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1 EXPERIMENTS

1.1 Experimental settings

Implementation Details. We employ byte pair encoding (BPE)
segmentation with 8k, 10k, and 6k merge operations for the Fashion-
MMT, EMMT and Multi-30k datasets, respectively. The vocabulary
sizes are 8880-2936 tokens for the Fashion-MMT dataset, 10407-
9799 tokens for the EMMT dataset, 5644-5876 tokens for the Multi-
30k (En-De) translation task, and 5644-5972 tokens for the Multi-
30k (En-Fr) translation task. We utilize the pre-trained CLIP model
[7] to represent textual and visual features into a shared multi-
modal space, thereby obtaining the most semantic-related image
features corresponding to its text for Fashion-MMT dataset. Fur-
thermore, our model consists of 4 stacked encoders and 4 stacked
decoders based on the Transformer-based seq2seq framework for
all datasets. For Fashion-MMT and EMMT datasets, the word em-
bedding dimension is 512. The multi-head number is 4, and the di-
mensions of self-attention hidden state and the feed-forward hid-
den state are 512, 1024, respectively. For En-De and En-Fr trans-
lation tasks in Multi30k dataset, the embedding dimension, self-
attention dimension, and feed-forward dimensions are 128, 128 and
256, respectively. We employ Adam to optimize our model. The
learning rates are set to 0.001, 0.0001, 0.001, 0.006 and 0.007 for
the Fashion-MMT(clean), Fashion-MMT(large), EMMT, Multi30k
(En-De) and Multi30k (En-Fr), respectively. The warmup step is
2000. The label smoothing value is set to 0.3,0.3,0.25 and 0.25 for
Fashion-MMT, EMMT, En-De and En-Fr tasks. The value assigned
to dropout is the same as the value used for label smoothing. We
implement an early-stopping strategy if the BLUE score does not
improve over 15 validation steps. The model is trained on a single
RTX 3090 GPU using mixed-precision training(fp16).

1.2 Comparison results on three MNMT
datasets

1.2.1  Comparison Results on Multi30k Dataset in General Domain.
To further confirm the robustness of our proposed method, we con-
duct additional experiments on the Multi30k dataset. The results
of English-to-German and English-to-French translation tasks are
presented in Table 1 and Table 2. The findings are as follows: 1)
In comparison to existing MNMT models, our method achieves
SOTA scores in the BLEU, METEOR_C, and METEOR_N metrics
on the test2016, test2017, and MSCOCO test sets. 2) Compared to
our reproduced NMT and MNMT models, our approach demon-
strates significant improvements under the same parameter and
environment settings. Furthermore, we also conduct significance
tests between our reproduced models and our approach. The signif-
icance test results indicate that our model achieves a statistically
significant improvement over these models (p-value < 0.01). 3) Our
model(G) and Our model(H) also achieve comparable results on
these three test sets. This confirms the effectiveness of our virtual
visual scene generation module. Furthermore, it is noteworthy that
the MSCOCO test split, which includes sentences with ambiguous

verbs and out-of-domain samples from the COCO Captions dataset,
is often challenging for MNMT models. However, our model per-
forms exceptionally well on this test set, which suggests it can ef-
fectively employ visual information to handle ambiguity through
our proposed modality exchanging mechanism.

1.3 Ablation Study

1.3.1 Effect of the Voting Times of the Inter-modality Exchanging
Module. Then we investigate the effect of the voting times of the
inter-modality exchanging module, as depicted in Table 3. The con-
clusions could be drawn as follows: 1) As the voting times increases
from 1 to 5, our model exhibits an upward trend in both BLEU and
BLEURT scores on Fashion-MMT(clean) and Fashion-MMT(large).
2) Conversely, as the voting times rises from 5 to 7, our model
demonstrates a declining trend in BLEU and BLEURT scores on
Fashion-MMT/(clean) and Fashion-MMT(large). When 7 = 5, the
model achieves the highest BLEU and BLEURT scores. Thus, we
select 7 = 5 for analysis in this paper. Furthermore, the results in
Table 3 demonstrate that, by applying the voting mechanism five
times, the model more effectively captures the characteristics of
cross-modal exchange under semantic constraints.

1.3.2  Effect of the Number of the Exchanged Tokens of the Inter-
modality Exchanging Module. To investigate the effect of the num-
ber of the exchanged tokens, we conduct experiments on the Fashion-
MMT dataset, as shown in Table 4. The results reveal the follow-
ing insights: 1) The model exhibits steady growth in BLEU and
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BLEURT scores on both the Fashion-MMT(small) and Fashion-MMT(large)

datasets when the number of exchanged tokens increases from 2
to 6; 2) A decline in BLEU and BLEURT scores is observed on these
datasets as the number of exchanged tokens increases from 6 to 8.
So we choose t = 6 in this paper. This indicates that exchanging six
tokens at each time enables the model to more effectively capture
domain-relevant multimodal textual and visual information.

1.4 Visual Analysis

1.4.1  The Visualization of Virtual Visual Scene-guided Progressive
Domain-shadow Fusion. To further explore the effectiveness of our
proposed virtual visual scene-guided progressive domain-shadow
fusion, we visualized three examples of gating weights of different
lengths from the Fashion-MMT test set, as shown in Figure 1. The
weights on the left side of the figure represent the values under real
visual conditions, while the right side depicts the gating weights
under virtual visual conditions. It can be observed from the figure
that, regardless of whether under real or virtual visual conditions,
our model can precisely focus on domain representations. Terms
with strong domain characteristics, such as “crops,” “shirt,” “grid
pattern,” and “burberry,” all receive higher weights, further proving
the effectiveness of our approach.
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Table 1: Comparison results on the En—De translation task on the Multi30k dataset. The best scores are highlighted in bold.
1 marks that the improvement achieved by our model over the best result of our reproduced NMT and MNMT models is

statistically significant, with a p-value < 0.01. The MET_C and MET_N refer to the METEOR_C and METEOR_N evaluation
metrics.

Multi30k En—De
Models Test2016 Test2017 MSCOCO
BLEU MET C MET N BLEU MET C MET N BLEU MET C MET N
Existing MNMT Models
DCCN([5] 39.7 56.8 - 31.0 49.9 - 26.7 45.7 -
RMMT([11] 41.45 - 68.0 32.94 - 61.7 30.0 - 56.3
MI[2] 39.40 - 68.60 34.58 - 62.40 30.61 - 56.70
IKD-MMT([6] 41.2 58.9 - 33.8 53.2 - 30.1 48.9 -
MDA[1] 42.00 59.43 - 34.08 52.54 - 30.38 49.60 -
VALHALLA(M)[4] 42.6 - 69.3 35.1 - 62.8 30.7 - 57.6
2/3-Triplet[15] 40.48 - - 34.62 - - - - -
Latent Diffusion[13] 41.20 - - 32.20 - - 28.30 - -
Enc-Dec Calibration[8] 42.0 60.2 - 334 53.7 - 30.0 49.6 -
Our Reproduced NMT and MNMT Models
Transformer[9] 40.78 59.45 66.76 32.76 51.37 58.67 28.76 48.22 53.27
Multimodal self-att[12]  41.51 58.78 67.64 32.96 51.98 59.06 29.43 48.42 54.68
Gated Fusion [11] 41.55 58.64 67.61 32.87 51.87 59.24 29.59 48.71 54.82
Selective attention[3] 42.03 59.07 67.98 34.05 52.78 61.56 30.27 49.34 55.24
Our Ground-truth and Virtual Visual Model
Our Model(G) 4283  60.517 69.677 3520 54.517  63.08 31.217 51.27f 58.24
Our Model(H) 42.85T 60.48 69.52 35.31T 54.48 63.09T 31.17 51.25 58.27T

Table 2: Comparison results on the En—Fr translation task on the Multi30k dataset. The best scores are highlighted in bold.{
marks that the improvement achieved by our model over the best result of our reproduced NMT and MNMT models is statis-
tically significant, with a p-value < 0.01. The MET_C and MET_N refer to the METEOR_C and METEOR_N evaluation metrics.

Multi30k En—Fr
Models Test2016 Test2017 MSCOCO
BLEU MET_C MET_N BLEU MET C MET N BLEU MET C MET_N
Existing MNMT Models
DCCNI[5] 61.2 76.4 - 54.3 70.3 - 45.4 65.0 -
oVvC(C[10] - - - 54.2 70.5 - 45.2 64.6 -
WRA-guided[14] 61.8 76.3 - 54.1 70.6 - 434 63.8 -
RMMT([11] 62.12 - 81.3 54.39 - 76.1 44.52 - 70.2
IKD-MMT(6] 62.5 77.2 54.8 71.8 - -
MDA[1] 62.36 77.20 - 54.09 72.09 - 46.48 66.71 -
VALHALLA[4] 63.1 - 81.8 56.0 - 77.1 46.4 - 71.3
Enc-Dec Calibration[8] 62.9 77.2 - 55.8 72.0 - 45.1 64.9 -
Our Reproduced NMT and MNMT Models
Transformer[9] 60.48 75.83 78.05 53.12 70.85 73.32 43.75 64.48 68.48
Multimodal self-att[12] 60.96 74.98 78.55 54.17 71.22 74.76 44.35 64.65 69.17
Gated Fusion MNMT[11]  61.46 75.27 79.25 53.93 71.34 74.94 44.21 64.26 69.06
Selective attention[3] 61.78 76.23 80.56 54.27 72.25 75.78 44.89 65.22 69.84
Our Ground-truth and Virtual Visual Model
Our Model(G) 63.24 77.841 82.03] 56.297 73.22] 77.65 46.831 67.40 71.65
Our Model(H) 63.277 7775 81.93 56.19 7320  77.787 4671 67.42] 71731
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Table 3: Ablation study on the voting times in the inter-modality exchanging module.

Fashion-MMT En—Zh

Voting times Model Fashion-MMT(clean) Fashion-MMT(large)
BLEU BLEURT BLEU BLEURT
1 Our model(G)  41.02 59.44 43.77 61.47
Our model(H) 41.05 59.31 43.69 61.55
) Our model(G)  41.15 59.49 43.86 61.65
Our model(H) 41.11 59.38 43.84 61.67
3 Our model(G)  41.33 59.67 44.14 61.89
Our model(H) 41.29 59.71 44.11 61.73
4 Our model(G) 41.42 59.89 44.21 61.88
Our model(H) 41.44 59.85 44.18 61.76
5 Our model(G)  41.57 60.47 44.43 62.03
Our model(H) ~ 41.52 60.53 44.40 62.13
6 Our model(G) 41.46 60.22 4431 62.07
Our model(H) 41.42 60.17 44.37 61.96
. Our model(G)  41.33 60.01 44.06 61.52
Our model(H) 41.34 59.89 43.98 61.36

Table 4: Effect of the number of the exchanged tokens in the inter-modality exchanging module.

The number of

Fashion-MMT En—Zh

exchanged tokens Model Fashion-MMT(clean) Fashion-MMT/(large)
BLEU BLEURT BLEU BLEURT
) Our model(G) 41.08 59.59 43.67 61.05
Our model(H) 41.15 59.69 43.72 61.01
3 Our model(G) 41.25 59.95 43.87 61.18
Our model(H) 41.40 59.77 43.92 61.23
4 Our model(G) 41.35 59.89 44.05 61.22
Our model(H) 41.31 59.93 44.08 61.41
5 Our model(G)  41.40 60.07 44.18 61.56
Our model(H) 41.37 59.94 44.21 61.62
6 Our model(G)  41.57 60.47 44.43 62.03
Our model(H) 41.52 60.53 44.40 62.13
7 Our model(G) 41.44 60.07 44.17 61.17
Our model(H) 41.40 60.11 44.09 61.23
8 Our model(G) 41.21 59.78 43.76 60.01
Our model(H) 41.17 59.75 43.79 60.06

Figure 1: The visualization of the cross-modal gating weights for three examples of different lengths from the Fashion-MMT
test set. The left and right sides denote the results of Our Model(G) and Our Model(H).
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