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ABSTRACT
Incorporating domain-specific visual information into text poses
one of the critical challenges for domain-specific multi-modal neu-
ral machine translation (DMNMT). While most existing DMNMT
methods often borrowmulti-modal fusion frameworks frommulti-
modal neural machine translation (MNMT) in the general domain,
they overlook the domain gaps between general and specific do-
mains. Visual-to-textual interaction in a specific domain frequently
exhibits multi-focus characteristics, making it difficult to consis-
tently focus on domain-specific multi-visual details using tradi-
tional multi-modal fusion frameworks.This challenge can lead to a
decrease in machine translation performance for domain-specific
terms. To tackle this problem, this paper presents a virtual visual
scene-guided domain-shadow multi-modal fusion mechanism to
simultaneously integrate multi-grained domain visual details and
text with the guidance of modality-agnostic virtual visual scene,
thereby enhancing machine translation performance for DMNMT,
especially for domain terms. Specifically, we first adopt a modality-
mixing selection-voting strategy to generate modality-mixed do-
main-shadow representations through layer-by-layer intra-moda-
lity selection and inter-modality exchanging. Then, we gradually
aggregate modality-mixed domain representations and text across
modality boundaries with the guidance of a modality-agnostic vir-
tual visual scene to enhance the collaboration between domain
characteristics and textual semantics. The experimental results on
three benchmark datasets demonstrate that our proposed approach
outperforms the state-of-the-art (SOTA) methods in all machine
translation tasks. The in-depth analysis further highlights the ro-
bustness and generalizability of our approach across various sce-
narios. Our code is available on https://github.com/HZY2023/VVDF.
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1 INTRODUCTION
Domain-specificMultimodal NeuralMachine Translation (DMNMT)
aims to translate sentences within specific domains from a source
to a target language by incorporating images as additional modal-
ity inputs. Recently, DMNMT tasks have attracted increasing at-
tention, particularly due to their remarkable application scenarios
in domains like cross-border e-commerce shopping, cross-border
financial transactions, and cross-border cultural exchange.

Due to the similarity to multimodal neural machine translation
(MNMT) [10, 42, 44], previousDMNMTworks typically followMNMT
frameworks in general domain and concentrate on integrating vi-
sual and textual modalities using various cross-modal fusion strate-
gies, such as cross-modal gating [15, 22, 42], cross-modal attention
[12, 36, 45], and adaptive feature selection [9, 43]. Despite achiev-
ing impressive performance, there are significant domain gaps in
general and specific domains.

SRC: Subtle scalloped detailing and shimmering , hand placed crystals provide 

gorgeous finishing touches for a pointy toe pump fit for any special occasion.
SRC: A puppy is having fun playing with a blue ball on the lawn.

(a) An example from a general domain (b) An example from a specific domain

Figure 1: Visual-to-textual interaction of two multi-modal
neural machine translation examples.

Domain-specific sentences contain a series of domain-related
expressions, such as domain entities, domain terms, and domain
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idioms, which are significantly different from terms in general do-
main. Representation and translation of these domain-specific ex-
pressions pose critical challenges for DMNMT. Numerous studies
have shown that visual information is often essential for translat-
ing domain-specific terms [33, 46], whereas it is usually optional
for general-domain text [39].Therefore, integrating domain-specific
visual details into text represents an effective strategy to address
this challenge.

Unfortunately, domain-related visual information tends to be
fine-grained and dispersed. Figure 1 illustrates two examples of
multi-modal machine translation in the general and specific do-
mains. In contrast to multi-modal information in the general do-
main, the domain-specific image contains more focal areas related
to domain terms in the text, such as the colored dashed regions il-
lustrated in Figure 1 (b). Therefore, visual-to-textual interaction in
a specific domain often exhibits multi-focus characteristics.

Several attempts have been made to explore domain-specific
multi-modal fusion problems in DMNMT through techniques such
as domain multi-modal data augmentation [46], domain-specific
pretraining [33] and domain-specific multimodal feature interac-
tion [14]. However, most existing multi-modal fusion approaches
primarily follow the steps of traditional multi-modal fusion in gen-
eral domain,making it challenging to consistently focus on domain-
specificmulti-visual details.This limitationmay impact their adapt-
ability and effectiveness for multi-modal domain representations.

Modality exchanging [37, 38] provides a potential cross-modal
selection mechanism within and across modalities to aggregate
these dispersed domain visual details simultaneously from domain
image-text data pairs. The domain-specific multi-modal informa-
tion can be aggregated from visual to textual direction through
intra-modality selection and inter-modality exchanging.Thesemo-
dality-mixed domain details can then serve asmulti-modal domain-
shadow representations to augment textual domain representations,
thereby enhancing domain translation performance.

However, thesemodality-mixed domain-shadow representations
are generated through cross-modal feature direct exchanging, which
may lack smoothness in multi-modal space. Therefore, there is a
significant representation gap between the representations of m-
odality-mixed domain-shadow details and raw text. The modality-
agnostic virtual visual scene [25], created through visual distilla-
tion [25, 30] with textual inputs, serves as multi-modal domain
guidance to enhance the generation of smoother multimodal repre-
sentations for domain image-text data pairs. Inspired by this, this
paper presents a virtual visual scene-guided progressive domain-
shadow multi-modal fusion mechanism to gradually facilitate the
integration of textual semantics with domain-specific visual details
through layer-by-layer cross-modal exchanging, thereby enhanc-
ing the collaboration between domain characteristics and textual
semantics. Compared to existing works, the major contributions
of our paper are three-fold.

• To tackle the multi-focus challenges of visual-to-textual in-
teraction inDMNMT,we present a novel virtual visual scene-
guided progressive domain-shadow fusionmechanism aimed
at integrating textual semantics with domain-specific visual
details progressively to improve the model’s ability to per-
ceive fine-grained domain visual details in DMNMT. Our

proposed approach is designed to concurrently capture dis-
persed domain visual details through visual-textual modal-
itymixing, and gradually aggregatemodality-mixed domain
representations and text with the shadow guidance of a mo-
dality-agnostic virtual visual scene. Additionally, the virtual
visual scene benefits from cross-modal adaptive distillation.

• We employ a modality-mixing selection-voting strategy to
aggregate domain-specific multi-modal representations th-
rough intra-modality selection and inter-modality exchang-
ing. Initially, we introduce a fine-grained domain voting strat-
egy to select domain visual details and domain loosely-related
textual tokens in their respective modality-specific spaces.
Subsequently, we facilitate the exchange of selected infor-
mation across modality boundaries to generate modality-
mixed domain representations by incorporating visual de-
tails into text.

• The extensive experiments on three datasets demonstrate
that our proposed approach achieves state-of-the-art (SOTA)
scores on two domain-specific and one in-general machine
translation tasks. The in-depth analysis showcases that our
proposed approach also achieves significant robustness and
generalizability across various scenarios, such as noisy image-
text or even text-only scenarios. Moreover, our proposed
virtual visual scene generation module still exhibits strong
model compression capability, underscoring its potential for
practical applications.

2 RELATEDWORK
MultimodalNeuralMachineTranslation.Recently,MNMThas
drawn much attention in the field of Natural Language Process-
ing (NLP). Existing MNMT works mainly focus on how to bet-
ter integrate visual information into text to enhance the perfor-
mance of machine translation. There are two types of visual infor-
mation integration strategies for MNMT, including 1) image-must
method: traditional MNMT works [16, 21, 36] often preferred to
employ the aligned images to enhance machine translation perfor-
mance through image-must multi-modal fusion strategies. Yao et
al. [40] proposed a Transformer-based multimodal self-attention
mechanism to address the noisy-robust multi-modal fusion prob-
lem in MNMT. Similarly, Ye et al. [41] developed a mask-guided
cross-attention framework to tackle the issue of visual-textual se-
mantic alignment in MNMT. Furthermore, Li et al. [24] devised a
semi-supervised multimodal attention to fuse textual and visual
modalities through cross-modal alignment. 2) image-free MNMT
methods: recently, image-free MNMT methods [9, 25, 27, 30] have
achieved wide attention to enhance machine translation perfor-
mance through knowledge distillation. These approaches aimed to
alleviate the constraints imposed by triplet data for MNMT. Long
et al. [27] proposed a visual imagination method to synthesize con-
tinuous image features for machine translation. Li et al. [30] uti-
lized a visual-hallucination method to generate discrete visual rep-
resentations of text, enhancing machine translation performance.
Guo et al. [16] aimed to enhance machine translation performance
with the aid of synthetic representations by minimizing the se-
mantic gaps between ground-truth and synthetic images. How-
ever, the aforementioned studies primarily focused on in-general
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cross-modal fusion, ignoring the specific challenges posed by DM-
NMT.How to leverage visual information to improve domain-specific
machine translation performance is still an open problem.

Knowledge Distillation. Knowledge distillation (KD) [3, 17,
18, 30] aims to transfer knowledge from a teacher to student mod-
els, which has achieved wide attention in the fields of both com-
puter vision and NLP. This concept was initially introduced by [3]
and subsequently improved by [20]. Subsequent works have fur-
ther improved the logits-based KD through structural information
[13], model ensemble [28] and adversarial learning [26].Then some
approaches [1, 4] explored feature-based knowledge distillation by
utilizing the intermediate representations as hint knowledge. Fur-
thermore, cross-modal knowledge distillation [11, 23, 31] has gar-
nered significant attention recently. Sarkar et al. [31] devised a self-
supervised framework to perform effective information sharing
between audio and video streams to obtain more generalized rep-
resentations through cross-modal KD. IKD-MMT [30] introduced
an inverse knowledge distillation framework to generate multi-
modal representations according to source text. In addition, some
works have applied KD to Large Language Models. For example, Li
et al. [23] proposed a CLIP-based knowledge distillation hashing
approach to capture the semantic relevance and coexistent infor-
mation for multimodal data. However, most KD approaches often
overlook the fact that textual-visual KD approaches contain valu-
able multimodal information during the distillation process, which
could effectively guide the fusion of multimodal information.

3 METHODOLOGY
One of the critical challenges of DMNMT is to incorporate do-
main visual details into text to enhance machine translation per-
formance. However, in contrast to multi-modal fusion in the gen-
eral domain, domain-specific visual-to-textual fusion suffers from
multi-focus challenges. To tackle this challenge, this paper presents
a virtual visual scene-guided progressive domain-shadow multi-
modal fusion approach to capture domain-specificmulti-modal rep-
resentations, thereby enhancing machine translation performance.
The overall framework of our paper is illustrated in Figure 2, which
consists of the following three subsections: 1) Modality-specific
embeddings; 2) Domain-shadow aggregationwithmodality-mixing
selection-voting strategy; and 3) Virtual visual scene-guided pro-
gressive domain-shadow fusion.

3.1 Modality-specific Embeddings
Denote by {𝑥𝑘 , 𝑣𝑘 , 𝑦𝑘 } as the 𝑘-th domain data pair, where 𝑥𝑘 =
{𝑥1, . . . , 𝑥𝑘𝑛 } and 𝑦𝑘 = {𝑦1, . . . , 𝑦𝑘𝑚} denote the domain-specific
source and target sentences, respectively. 𝑣𝑘 represents their cor-
responding image, 𝑛 and𝑚 are the lengths of 𝑥𝑘 and 𝑦𝑘 .

3.1.1 Textual Embedding. Wefirst leverage the textual embedding
module to extract initial textual representation, as shown as fol-
lows:

𝐸𝑥 = Embs (𝑥𝑘 ) (1)

whereEmbs (·) denotes the traditional textual embedding layerwith
positional embedding; the textual embedding representation 𝐸𝑥 ∈

R𝑛×𝑑 , and 𝑑 denotes the dimension of the textual embedding vec-
tor. 1

3.1.2 Visual Embedding. We then leverage the pretrained Resnet-
101 model [19] to extract initial visual representation, as shown as
follows:

𝐸𝑣𝑘 = Emb𝑣 (𝑣𝑘 ) (2)
where Emb𝑣 (·) denotes the visual embedding layer with the pre-
trained Resnet-101 model followed by a single-layer Multi-layer
Perception; the visual embedding representation 𝐸𝑣

𝑘
∈ R7×7×𝑑 .

3.2 Domain-shadow Aggregation with
Modality-mixing Selection-voting Strategy

Incorporating the fine-grained and dispersed visual domain details
into text has been proven effective in enhancing machine transla-
tion performance for DMNMT. To achieve this, we first attempt
to aggregate domain-specific multi-modal information from the
visual-to-textual direction to generate domain-shadow information
throughmodality-mixing selection-voting strategy. Specifically, we
first employ a fine-grained domain voting strategy to select do-
main closely-related visual details and domain loosely-related tex-
tual tokens in visual and textualmodality spaces, respectively.Then
we exchange the candidate fine-grained information across modal-
ity boundaries from visual to textual to generate modality-mixing
domain representations.

3.2.1 Modality-specific Encoders. We first employ two modality-
specific 𝐿-stacked Transformer layers to extract the textual and
visual representations, respectively.The textual representation can
be encoded as follows,

𝐶𝑙
𝑥 = TransEnc𝑙𝑠 (𝐶𝑙−1

𝑥 ) (3)

where TransEnc𝑙𝑠 (·) denotes the 𝑙-stacked Transformer layers, each
Transformer layer consists of the multi-head attention (MHA) and
feed forward networks (FFN); the layer index 𝑙 = 1, . . . , 𝐿, and
when 𝑙 = 1, we set𝐶0

𝑥 = 𝐸𝑥 ; the textual representation𝐶𝑙
𝑥 ∈ R𝑛×𝑑 .

Similarly, the visual representation is extracted as follows,

𝐶𝑙
𝑣 = TransEnc𝑙𝑣 (𝐶𝑙−1

𝑣 ) (4)

where TransEnc𝑙𝑣 (·) denotes the 𝑙-stacked Transformer layers, each
Transformer layer consists of MHA and FFN; the layer index 𝑙 =
1, . . . , 𝐿, and when 𝑙 = 1, we set 𝐶0

𝑣 = 𝐸𝑣 ; the visual representation
𝐶𝑙
𝑣 ∈ R49×𝑑 .

3.2.2 Intra-modality Feature Selection. To better capture domain-
specific information from image-text data pair, we employ a do-
main feature selection mechanism within each modality space to
adaptively select domain-related visual details and domain loosely-
related textual details through intra-modality probability sampling.
We design two domain-aware selective gating mechanisms in each
stacked Transformer layer, as depicted as follows:

𝐺𝑙
𝑥 = 𝜎 (𝑊 𝑙

𝑥𝐶
𝑙
𝑥 + 𝑏𝑙𝑥 ) (5)

𝐺𝑙
𝑣 = 𝜎 (𝑊 𝑙

𝑣𝐶
𝑙
𝑣 + 𝑏𝑙𝑣) (6)

where 𝜎 (·) denotes sigmoid operation;𝑊 𝑙
𝑥 ,𝑊 𝑙

𝑣 , 𝑏𝑙𝑥 and 𝑏𝑙𝑣 are train-
able parameters; 𝐺𝑙

𝑥 and 𝐺𝑙
𝑣 represent the domain-aware textual

1For simplicity, the subscript k will be omitted in subsequent sections of this paper.
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Figure 2: The architecture of our model in the training and inference phases.

and visual selected gating in the 𝑙-th Transformer layer, and 𝐺𝑙
𝑥 ,

𝐺𝑙
𝑣 ∈ R𝑛×𝑑 , R49×𝑑 .
Then we employ a probability-based fine-grained 𝑡-sampling

mechanism 2 to select domain-related visual details and domain
loosely-related textual details dynamically, as shown as follows:

𝑆𝑙𝑥 = MulSam
(

𝐺
𝑙
𝑥∑𝑛

𝑖=1 (𝐺
𝑖
𝑥 )

, 𝑡

)
(7)

𝑆𝑙𝑣 = MulSam ©­« 𝐺𝑙
𝑣∑49

𝑗=1 (𝐺
𝑗
𝑣 )
, 𝑡
ª®¬ (8)

WhereMulSam(·) denotes a probability-based fine-grained feature
sample mechanism and 𝑡 is the number of sampling iterations;𝐺𝑙

𝑥

represents the inverse sample probability, and 𝐺
𝑙
𝑥 = 1 − 𝐺𝑙

𝑥 . 𝑆𝑙𝑥 ,
𝑆𝑙𝑣 ∈ R𝑡×𝑑 , R𝑡×𝑑 denote the selected representations in the 𝑙-th
Transformer layer.

3.2.3 Inter-modality Exchanging and Voting. We randomly exch-
ange the selected representations across modality boundaries 𝜏
times to generate 𝜏 candidate modality-mixing domain represen-
tations by incorporating visual details into text. Then we select the
smoothest exchange sample from all 𝜏 candidate exchange sets to
obtain the modality-mixing representations.

Inter-modality Exchanging. We adopt a point-to-point ex-
change mechanism from visual to textual direction to exchange
domain-related visual representations and domain loosely-related
textual representations 𝜏 times to generate the modality-mixing
domain representation set 𝜙𝑙x, as depicted as follows,

𝐶𝑙
𝑥 (𝑟 ) = Exch

(
< 𝑆𝑙𝑣,𝛼 → 𝑆𝑙𝑥,𝛽 > |𝐶𝑙

𝑥 ,𝐶
𝑙
𝑣, 𝜏

)
(9)

2We adopt 𝑡 times independent repeated sampling with replacement.

where Exch(·) denotes the point-to-point exchange operation; <
𝑆𝑙𝑣,𝛼 → 𝑆𝑙

𝑥,𝛽
> denotes an operation by replacing the 𝛼-th vector

of 𝑆𝑙𝑣 with the 𝛽-th vector of 𝑆𝑙𝑥 . 𝛼, 𝛽 = randint(1, 𝑡) represents a
random sample from 1 to 𝑡 ; 𝐶𝑙

𝑥 (𝑟 ) ∈ R𝑛×𝑑 denotes a candidate
exchange sample.

The candidate modality-mixing representation set can be ob-
tained as follows,

𝜙𝑙𝑥 = {𝐶𝑙
𝑥 (𝑟 ) |𝑟 = 1, . . . , 𝜏} (10)

where 𝑟 is the index of candidate modality-mixing representation.
Inter-modality Voting.We only attempt to select a smoothest

exchange sample𝐷𝑙
𝑥 from all𝜏 candidate exchange set𝜙𝑙𝑥 = {𝐶𝑙

𝑥 (𝑟 )
|𝑟 = 1, . . . , 𝜏} to obtain the modality-mixing representation via the
minimal change in KL divergence score, as described as follows,

𝐷𝑙
𝑥 ≜ 𝜙𝑙𝑥 (𝑢) (11)

where 𝐷𝑙
𝑥 ∈ R𝑛×𝑑 is the selected modality-mixing representation;

𝑢 is the selected index from 1 to 𝜏 , and 𝑢 can be defined as follows,

𝑢 = argmin
(
KL

(
𝐶𝑙
𝑥 (𝑟 )




𝐶𝑙
𝑥

)
| 𝑟 = 1, . . . , 𝜏

)
(12)

where argmin(·) denotes the operation of calculating the mini-
mum KL scores among all candidates; KL

(
𝐶𝑙
𝑥 (𝑟 )




𝐶𝑙
𝑥

)
denotes the

KL divergence score between the 𝑟 -th candidate modality-mixing
representation 𝐶𝑙

𝑥 (𝑟 ) and the textual representation 𝐶𝑙
𝑥 in the 𝑙-th

layer.
This modality-mixing domain representation 𝐷𝑙

𝑥 will be used to
generate domain-specific multi-modal representation.

3.3 Virtual Visual Scene-guided Progressive
Domain-shadow Fusion

To promote collaboration between modality-mixing domain rep-
resentation and textual representation, we present a virtual visual
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scene-guided domain-shadow fusion strategy in each Transformer
layer.

3.3.1 Virtual Visual SceneGeneration. Weemploy a 𝑃-stacked Trans-
former encoder to generate virtual visual representation by taking
the initial textual embedding as input, and we have that,

𝐶ℎ = StackTransEncℎ (𝐸𝑥 ) (13)

where StackTransEncℎ (·) denotes the 𝑃-stacked Transformer en-
coder layers, each Transformer layer consists of MHA and FFN
modules; 𝐶ℎ ∈ R𝑛×𝑑 denotes the virtual visual scene representa-
tion generated from the source text.

3.3.2 Virtual Visual Scene-guidedDomain Information Aggregation.
Then we adopt a virtual visual scene-guided domain information
aggregation strategy to integrate modality-mixed domain repre-
sentation and virtual visual representation through cross-modal
gating fusion, as described as follows,

𝐹𝑙 = 𝐶ℎ + 𝛿𝑙 · 𝐷𝑙
𝑥 (14)

where 𝐹𝑙 ∈ R𝑛×𝑑 denotes the fused multi-modal domain repre-
sentation with the guidance of virtual visual representation at the
𝑙-layer; and the gating 𝛿𝑙 is calculated as follows:

𝛿𝑙 = sigmoid(𝑊 𝑙
ℎ ·𝐶ℎ +𝑊 𝑙

𝑓 · 𝐷𝑙
𝑥 ) (15)

where 𝑊 𝑙
ℎ

∈ R𝑑×𝑑 and 𝑊 𝑙
𝑓

∈ R𝑑×𝑑 are learnable parameters,
sigmoid(·) represents the element-wise sigmoid transformation.

3.3.3 The Progressive Domain-shadow Fusion Strategy. To compre-
hensively enhance domain-shadow fusion, we adopt an adaptive
cross-layer domain-shadow fusion strategy to progressively inte-
grate modality-mixed domain-shadow information layer-by-layer
with the guidance of virtual visual representation, as demonstrated
in Figure 2.

3.4 Training Schedules in Training and Testing
Stages

The virtual visual scene plays a critical role in domain-specific
multi-modal representation. To further enhance domain-shadow
fusion, we employ amulti-layer visual distillationmechanism aimed
at capturing multi-grained domain visual details at each Trans-
former layer. During the training stage, the model’s parameters
are optimized using a joint loss function, which is detailed as fol-
lows:

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝐶𝐸 +
𝑙∑
𝑛

𝜃𝑛𝑙𝑜𝑠𝑠
𝑛
ℎ (16)

where 𝑙𝑜𝑠𝑠𝐶𝐸 represents traditional machine translation loss and
𝜃𝑛 is the layer-wise loss hyper-parameter; the visual distillation
loss 𝑙𝑜𝑠𝑠𝑛

ℎ
is defined as follows:

𝑙𝑜𝑠𝑠𝑛ℎ = KL(𝐶ℎ | |𝐶𝑛
𝑣 ) (17)

where KL(·) denotes the operation of calculating KL scores; (·| |·)
represents visual-centric distillation by randomly up-sampling 49
times in the length dimension to transform 𝐶ℎ into the length di-
mension of 𝐶𝑛

𝑣 .

Furthermore, in the inference stage, our model can utilize vir-
tual visual information instead of the ground truth visual repre-
sentation as visual input to provide multi-grained visual represen-
tation for machine translation. Therefore, our model can adapt to
text-only scenarios.

4 EXPERIMENTS
4.1 Experimental settings
Datasets. We conduct experiments on three benchmark MNMT
datasets, including two domain-specific datasets, Fashion-MMT [33]
and EMMT [46], and one general-domain dataset, Multi-30k [7].
Specifically, 1) Fashion-MMT is a MNMT dataset containing two
sub-datasets: Fashion-MMT(clean) and Fashion-MMT(large) in the
E-commerce domain.The Fashion-MMT(clean) dataset is composed
of 40,000 image-text pairs. Each data pair includes an English de-
scription, one ormore images, and amanually edited Chinese trans-
lation. The Fashion-MMT(large) dataset contains 114,257 image-
text pairs, where each data pair contains one or more images, an
English description, and a noisy Chinese sentence translated by
a text-only SOTA model. 2) EMMT: The EMMT dataset is a real-
world e-commercial dataset collected fromTikTok Shop and Shopee.
It comprises 22,500 annotated triplets, where each triplet consists
of an English product description, a manually annotated Chinese
translation, and a corresponding image. The test set is selected by
professional annotators, comprising examples that are challenging
to translate without corresponding images. 3) Multi-30k:Multi-30k
is the widely used benchmark for MNMT tasks, covering a variety
of general-domain scenarios. The Multi-30k dataset contains 29k
text-image data pairs for training and 1014 data pairs for valida-
tion. And we follow standard evaluation setup to report the results
on three test splits, Test2016, Test2017 and MSCOCO.

Evaluation Metrics.We utilize three types of metrics to evalu-
ate the performance of machine translation, including BLEU [29],
METEOR [5], and BLEURT. BLEURT is a robust noise evaluation
metric proposed by [32], demonstrating a strong correlation with
human evaluation.We also report the average scores and Student’s
t-test (T.TEST) scores by running each model three times.

ImplementationDetails.Weemploy byte pair encoding (BPE)
segmentationwith 8k, 10k, and 6kmerge operations for the Fashion-
MMT, EMMT and Multi-30k datasets, respectively.The vocabulary
sizes are 8880-2936 tokens for the Fashion-MMT dataset, 10407-
9799 tokens for the EMMT dataset, 5644-5876 tokens for the Multi-
30k (En-De) translation task, and 5644-5972 tokens for the Multi-
30k (En-Fr) translation task. We utilize the pre-trained CLIP model
[32] to represent textual and visual features into a shared multi-
modal space, thereby obtaining the most semantic-related image
features corresponding to its text for Fashion-MMT dataset. Fur-
thermore, our model consists of 4 stacked encoders and 4 stacked
decoders based on the Transformer-based seq2seq framework for
all datasets.

4.2 Comparison results on three MNMT
datasets

4.2.1 Comparison Results on Domain-specific Fashion-MMT and
EMMT Datasets. We first carry out experiments on two domain-
specific Fashion-MMT and EMMT datasets, the comparison results
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Table 1: Comparison results on domain-specific Fashion-MMT and EMMT datasets. The best scores are highlighted in bold. ↑
indicates that the improvement achieved by our model over the best result of our reproduced MNMT models is statistically
significant, with a p-value < 0.01.

Model
En→Zh task

Fashion-MMT(clean) Fashion-MMT(large) EMMT
BLEU METEOR BLEURT BLEU METEOR BLEURT BLEU METEOR BLEURT

Existing DMNMT and MNMT Models
Transformer[35] 40.61 35.77 - 41.21 35.91 - 39.07 - 54.24

Multimodal Graph[42] 40.70 35.45 - 41.49 35.95 - - - -
UPOC(MTLM+ISM)[33] 41.38 35.68 - 43.00 36.68 - 40.60 - 48.55

2/3-Triplet[46] 41.38 - - 42.33 - - 42.03 - 57.60
UVR-NMT[9] - - - - - - 37.82 - 52.99

Our Reproduced MNMT Models
Doubly-ATT[2] 40.46 35.78 58.94 42.97 36.87 60.92 41.69 33.17 55.67
Gated Fusion[39] 39.97 35.27 58.78 41.78 36.24 60.97 40.97 32.98 54.97

Selective attention[22] 40.52 35.67 58.87 42.76 37.08 61.14 41.54 33.25 56.23
Our Ground-truth and Virtual Visual Model

Our model(G) 41.57↑ 36.25 60.47 44.43↑ 38.32↑ 62.03 43.91↑ 34.87↑ 58.71↑
Our model(H) 41.52 36.34↑ 60.53↑ 44.40 38.30 62.13↑ 43.84 34.77 58.68

Table 2: Comparison results on the En→De and En→Fr translation tasks on the Multi30k dataset. The best scores are high-
lighted in bold. ↑ marks that the improvement achieved by our model over the best result of our reproduced MNMT models
is statistically significant, with a p-value < 0.01. MultiAtt, GatFus, and SelAtt denote Multimodal Self-attention, Gated Fusion,
and Selective Attention, respectively. The MET refers to the METEOR evaluation metric.

Models
Multi30k En→De Multi30k En→Fr

Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
BLEU MET BLEU MET BLEU MET BLEU MET BLEU MET BLEU MET

Existing MNMT Models
RMMT[39] 41.45 - 32.94 - 30.0 - 62.12 - 54.39 - 44.52 -

IKD-MMT[30] 41.2 58.9 33.8 53.2 30.1 48.9 62.5 77.2 54.8 71.8 - -
VALHALLA(M)[25] 42.6 - 35.1 - 30.7 - 63.1 - 56.0 - 46.4 -

MDA[15] 42.0 59.4 34.1 52.5 30.4 49.6 62.4 77.2 54.1 72.1 46.5 66.7
EDC[34] 42.0 60.2 33.4 53.7 30.0 49.6 62.9 77.2 55.8 72.0 45.1 64.9

Our Reproduced NMT and MNMT Models
Transformer[35] 40.78 59.45 32.76 51.37 28.76 48.22 60.48 75.83 53.12 70.85 43.75 64.48
MultiAtt[40] 41.51 58.78 32.96 51.98 29.43 48.42 60.96 74.98 54.17 71.22 44.35 64.65
GatFus [39] 41.55 58.64 32.87 51.87 29.59 48.71 61.46 75.27 53.93 71.34 44.21 64.26
SelAtt[22] 42.03 59.07 34.05 52.78 30.27 49.34 61.78 76.23 54.27 72.25 44.89 65.22

Our Ground-truth and Virtual Visual Model
Our Model(G) 42.83 60.51↑ 35.20 54.51↑ 31.21↑ 51.27↑ 63.24 77.84↑ 56.29↑ 73.22↑ 46.83↑ 67.40
Our Model(H) 42.85↑ 60.48 35.31↑ 54.48 31.17 51.25 63.27↑ 77.75 56.19 73.20 46.71 67.42↑

are presented in Table 1. ”Our model(G)” and ”Our model(H)” de-
note our proposed model that utilizes ground-truth images and vir-
tual visual information, respectively. We can see that 1) Our model
achieves a significant improvement over all the other SOTA DM-
NMT approaches across three types of evaluation metrics on two
datasets. 2) The proposed approach significantly outperforms text-
only transformer approach, confirming the effectiveness of visual
information for machine translation. 3) Both Our model(G) and
Our model(H) achieve comparable machine translation scores on
all test sets. It demonstrates the effectiveness of our proposed ap-
proach for DMNMT.

4.2.2 Comparison Results on Multi30k Dataset in General Domain.
To further confirm the robustness of our proposedmethod, we con-
duct additional experiments on the Multi30k dataset. The results
of English-to-German and English-to-French translation tasks are
presented in Table 2. The findings are as follows: 1) In compari-
son to existing MNMT models, our method achieves SOTA scores
in the BLEU and METEOR metrics on the test2016, test2017, and
MSCOCO test sets. 2) Compared to our reproducedNMT andMNMT
models, our approach demonstrates significant improvements un-
der the same parameter and environment settings. Furthermore,
we also conduct significance tests between our reproduced models
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Table 3: Ablation study on different modules of our proposed model.

Fashion-MMT En→Zh task
Different modules of our model Our model Fashion-MMT(clean) Fashion-MMT(large)

Cross-modal
exchanging module

Cross-modal
fusion module

Virtual visual
scene generation module BLEU BLEURT BLEU BLEURT

- √ √ Our model(G) 39.59 57.27 41.97 59.54
Our model(H) 39.63 57.59 41.88 59.47

√ - √ Our model(G) 41.29 59.88 44.09 61.47
Our model(H) 41.17 59.72 44.13 61.60

√ √ - Our model(G) 40.78 58.69 43.17 60.25

√ √ √ Our model(G) 41.57 60.47 44.43 62.03
Our model(H) 41.52 60.53 44.40 62.13

Figure 3: The BLEU and parameters of our proposed virtual
visual scene generation module on different layers. The hor-
izontal axis represents the number of layers in the virtual
visual scene generation module. SeleAtt, GatFusi and Imagi-
nation denote the Selective attention [22], Gated fusion [42]
and Imagination [8] models, respectively.

and our approach. The significance test results indicate that our
model achieves a statistically significant improvement over these
models (p-value < 0.01). 3) Our model(G) and Our model(H) also
achieve comparable results on these three test sets. This confirms
the effectiveness of our virtual scene generation module. Further-
more, it is noteworthy that the MSCOCO test split, which includes
sentences with ambiguous verbs and out-of-domain samples from
the COCO Captions dataset, is often challenging for MNMT mod-
els. However, our model performs exceptionally well on this test
set, which suggests it can effectively employ visual information
to handle ambiguity through our proposed modality exchanging
mechanism.

4.3 Ablation Study
4.3.1 Ablation Study on Different Modules. We first conduct ab-
lation studies on different modules to demonstrate the effective-
ness of the modules in our proposed approach. The experiment re-
sults are shown in Table 3. The conclusions could be drawn as fol-
lows: 1) Replacing the cross-modal exchanging module with orig-
inal textual representation causes a significant performance drop
on Fashion-MMT(small) and Fashion-MMT(large) datasets. 2) Re-
placing the cross-modal fusion module with a pooling-addition op-
eration also causes a remarkable machine translation performance
decline on two tasks. 3) Removing virtual visual scene generation
module causes huger BLEU and BLEURT scores drop than replac-
ing cross-modal fusionmodule, which confirms that the visual scene

generation module plays a significant role in guiding the process
of multimodal fusion. The results confirm the validity of the pro-
posed modules in domain-specific translation tasks, especially for
cross-modal exchanging module.

4.3.2 Impact of Parameter Counts on the Virtual Visual Scene Gen-
eration Module. We then conduct experimental analysis on the im-
pact of parameter counts on the virtual visual scene generation
module to investigate its model compression capability, as shown
in Figure 3.Where the rectangular boxes represent the BLEU scores,
the dashed and dotted lines represent themodel’s parameter counts.
We evaluate the model compression capability for several types
of modules with comparable parameter counts, including our pro-
posed 𝑃-stacked Transformer encoder, the traditional selective at-
tention [22], the Gated Fusion [39], and Imagination [8] modules.
It can be included as follows: 1) Our proposed virtual visual scene
generation module still exhibits strong machine translation per-
formance even when the number of stacked Transformer layers is
set to 1. 2) To further demonstrate the robustness and generaliza-
tion of our virtual visual generation module, we also conduct ex-
periments in the widely-used Multi30k(En-De) Test2016 task. The
experimental results showcase that our 𝑃-stacked Transformer en-
coder achieves the highest BLEU scores when the layer number is
1, with the fewest number of parameters. These findings confirm
the effectiveness of model compression, highlighting its potential
for virtual visual representation.

4.3.3 Validity of Image Information in the Inference Phase. To in-
vestigate the robustness of our model for visual information, we
further examine the validity of images in machine translation by
adversarial evaluation [6], as demonstrated in Table 4. Specifically,
we replace ground-truth images by the following three types of
images, including blank image (BlkImg), randomly selected image
(RSImg), noisy image (NsImg). Furthermore, we evaluate machine
translation performance with visual adversarial evaluation by con-
sidering the following three additional scenarios: 1) Text-BlkImg
data pair scenario; 2) Text-RSImg data pair scenario, and 3) Text-
NsImg data pair scenario. The experimental results demonstrate
that our approach exhibits significant robustness across several vi-
sual noisy scenarios. Furthermore, our model(H) achieves slightly
higher BLEU and METEOR scores in all three noisy multi-modal
scenarios, as it does not rely on noisy visual images. This suggests
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SRC: a vintage inspired rose print on a dusty pink ground sets the stage for this romantic frock featuring delicate frills and covered buttons .

REF: 飘逸的粉色布料上复古的玫瑰印花为这件浪漫连衣裙奠定了基础，这件连衣裙上饰有精致的褶边和包覆纽扣。

Transformer: 一幅复古风格的玫瑰图案印在浅粉色的地面上，为这件浪漫的连衣裙铺设了舞台，上面装饰有精致的荷叶边和盖住的纽扣。

Gated Fusion: 这款浪漫的连衣裙以精致的荷叶边和带盖纽扣为特色，在尘土飞扬的粉色地面上设计了复古灵感的玫瑰印花。

Selective Attention: 这款浪漫的连衣裙采用精致的荷叶边和带盖纽扣的设计，复古风格的玫瑰印花在尘土飞扬的粉色地面上占据了基础。

GPT4: 一种复古风格的玫瑰图案印在浅粉色的底色上，为这件充满浪漫气息的连衣裙设定了基调，连衣裙特点包括精致的荷叶边和包布纽扣。

Our Model(G): 复古风格的玫瑰印花在飘逸的粉色布料上，为这款浪漫的连衣裙奠定了基础，连衣裙饰有精致的褶边和包覆纽扣。

Our Model(H): 一款复古风格的玫瑰印花在飘逸的粉色布料上，为这件浪漫的连衣裙设定了基础，连衣裙饰有精致的褶边和包覆纽扣。

SRC: intricately sketched blooms and dainty covered buttons make this cap sleeve top so romantic.

REF: 精致的手绘花朵和优雅的包覆纽扣使这款沉肩袖上衣尽显浪漫。

Transformer:复杂细致的花朵图案和精致的包覆钮扣使得这件短袖上衣充满了浪漫气息。

Gated Fusion:错综复杂的草绘花朵和精致的带盖纽扣使这款帽袖上衣非常浪漫。

Selective Attention:精致的草绘花朵和精致的包覆纽扣使这款帽袖上衣显得非常浪漫。

GPT4:复杂精细的花卉草图和小巧的包布纽扣使这款短袖上衣显得如此浪漫。

Our model(G):精致的手绘花朵和精致的包覆纽扣使这款沉肩袖上衣如此浪漫。

Our model(H):复杂精致的手绘花朵和精致的包覆纽扣使这款落肩袖上衣如此浪漫。

Figure 4: Two examples of domain-specific machine translation. ”SRC” and ”REF” denote the source and reference sentence.

that noisy images indeed have a negative impact on machine trans-
lation.

Table 4: Different multimodal scenarios in testing process.

Multi-modal data
Fashion-MMT En→Zh

Fashion-MMT
(clean)

Fashion-MMT
(large)

BLEU BLEURT BLEU BLEURT
Text-BlkImg scenario 41.32 60.25 44.11 61.89
Text-RSImg scenario 41.41 60.18 44.25 61.73
Text-NsImg scenario 41.44 60.39 44.32 61.97
Text-only scenario
(Our model(H)) 41.52 60.53 44.40 62.13

Our model(G) 41.57 60.47 44.43 62.03

SRC: Subtle checks further the vintage vibes of this button front woven shirt that 's an everyday standby.

SRC_mask: Subtle [MASK1] further the vintage vibes of this button front woven shirt that 's an everyday standby.

REF: 这款纽扣前襟梭织衬衫的精致格子进一步增强了复古气息，是日常的备用选择。

Our model (G): 精致的格子图案进一步增强了这款纽扣前梭织衬衫的复古气息，这是日常的备用单品。

Our model (H): 精致的格子图案进一步提升了这款纽扣前梭织衬衫的复古气息，是日常的备用品。

SRC: A drawstring bucket bag displays some brand love with monogram logos shining within a diamond shaped 

design of studs.

SRC_mask: A drawstring bucket bag displays some brand love with monogram logos shining within a [MASK2] 

shaped design of [MASK3].

REF: 抽绳水桶包在钻石形的铆钉设计中闪耀着交织字母标志，展示了一些品牌的爱。

Our model (G): 一个抽绳水桶包展示了一些品牌的爱意，在钻石形的铆钉设计中闪耀着字母组合标志。

Our model (H): 抽绳水桶包在钻石形的铆钉中闪耀着字母标志，展现了一些品牌的爱。

Figure 5: Two examples of domain-related textual informa-
tion being masked during the inference phase. SRC_mask
denotes the masked source sentence.

4.4 Case Study
Figure 4 depicts the translation of two domain-specific cases of
Fashion-MMT dataset. Colors highlight improvement. In these ex-
amples, our proposed approach can translate domain-specific terms
correctly, such as ”sketched blooms,” ”cap sleeve top,” ”dusty pink
ground,” etc.The text-only model fails to generate the domain term
”cap sleeve top” without the aid of visual information. This con-
firms the importance of visual information for DMNMT. Moreover,

our model(H) still can translate domain-specific terms correctly,
such as ” 手绘花朵,”” 飘逸的粉色布料,” and ” 精致的褶边.” It
demonstrates the effectiveness of virtual visual scene generation
for domain-specific term translation.

4.5 Visual Analysis
To explore the robustness of our proposed model and its ability
to use image information for improving domain-specific transla-
tions when key text details are missing, we replaced certain do-
main terms with [MASK] during testing. As illustrated in Figure 5,
by visualizing the attention weights of the Vision Transformer, we
masked words like ”checks”, ”diamond” and ”studs”. These words,
which vary greatly between specific and general domains, pose a
translation challenge without corresponding image cues. In Case
1, despite masking the word ”checks,” which differs significantly
from its usual expression, our model achieved accurate translation
by focusing on related image areas. Intriguingly, in Case 2, accu-
rately translating masked domain-related words ”diamond” and
”studs” is significantly challenging without corresponding images.
The focused image information by our model indicates it can pre-
cisely identify relevant areas for these domain-specific terms, en-
hancing translation performance.

5 CONCLUSION
This paper has addressed themulti-focus challenges associatedwith
visual-to-textual interaction in DMNMT, introducing a virtual vi-
sual scene-guided progressive domain-shadow fusion approach to
enhance the model’s capability in perceiving fine-grained, domain-
specific visual details. Extensive experiments conducted on three
benchmark datasets demonstrate that our proposed approach sur-
passes SOTA MNMT models, achieving significant improvements
across all machine translation tasks. Moreover, our in-depth ab-
lation studies and adversarial evaluation underscore the robust-
ness and generalizability of our approach across both general and
domain-specific contexts, even under noisy or text-only conditions.
Additionally, the virtual visual scene generationmodule has shown
a remarkable potential for model compression, indicating its viabil-
ity for real-world applications.
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