after 10 epochs of no improvement and only until the learning rate
reaches αmin = 1 × 10−4. Clearly, using the same validation set for early stopping and selecting
the hyperparameters introduces a bias in the model selection, however, this is partially remedied by
using for hyperparameter selection a composite of three metrics, rather than just the AUPRC.

Evaluation. After selecting the best hyperparameters, we independently train and evaluate on the
test set each model 5 times. The means and standard deviations of the resulting performance metrics
over these 5 model trains are what displayed in Table 2. The best found hyperparameter settings are
the following: (1) for FCN-LS2T, FCN width h = 64, LS2T width n = 256, LS2T order m = 3,
LS2T depth d = 3, recursive formulation, dropout r1 = 0.3, spatial dropout r2 = 0.4, batch size
b = 32, inital learning rate α = 1 × 10−4; (2) for FCN, FCN width h = 256, dropout r1 = 0.4,
spatial dropout r2 = 0.3, batch size b = 4, initial learning rate α = 1× 10−4.

E.3 GENERATIVE SEQUENTIAL DATA IMPUTATION

Problem formulation. Imputation of sequential data can be formulated as a problem of generative
unsupervised learning. The input space is given as X = Seq(Rd) and we are given a number of ex-
amples X = (xi)

nX
i=1 ⊂ Seq(Rd) with xi = (xi,tj)

Li
j=1. Similarly to before, there are missing values

in the input sequences, that is, we are given for every xi ∈ Seq(Rd) an additional observation mask
mi = (mi,tj)

Li
j=1 ∈ Seq({0, 1}d), that specifies whether a given coordinate of xi was observed

at time tj or not. The task in this case is specifically to model the distribution of the unobserved
coordinates given the observed coordinates potentially at different time-points.

Model details. We expand on the GP-VAE (Fortuin et al., 2020) model in details. Let x =
(xi)i=1,...,L ∈ Seq(Rd) be a sequence of length L ∈ N. The model assumes that x is noisily
generated time-point-wise conditioned on discrete-time realizations of a latent process denoted by
z = (zi)i=1,...,L ∈ Seq(Rd′),

pθ(xi|zi) = N (xi | gθ(zi), σ2Id), (100)

where gθ : Rd′ → Rd is the time-point-wise decoder network parametrized by θ, while σ2 ∈
R is the observation noise variance. The temporal interdependencies are modelled in the latent
space by assigning independent Gaussian process (GP) priors (Williams & Rasmussen, 2006) to
the coordinate processes of z, i.e. denoting zi = (zji)j=1,...,d′ ∈ Rd′ , it is assumed that zj ∼
GP(m(·), k(·, ·)), where m : R → R and k : R × R → R are the mean and covariance functions.
The authors propose to use the Cauchy kernel as covariance function, defined as

k(τ, τ ′) = σ̃2

(
1 +

(τ − τ ′)2

l2

)−1
, (101)

which can be seen as an infinite mixture of RBF kernels, allowing one to model temporal dynamics
on multiple length scales. For the variational approximation (Blei et al., 2017; Zhang et al., 2018),
an amortized Gaussian (Gershman & Goodman, 2014) is used that factorizes across the latent space
dimensions, but not across the observation times:

qψ(z1, . . . , zL | x1, . . .xL) = qψ(z11 , . . . z
1
L | x1, . . . ,xL) · · · , qψ(zd

′
1 , . . . z

d′
L | x1, . . .xL) (102)

= N (z11 , . . . , z
1
L |m1,A1) · · · N (zd

′
1 , . . . , z

d′
L |md′ ,Ad′), (103)

where mj ∈ RL are the posterior means and Aj ∈ RL×L are the posterior covariance matrices
for j = 1, . . . , d′. In general, estimating the full covariance matrices Aj ∈ RL×L from a single

34

Published as a conference paper at ICLR 2021

data example x = (x1, . . . ,xL) ∈ Seq(Rd) is an ill-posed problem. To circumvent the curse
of dimensionality in the matrix estimation while allowing for long-range correlations in time, a
structured precision matrix representation is used, such that A−1j = BjB

>
j with Bj ∈ RL×L a

lower bidiagonal matrix, such as in Dorta et al. (2018); Blei & Lafferty (2006); Bamler & Mandt
(2017), which results in a tridiagonal precision matrix and a potentially dense covariance matrix.

Training across the whole dataset X = (xi)
nX
i=1 ⊂ Seq(Rd) is coupled through the decoder and

encoder parameters θ and ψ, and the ELBO is computed as

1

nX

nX∑
i=1

log p(xi) ≥
1

nX

nX∑
i=1

(Li∑
j=1

Eqψ(zi,j | xi)[log pθ(xi,j | zi,j)] (104)

− βDKLqψ(zi | xi)p(zi))
)
, (105)

where the log-likelihood term is only computed across observed features as was done in Nazabal
et al. (2018). Similarly to β-VAEs (Higgins et al., 2017), β is used to rebalance the KL term, now
to account for the missingness rate.

Baselines. Additionally to the baseline GP-VAE, the reported baseline results are the same ones as
in Fortuin et al. (2020), which are mean imputation, forward imputation, VAE (Kingma & Welling,
2013), HI-VAE (Nazabal et al., 2018) and BRITS (Cao et al., 2018). Among these, the VAE
based models are Bayesian and provide a probability measure on possible imputations, while the
mean/forward imputation methods and the RNN based BRITS only provide a single imputation.

Table 8: Specification of datasets used for imputation

DATASET nc m d Lx nX nX?

HMNIST 10 0.45 28 × 28 10 60000 10000
SPRITES - 0.6 64 × 64 × 3 8 9000 2664
PHYSIONET 2 0.82 35 48 3997 -

Datasets. Table 8 details the
datasets used, which are the
same ones as considered in
Fortuin et al. (2020). The
columns are defined as: nc ∈
N denotes the number of
classes if the dataset is labelled,
m ∈ (0, 1) denotes ratio of missing data, d ∈ N denotes the state space dimension of sequences,
Lx ∈ N denotes the sequence length, nX, nX?

∈ N denote the number of examples in the respective
training and testing sets. For Sprites no labels are available, while for Physionet all examples are
in the training set and no ground truth values are available. For HMNIST, the MNAR version was
used, the most difficult missingness mechanism (Fortuin et al., 2020).

IN
P

U
T

`

d

P
R

E
P

R
O

C
E

S
S

O
R

d

C
O

N
V

O
L

U
T

IO
N

h

T
IM

E
+

D
IF

F

h+1

B
-L

S
2T

h×4

L
N

+
R

E
S

H
A

P
E

4h

D
E

N
S

E

h′

. . .

D
E

N
S

E
h′

L
A

T
E

N
T

3d′

Figure 5: Encoder in GP-VAE (B-LS2T).

Experiment details. As depicted in Figure 5, the
difference between the original GP-VAE model and
ours is that is that we additionally employ a single
bidirectional Seq2Tens block (B-LS2T) in the en-
coder network following the convolutional layer, but
preceding the time-distributed dense layers. The mo-
tivation for this is that the original encoder only takes
local sequential structure into account using the con-
volutional layer. Hence, it does not exploit global sequential information, which might limit the
expressiveness of the encoder network. This limitation can lead to suboptimal inference, due to
the fact that the encoder is not able to represent a rich enough subset of the variational family of
distributions. This is called the amortization gap in the literature (Cremer et al., 2018).

We have thus hypothesized that by incorporating a bidirectional LS2T layer into the model that takes
sequential structure into account not only locally, but globally, we can improve the expressiveness
of the encoder network, that can in turn improve on the variational approximation. However, it
should be noted that according to the findings of Cremer et al. (2018), a larger encoder network can
potentially result in the variational parameters being overfitted to the training data, and can degrade
the generalization on unseen data examples. Therefore, the main question is whether increasing the
expressiveness of the encoder will improve the quality of the variational approximation on both seen
and unseen examples, or will it lead to overfitting to the seen examples?

Another interesting question that we have not considered experimentally, but could lead to improve-
ments is the following. The time-point-wise decoder function assumes that d′ ∈ N is large enough,

35

Published as a conference paper at ICLR 2021

so that z ∈ Seq(Rd′) is able to fully represent x ∈ Seq(Rd) in a time-point-wise manner including
its dynamics. Although in theory the GP prior should be able to learn the temporal dynamics in the
latent space, this might again only be possible for a large enough latent state size d′. In practice, it
could turn out to be more efficient to use some of the contextual information in the decoder network
as well, either locally, using e.g. a CNN, or globally, using e.g. LS2T layers or RNNs/LSTMs.

Implementation. For the implementation of the GP-VAE, we used the same one as in Fortuin
et al. (2020), which implements it using Keras and Tensorflow. The bidirectional LS2T layer used
our own implementation based on the same frameworks. The hyperparameters of the models, which
are depicted in Appendix A in Fortuin et al. (2020), were left unchanged. The only change we
concocted is the B-LS2T layer in the encoder network as depicted in Figure 5. The width of the
B-LS2T layer was set to be the same as the convolutional layer, and M = 4 tensor levels were used.
The parametrization of the low-rank LS2T layer used the independent formulation as detailed in
Appendix D.2.

We also made a simple change to how the data is fed into the encoder. In the original model,
the missing values were imputed with 0, while we instead used the forward imputed values. This
was necessary due to the difference operation preceding the B-LS2T layer in Figure 5. With the
zero imputation, the coordinates with missing values exhibited higher oscillations after differencing,
while with forward imputation the missing values were more well-behaved. A simple way to see this
is that, if there were no preprocessing and convolutional layers in Figure 5 preceding the difference
block, then this step would be equivalent to imputing the missing values with zero after differencing.

Result details. Table 3 shows the achieved performance on the datasets with our upgraded model,
GP-VAE (B-LS2T), compared against the original GP-VAE (Fortuin et al., 2020) and the baselines.
The reported results are negative log-likelihood (NLL), mean squared error (MSE) and AUROC on
HMNIST, while on Sprites the MSE is reported and on Physionet the AUROC score. As Sprites is
unlabeled, downstream classification performance (AUROC) is undefined on this dataset, while Phy-
sionet does not have ground truth values for the missing entries, and reconstruction error (MSE,NLL)
is not defined. The only missing entry is Sprites NLL, which was omitted to preserve space. We
observe that increasing the expressiveness of the encoder did manage to improve the results on HM-
NIST and Physionet. The only case where no improvement was observable is Sprites, where the
GP-VAE already achieved a very low MSE score of MSE = 2× 10−3.

To gain some intuition whether the lack of improvement on Sprites was due to the GP-VAE’s per-
formance already being maxed out, or there was some other pathology in the model, we further
investigated the Sprites dataset and found a bottleneck in both the original and enhanced GP-VAE
models. Due to the high dimensionality of the state space of input sequences, d = 12288, the width
of the first convolutional layer in the encoder network was set to h = 32 in order to keep the number
of parameters in the layer manageable and be able to train the model with a batch size of n = 64,
while all subsequent layers had a width of h′ = 256. Thus, to see if this was indeed an informa-
tion bottleneck, we increased the convolution width to h = 256 and decreased the batch size to
n = 16, with all other hyperparameters unchanged. Then, we trained using this modification both
the baseline GP-VAE and our GP-VAE (B-LS2T) five times on the Sprites datasets. The achieved
MSE scores were (i) GP-VAE (base): MSE = 1.4× 10−3 ± 4.1× 10−5, (ii) GP-VAE (B-LS2T):
MSE = 1.3×10−3±4.9×10−5. Therefore, the smaller convolutional layer was indeed causing an
information bottleneck, and by increasing its width to be on par with the other layers in the encoder,
we managed to improve the performance of both models. The improvement on the GP-VAE (B-
LS2T) was larger, which can be explained by the observation that lifting the information bottleneck
additionally allowed the benefits of the B-LS2T layer to kick in, as detailed previously.

To sum up, we have empirically validated the hypothesis that capturing global information in the
encoder was indeed beneficial, and managed to improve on the results even on unseen examples in
all cases. The experiment as a whole supports that our introduced LS2T layers can serve as useful
building blocks in a wide range of models, not only discriminative, but also generative ones.

36

Published as a conference paper at ICLR 2021

M
iss

in
g

Re
co

ns
tru

ct
ed

Or
ig

in
al

Figure 6: Reconstructions from the Sprites dataset with the images with missingness (top), recon-
structed (middle) and original (bottom).

ACKNOWLEDGEMENTS

CT is supported by the “Mathematical Institute Award” from the Mathematical Institute at the Uni-
versity of Oxford. PB is supported by the Engineering and Physical Sciences Research Council
[EP/R513295/1]. HO is supported by the EPSRC grant “Datasig” [EP/S026347/1], the Alan Turing
Institute, and the Oxford-Man Institute.

37

	Introduction
	Capturing order by non-commutative multiplication
	Approximation by low-rank linear functionals
	Building neural networks with LS2T layers
	Experiments
	Multivariate time series classification
	Mortality prediction
	Generating sequential data

	Related work and Summary
	Tensors and the Free Algebra
	A universal feature map for sequences of arbitrary length
	The universality of .
	The algebra of linear functionals on .

	Proof of Theorem B.3.
	Seq2Tens makes sequences of different length comparable
	Convergence from discrete to continuous time

	Stacking sequence-to-sequence transforms
	Details on computations
	Variations
	Recursive computations
	Algorithms
	Complexity analysis
	Initialization

	Details on experiments
	Time series classification
	Mortality prediction
	Generative sequential data imputation

