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A Deferred Proofs1

For readers’ convenience, we review the statements of the propositions and corollaries and provide2

the full proofs below.3

A.1 Proof of Proposition 14

Proposition 1 (ϵ̂AC-W∞ Equivalence). Let (P(Rk),W∞) be the metric space of all distributions5

over Rk, where W∞ is the Wasserstein distance with c(x, y) = ∥x− y∥∞. Then, the estimated error6

of AC-MC is given by ϵ̂AC = W∞(f⃗#P (c⃗), Ppseudo(y⃗)).7

Proof. We first show the following equality. Let j∗ = argmaxj f⃗j(x)8

1− f⃗j∗(x) = ∥y⃗ − f⃗(x)∥∞ (1)

where y⃗j = 1[j = j∗]. Let f⃗−j∗(x) denote the vector f⃗(x) with j∗-th element removed. Since for a9

confidence vector ∥f⃗(x)∥1 = 1,10

1− f⃗j∗(x) = ∥f⃗−j∗(x)∥1 ≥ ∥f⃗−j∗(x)∥∞
Therefore, we have obtained the desired Equality 1:11

∥y⃗ − f⃗j(x)∥∞ = max{∥f⃗−j∗(x)∥∞, 1− f⃗j∗(x)} = 1− f⃗j∗(x)

Next, we consider the optimal transport plan between f⃗#P (c⃗) and Ppseudo(y⃗). Namely, we show all12

confidence vectors f⃗(x(i)) are coupled with their one-hot pseudo-labels y⃗(i). This can be observed by13

the fact that the one-hot pseudo-label is the one-hot label that achieves the lowest L-infinity cost, i.e.14

∥f⃗(x(i))− y⃗(i)∥∞ ≤ ∥f⃗(x(i))− y⃗′∥∞,∀y⃗′ ∈ {0, 1}k ∩∆k−1

Suppose there exist confidence vectors that are not coupled with their one-hot pseudo-labels, then all15

individual costs are suboptimal and the total cost is suboptimal as well, contradicting the assumption16

that the transport plan is optimal. Therefore,17

W∞(f⃗#P (c⃗), Ppseudo(y⃗)) =
1

n

n∑
i=1

∥f⃗(x(i))− y⃗(i)∥∞ (2)

Combining Equality 1 and Equality 2, we obtain the desired relationship between AC error estimate18

and W∞ distance19

ϵ̂AC =
1

n

n∑
i=1

(1−max
j

f⃗j(x
(i))) =

1

n

n∑
i=1

∥f⃗(x(i))− y⃗(i)∥∞ = W∞(f⃗#P (c⃗), Ppseudo(y⃗))

20
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A.2 Proof of Corollary 121

Corollary 1 (Ppseudo(y⃗) is closest to f⃗#P (c⃗)). Let P ′(y⃗) ∈ P({0, 1}k ∩∆k−1) be a one-hot label22

distribution. Then W∞(f⃗#P (c⃗), P ′(y⃗)) ≥ W∞(f⃗#P (c⃗), Ppseudo(y⃗)).23

Proof. We first show the following equality, which establishes the relationship between AC accuracy24

estimate with W∞ distance:25

1− ϵ̂AC = W∞(f⃗#P (c⃗), δ0) (3)

Since W∞(f⃗#P (c⃗), δ0) transports f⃗#P (c⃗) to δ0, the optimal transport plan couples every element26

in f⃗#P (c⃗) to 0. For each x(i), its confidence vector f⃗#P (c⃗) has a transport cost ∥f⃗(x(i)) − 0∥∞.27

Hence,28

1− ϵ̂AC =
1

n

n∑
i=1

max
j

f⃗j(x
(i)) =

1

n

n∑
i=1

∥f⃗(x(i))− 0∥∞ = W∞(f⃗#P (c⃗), δ0)

With this, our inequality is simply the Triangle Inequality in (P(Rk),W∞),29

W∞(f⃗#P (c⃗), δ0) +W∞(f⃗#P (c⃗), P ′(y⃗)) ≥ W∞(P ′(y⃗), δ0) = 1

Combined with Equation 3, we obtain the desired inequality30

W∞(f⃗#P (c⃗), Ppseudo(y⃗)) = 1−W∞(f⃗#P (c⃗), δ0) ≤ W∞(f⃗#P (c⃗), P ′(y⃗))

31

A.3 Proof of Proposition 232

Notations: Let C(c⃗) = {c⃗′ ∈ ∆k−1| argmaxj c⃗
′
j = argmaxj c⃗j} be the set of confidence vectors33

whose one-hot pseudo-labels that match with that of c⃗ ∈ ∆k−1. Let P(∆k−1) be the set of34

all distributions of confidence vectors and Pc[Ppseudo(y⃗)] = {P ′(c⃗) ∈ P(∆k−1)|Ppseudo(y⃗) =35

P ′(argmaxj c⃗j = argmaxj y⃗j)} be the set of distributions of confidence vectors that share the36

same pseudo-label distribution Ppseudo(y⃗).37

Pc[Ppseudo(y⃗)] defines an equivalence class for the space of distributions of confidence vectors38

(P(∆k−1),W∞) that share the same pseudo-label distribution Ppseudo(y⃗). Pictorially, in Figure 1,39

Pc[Ppseudo(y⃗)] represents the line between δ0 and Ppseudo(y⃗). On this line, every distribution of40

confidence vectors shares the same pseudo-label distribution Ppseudo(y⃗).41

To prove Proposition 2, we need the following lemma, which intuitively allows us to change the42

metric from measuring the distance between two points to the distance between an equivalence class43

and a point.144

Lemma 1 (Change-of-metric). Let y⃗, y⃗′ ∈ {0, 1}k ∩∆k−1 be two one-hot labels. Then the following45

holds46

inf
c⃗∈C(y⃗)

∥c⃗− y⃗′∥∞ = 0.5× 1[y⃗ ̸= y⃗′]

47

Proof. If y⃗ = y⃗′, then we know the optimal c⃗ = y⃗48

inf
c⃗∈C(y⃗)

∥c⃗− y⃗′∥∞ = ∥y⃗ − y⃗′∥∞ = 0

If y⃗ ̸= y⃗′, then we proceed by showing equality with two inequalities. First, observe {(0.5 + δ) y⃗ +49

(0.5− δ) y⃗′|δ ∈ (0, 0.5]} ⊂ C(y⃗).50

inf
c⃗∈C(y⃗)

∥c⃗− y⃗′∥∞ ≤ inf
δ∈(0,0.5]

∥(0.5 + δ) y⃗ + (0.5− δ) y⃗′ − y⃗′∥∞ = inf
δ∈(0,0.5]

(0.5 + δ) = 0.5

If ∥c⃗ − y⃗′∥∞ < 0.5, argmaxj c⃗j = argmaxj y⃗
′
j ̸= argmaxj y⃗j , i.e. c⃗ /∈ C(y⃗). Therefore,51

inf c⃗∈C(y⃗) ∥c⃗− y⃗′∥∞ ≥ 0.5, which further implies inf c⃗∈C(y⃗) ∥c⃗− y⃗′∥∞ = 0.5.52

1This is closely related to the Hausdorff distance between sets in a metric space.
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We are now in a position to prove Proposition 2, which follows from the somewhat surprising fact53

that the left-hand side of the inequality is simply the distance between f⃗#PT (c⃗) and PT (y⃗) with a54

change-of-metric to the metric defined above.55

Proposition 2 (Calibration independent lower bound of COT). Under the assumption that PT (y⃗) =56

PS(y⃗), we always have ϵ̂COT ≥ 0.5W∞(Ppseudo(y⃗), PT (y⃗)).57

Proof. Since PT (y⃗) = PS(y⃗),58

ϵ̂COT = W∞(f⃗#PT (c⃗), PT (y⃗))

= inf
π(c⃗,y⃗)∈Π(f⃗#PT (c⃗),PT (y⃗))

∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗)

≥ inf
π(c⃗,y⃗)∈Π(f⃗#PT (c⃗),PT (y⃗))

∫
inf

c⃗′∈C(c⃗)
∥c⃗′ − y⃗∥∞dπ(c⃗, y⃗) (4)

= inf
π(y⃗′,y⃗)∈Π(Ppseudo(y⃗′),PT (y⃗))

∫
inf

c⃗′∈C(y⃗′)
∥c⃗′ − y⃗∥∞dπ(y⃗′, y⃗) (5)

Equation 5 follows from the observation that C(c⃗) = C(y⃗′) for a confidence vector c⃗ and its corre-59

sponding one-hot pseudo-label y⃗′. Furthermore, since our new metric inf c⃗′∈C(y⃗′) ∥c⃗′ − y⃗∥∞ is only60

defined up to the equivalence class, replacing each c⃗′ ∈ C(c⃗) with its pseudo-label y⃗′ does not change61

the distance.62

Plugging in Lemma 1,63

ϵ̂COT ≥ inf
π(y⃗′,y⃗)∈Π(Ppseudo(y⃗′),PT (y⃗))

∫
0.5× 1[y⃗′ ̸= y⃗]dπ(y⃗′, y⃗)

= 0.5 inf
π(y⃗′,y⃗)∈Π(Ppseudo(y⃗′),PT (y⃗))

∫
∥y⃗′ − y⃗∥∞dπ(y⃗′, y⃗)

= 0.5W∞(Ppseudo(y⃗), PT (y⃗))

64

A.4 Tightness of Proposition 265

While Inequality 4 seems loose, our bound is, in fact, tight if no further assumptions on the calibration66

status of the classifier f⃗ are made. We need the following lemma that establishes the relationship67

between pseudo-label shift and the total variation distance between target label distribution and68

pseudo-label distribution. Note this equivalence only makes sense in the context of measuring W∞69

distance between two one-hot label distributions, but not under other contexts presented in the paper.70

Lemma 2 (Pseudo-label shift is total variation).

W∞(Ppseudo(y⃗), PT (y⃗)) = ∥Ppseudo(y⃗)− PT (y⃗)∥TV

Proof. For two y⃗, y⃗′ ∈ {0, 1}k ∩∆k−1, the transport cost c(y⃗, y⃗′) = 1[y⃗ ̸= y⃗′]. Then, the standard71

result on optimal transport [10] gives the desired equality.72

Corollary 2.

W∞(Ppseudo(y⃗), PT (y⃗)) = 1−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

73
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Proof.

W∞(Ppseudo(y⃗), PT (y⃗)) = ∥Ppseudo(y⃗)− PT (y⃗)∥TV

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

|Ppseudo(y⃗)− PT (y⃗)|

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

max{Ppseudo(y⃗), PT (y⃗)} −min{Ppseudo(y⃗), PT (y⃗)}

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

max{Ppseudo(y⃗), PT (y⃗)}+min{Ppseudo(y⃗), PT (y⃗)}

−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

=
1

2

∑
y⃗∈{0,1}k∩∆k−1

Ppseudo(y⃗) + PT (y⃗)−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

= 1−
∑

y⃗∈{0,1}k∩∆k−1

min{Ppseudo(y⃗), PT (y⃗)}

74

Finally, we show Proposition 2 is tight by constructing a sequence of distributions of confidence75

vectors, the limit of which is exactly 0.5W∞(Ppseudo(y⃗), PT (y⃗)) away from PT (y⃗).76

Lemma 3 (Proposition 2 is tight).

inf
P (c⃗)∈Pc[Ppseudo(y⃗)]

W∞(P (c⃗), PT (y⃗)) = 0.5W∞(Ppseudo(y⃗), PT (y⃗))

Proof. First, we construct the following family of distributions {Pδ(c⃗)|δ ∈ (0, 0.5]}, where Pδ(c⃗) is77

the following mixture distribution78

Pδ(c⃗) = γP∩(y⃗) + (1− γ)P×(⃗t)

where P∩(y⃗) = γ−1 min{Ppseudo(y⃗), PT (y⃗)}, γ =
∑

y⃗∈{0,1}k∩∆k−1 min{Ppseudo(y⃗), PT (y⃗)},79

P×(⃗t) is a distribution supported on ∆k−1 ∩ {0.5 + δ, 0.5− δ, 0}k (i.e. one element in t⃗ is 0.5 + δ,80

another is 0.5 − δ, and the rest are 0). Additionally, P×(⃗ti = 0.5 + δ) = Ppseudo(y⃗i = 1) and81

P×(⃗ti = 0.5− δ) = PT (y⃗i = 1). It is easy to check that Pδ(c⃗) ∈ Pc[Ppseudo(y⃗)].82

Next, we construct an explicit transport plan π(c⃗, y⃗) ∈ Π(Pδ(c⃗), PT (y⃗)). We construct it via the83

factorization π(c⃗, y⃗) = Pδ(c⃗)π(y⃗|⃗c), where84

π(y⃗|⃗c) =
{
1 if c⃗ = y⃗ or ⟨c⃗, y⃗⟩ = 0.5− δ

0 otherwise

The cost of this transport plan is therefore85 ∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗) = (0.5 + δ)(1− γ) = (0.5 + δ)W∞(Ppseudo(y⃗), PT (y⃗))

where the last equality follows from Lemma 2. Taking infimum,86

inf
δ∈(0,0.5]

∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗) = 0.5W∞(Ppseudo(y⃗), PT (y⃗))
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Combining everything so far, we obtain the desired result:87

0.5W∞(Ppseudo(y⃗), PT (y⃗)) = inf
δ∈(0,0.5]

∫
∥c⃗− y⃗∥∞dπ(c⃗, y⃗)

≥ inf
δ∈(0,0.5]

W∞(Pδ(c⃗), PT (y⃗)) (6)

≥ inf
P (c⃗)∈Pc[Ppseudo(y⃗)]

W∞(P (c⃗), PT (y⃗)) (7)

≥ 0.5W∞(Ppseudo(y⃗), PT (y⃗)) (8)

Inequality 6 follows from the fact that the optimal transport plan cannot have a greater cost than our88

explicit plan π. Inequality 7 is due to the fact that the family of distribution we are considering is89

a subset of Pc[Ppseudo(y⃗)]. Inequality 8 is an application of the lower bound 4 which holds for all90

P (c⃗) ∈ Pc[Ppseudo(y⃗)].91

B Extended Results92

B.1 Results with Standard Deviation93

We show the full experimental results with standard deviation in Table 1.94

B.2 Qualitative Results95

We show the qualitative results (scatter plots) in Fig 196

B.3 Correlation Analysis97

ProjNorm [12] leverages pseudo labels on the target domain to retrain a copy of the reference98

model trained on the source domain. The authors show that the difference between the two models’99

parameters has a strong linear correlation to the true target error. Following the paper’s experimental100

setup, we conducted the correlation analysis on CIFAR10 and CIFAR100 using three architectures,101

ResNet18, ResNet50, and VGG11. We note that ProjNorm in fact implicitly leverages the assumption102

that PT (y) = PS(y) as this condition holds for both CIFAR10 and CIFAR100. As Fig. 18 of their103

paper [12] shows, ProjNorm tends to overestimate when label shift exists.104

B.4 Mild Label Shift105

We motivate our methods under the assumption of no label shift. In Proposition 2, we showed that106

the worst-case underestimate of COT is half of the pseudo-label shift. Under mild label shifts, the107

guarantee for such worst-case underestimation becomes weaker. This can be observed from the108

following corollary of Proposition 2:109

Corollary 3 (Calibration independent lower bound of COT under mild label shift).

ϵ̂COT ≥ 0.5W∞(Ppseudo(y⃗), PT (y⃗))−W∞(PS(y⃗), PT (y⃗))

Proof. By Triangle Inequality in (P(Rk),W∞),110

W∞(f⃗#PT (c⃗), PS(y⃗)) +W∞(PS(y⃗), PT (y⃗)) ≥ W∞(f⃗#PT (c⃗), PT (y⃗))

Combined with Proposition 2, we obtain the desired result.111

As the label shift increases, we have a weaker guarantee of the worst-case underestimation error of112

COT as long as W∞(PS(y⃗), PT (y⃗)) ≤ 0.5W∞(Ppseudo(y⃗), PT (y⃗)). However, we perform additional113

controlled experiments which suggest our methods remain to be the most performant despite the114

theoretical guarantee is not as strong as the case without label shift.115

To simulate mild label shift for datasets with PS(y⃗) = PT (y⃗), we first calculate the original target116

marginal and then sample the shifted target marginal from a Dirichlet distribution as in [1] with a117

parameter α = 50. The parameter α controls the severity of the label shift, and a smaller α means118

a larger label shift. Concretely, let the shifted target marginal be PT̃ (y⃗). Then PT̃ (y⃗) ∼ Dir(β)119
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Table 1: Mean Absolute Error (MAE) between the estimated error and ground truth error to compare
different methods. The "shift" column denotes the nature of distribution shifts for each dataset. For
vision datasets, we reported results for ResNet18 and ResNet50; for language datasets, we reported
results for DistilBERT-base-uncased. The results are averaged over 3 random seeds. We highlight the
best-performing method. The number in the parentheses denotes the standard deviation.

Baselines Ours
Dataset Shift AC DoC IM GDE ATC-MC ATC-NE COT COTT

CIFAR10
Natural 5.97 5.38 5.87 5.9 3.38 3.15 5.41 3.33

(0.10) (0.08) (0.09) (0.15) (0.14) (0.28) (0.09) (0.13)

Synthetic 9.1 8.53 9.26 8.84 4.2 3.37 2.17 1.7
(0.25) (0.28) (0.35) (0.11) (0.38) (0.30) (0.09) (0.26)

CIFAR100 Synthetic 10.83 8.76 12.07 11.36 6.8 6.63 2.09 2.59
(0.08) (0.22) (0.37) (0.25) (0.39) (0.43) (0.27) (0.01)

ImageNet
Natural 8.5 7.43 8.62 5.62 3.57 2.6 3.88 2.41

(0.39) (0.41) (0.47) (0.33) (0.46) (0.66) (0.04) (0.11)

Synthetic 10.34 9.28 12.87 6.54 1.59 3.41 3.24 1.42
(0.83) (0.86) (0.77) (0.37) (0.08) (0.53) (0.28) (0.29)

Entity13
Same 19.63 19.2 17.5 15.37 8.09 7.23 8.47 2.61

(2.17) (2.51) (0.90) (1.06) (0.49) (0.49) (0.66) (0.31)

Novel 29.61 29.18 27.22 24.48 14.54 9.49 15.9 5.46
(2.61) (2.95) (1.08) (0.61) (0.95) (0.70) (0.80) (0.75)

Entity30
Same 16.97 16.21 13.56 13.98 8.19 9.08 5.9 2.46

(0.35) (0.36) (2.53) (0.26) (1.07) (0.42) (0.29) (0.65)

Novel 27.57 26.81 23.96 23.4 13.46 8.57 15.11 5.94
(0.06) (0.61) (2.79) (0.1) (2.55) (2.2) (0.38) (1.17)

Living17
Same 14.84 14.67 11.22 9.94 4.88 5.43 6.25 2.94

(3.36) (3.30) (2.06) (0.48) (0.42) (1.06) (1.91) (1.21)

Novel 29.61 29.18 27.22 24.48 14.54 9.49 15.9 5.53
(3.76) (3.71) (3.45) (0.74) (2.87) (3.25) (2.04) (1.93)

Nonliving26
Same 19.25 18.43 16.6 12.77 11.18 9.69 7.06 3.34

(2.45) (3.13) (0.96) (0.85) (2.77) (0.70) (1.17) (0.90)

Novel 31.37 30.54 28.79 23.37 19.93 16.56 17.8 10.46
(2.99) (3.65) (1.47) (0.61) (4.02) (1.28) (1.53) (3.08)

Camelyon17-WILDS Natural 9.44 9.44 10.24 5.19 7.73 7.73 7.27 5.71
(0.50) (0.49) (0.38) (0.44) (0.72) (0.72) (0.57) (0.94)

RxRx1-WILDS Natural 5.21 8.44 8.09 7.48 6.53 6.86 3.25 5.82
(0.26) (0.15) (0.16) (0.26) (0.10) (0.28) (0.16) (0.31)

Amazon-WILDS Natural 2.62 2.35 2.34 17.04 1.63 1.54 2.43 2.01
(0.16) (0.06) (0.06) (0.84) (0.1) (0.11) (0.04) (0.42)

CivilCom.-WILDS Natural 1.54 0.96 0.86 8.7 2.3 2.3 1.23 4.68
(0.23) (0.19) (0.20) (0.14) (0.34) (0.34) (0.05) (0.39)

where β(y⃗) = α · PT (y⃗). Finally, based on PT̃ (y⃗), we sample a new set of test samples for which we120

estimate the performance. We conducted this mild label shift experiment for CIFAR10, CIFAR100,121

ImageNet, Living17, Nonliving26, Entity13, and Entity30 as these datasets have the same source and122

target marginal. We showed the results in Table 2. As we can see, our methods still dominate existing123

methods under this relaxed condition.124

B.5 When does thresholding improve over averaging?125

In this section, we provide some intuitions on when using a threshold provides better estimates than126

taking the average. From Fig. 2, we show that thresholding yields larger and more accurate error127

estimates when the cost distribution on the OOD data is more spread out and less concentrated around128

0. By contrast, when the cost distribution is mostly near 0, thresholding leads to similar estimates as129

averaging. Interestingly, even on OOD data where the model has very low performance, there is still130

a decent amount of samples whose cost is near 0. Thus, when taking the average, we will end up131

with a smaller value which suggests a low error. In these cases, thresholding will give larger error132

estimates than averaging.133
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Table 2: Mean Absolute Error (MAE) between the estimated error and ground truth error to compare
different methods under mild label shift. The results are averaged over 3 random seeds. We highlight
the best-performing method. The number in the parentheses denotes the standard deviation.

Baselines Ours
Dataset Shift AC DoC IM GDE ATC-MC ATC-NE COT COTT

CIFAR10
Natural 5.58 4.99 5.50 5.69 2.76 2.47 3.75 1.68

(0.26) (0.23) (0.22) (0.04) (0.32) (0.43) (0.28) (0.34)

Synthetic 8.67 8.10 8.82 8.47 3.93 3.13 2.76 4.0
(0.29) (0.31) (0.38) (0.15) (0.38) (0.32) (0.04) (0.30)

CIFAR100 Synthetic 10.89 8.85 12.14 11.33 6.93 6.76 1.89 2.81
(0.15) (0.22) (0.37) (0.23) (0.44) (0.48) (0.30) (0.07)

ImageNet
Natural 8.36 7.29 8.46 5.54 3.53 2.47 3.74 2.05

(0.37) (0.42) (0.48) (0.36) (0.48) (0.71) (0.20) (0.26)

Synthetic 10.26 9.19 12.79 6.50 1.61 3.51 3.03 1.75
(0.83) (0.86) (0.77) (0.40) (0.08) (0.52) (0.25) (0.33)

Entity13
Same 15.50 14.60 15.49 15.18 8.51 7.40 4.59 3.24

(0.38) (0.34) (0.22) (1.03) (0.80) (0.57) (0.23) (0.12)

Novel 24.39 23.49 24.56 23.48 14.99 12.45 11.19 4.6
(0.23) (0.19) (0.05) (0.62) (0.82) (0.64) (0.34) (0.38)

Entity30
Same 15.46 13.93 15.55 13.83 8.80 8.26 4.75 2.16

(0.70) (0.65) (0.74) (0.27) (0.64) (0.83) (0.29) (0.15)

Novel 25.98 24.45 26.72 23.28 15.56 13.21 13.96 7.07
(0.53) (0.46) (0.68) (0.14) (0.56) (0.90) (0.17) (0.27)

Living17
Same 11.38 10.90 11.83 9.85 4.46 4.39 4.40 2.71

(0.67) (0.48) (1.31) (0.41) (0.31) (0.18) (0.34) (0.81)

Novel 25.72 25.13 26.32 21.61 14.09 11.48 16.94 9.31
(0.46) (0.76) (1.98) (0.68) (2.31) (1.99) (0.78) (1.79)

Nonliving26
Same 16.28 14.48 15.69 12.88 9.63 9.69 5.33 2.18

(0.37) (0.29) (0.19) (0.84) (0.43) (0.66 (0.73) (0.23)

Novel 27.93 26.13 27.76 23.25 18.15 16.08 15.66 8.71
(0.08) (0.25) (0.29) (0.69) (0.38) (0.38) (0.45) (0.42)

Table 3: Coefficients of determination (R2) and rank correlations (ρ) to measure the linear correlation
between a method’s output quantity and the true target error (the higher the better). COT achieves
superior performance than all existing methods across different models and datasets.

Dataset Network AC Entropy GDE ATC ProjNorm COT

R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ

CIFAR10

ResNet18 0.825 0.980 0.862 0.982 0.842 0.981 0.875 0.987 0.947 0.988 0.996 0.998
ResNet50 0.950 0.995 0.949 0.995 0.959 0.995 0.885 0.989 0.936 0.989 0.993 0.996
VGG11 0.710 0.938 0.762 0.958 0.723 0.948 0.548 0.851 0.756 0.949 0.994 0.993
Average 0.828 0.971 0.858 0.978 0.841 0.975 0.769 0.942 0.880 0.975 0.994 0.996

CIFAR100

ResNet18 0.943 0.987 0.932 0.984 0.950 0.988 0.927 0.985 0.969 0.974 0.995 0.997
ResNet50 0.957 0.987 0.948 0.984 0.962 0.989 0.955 0.991 0.982 0.991 0.992 0.996
VGG11 0.794 0.959 0.821 0.973 0.870 0.978 0.736 0.975 0.653 0.849 0.996 0.997
Average 0.898 0.978 0.900 0.980 0.927 0.985 0.873 0.984 0.868 0.938 0.994 0.997
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Figure 1: Qualitative results for AC, ATC, COT, and COTT. In these scatterplots, the x-axis is the
target error estimate and the y-axis is the ground truth target error. Accurate estimates should be
close to y = x (dashed black line). We can see that for all datasets, COT and COTT avoid the severe
underestimation seen on ATC.

ATC > AC ATC ≈ AC COTT > COT COTT ≈ COT

Figure 2: We demonstrate cases where using thresholding improves over taking averages. The x-axis
denotes the max norm between a confidence vector and the corresponding one-hot label. For AC and
ATC-MC, the corresponding label is always the argmax of the confidence vector as mentioned in
section 2.3. For COT and COTT, the corresponding label is the one matched via optimal transport.
We observe that thresholding improves over averaging when the cost distribution is less concentrated
around 0, which corresponds to situations where the model is very confident on most samples.
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C Datasets134

CIFAR10: The synthetic shifts included 19 common visual corruptions across 5 levels of severity135

from [2]. The natural shift is CIFAR10-V2 [7].136

CIFAR100: The synthetic shifts included 19 common visual corruptions across 5 levels of severity137

from [2].138

ImageNet: The synthetic shifts included 19 common visual corruptions across 5 levels of severity139

from [2]. The natural shifts include 4 datasets from ImageNet-V2 [8] and ImageNet-Sketch [11].140

BREEDS: The BREEDS benchmark contains 4 datasets, Living-17, Nonliving26, Entity13,141

Entity30. For each of the datasets, the same subpopulation shifts include the corrupted versions of142

the test set with the same subpopulation; the novel subpopulation shifts include the clean as well as143

corrupted versions [2] of the test set with novel subpopulation.144

WILDS: For all WILDS datasets, we used the official OOD datasets provided in their paper [4].145

D Experiment Setup146

We performed training in PyTorch [6], and we used RTX 6000 Ada GPUs.147

For datasets without an official validation set, we randomly sampled a subset of the official training148

set as the validation set to perform calibration and learn thresholds for ATC and COTT. We trained 3149

models for each dataset with random seeds {0, 1, 10}.150

CIFAR10 and CIFAR100: We reserved 10000 images from the training set as the validation set.151

We trained ResNet18 from scratch, using SGD with momentum equal to 0.9 for 300 epochs. We set152

weight decay to 5× 10−4 and batch size to 200. We set the initial learning rate to 0.1 and multiply it153

by 0.1 every 100 epochs.154

ImageNet: We reserved 50000 images from the training set as the validation set. We used ResNet50.155

While ImageNet pretrained weights are available in PyTorch, we needed multiple ones trained using156

different initializations. Due to limited computation resources, we reused the upper layer weights but157

reinitialized the last layer with different random seeds. We finetuned the whole model using Adam158

[3] with a batch size of 64 and a learning rate of 10−4, for 10 epochs.159

BREEDS: We used the intersection set of images that are both in the ImageNet validation images160

we set aside and the BREEDS dataset as the validation set. For all BREEDS datasets (Living17,161

Nonliving26, Entity13, Entity30), we trained ResNet50 from scratch.162

For Living17 and Nonliving26, we used SGD with weight decay of 10−4 and batch size of 128. We163

trained for 450 epochs. We set the initial learning rate to 0.1 and multiplied it by 0.1 every 150164

epochs.165

For Entity13 and Entity30, we used SGD with weight decay of 10−4 and batch size of 128. We166

trained for 300 epochs. We set the initial learning rate to 0.1 and multiplied it by 0.1 every 100167

epochs.168

Camelyon17-WILDS: We used the id_val group as the validation set. We fine-tuned ImageNet169

pretrained ResNet50 using SGD with momentum of 0.9, weight decay of 5× 10−4, and batch size of170

32, for 5 epochs.171

RxRx1-WILDS: We used the id_text group as the validation set. We followed [4] to fine-tune an172

ImageNet pretrained ResNet50. We used Adam with weight decay of 10−5 and batch size of 75, for173

90 epochs. We increased the learning rate from 0 to 10−4 linearly for the first 10 epochs and decayed174

it following a cosine learning rate schedule.175
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Amazon-WILDS: We used the id_val group as the validation set. We followed [4] to fine-tune a176

DistilBERT-base-uncased model [9]. We used AdamW [5] with weight decay of 10−2, learning rate177

of 10−5, and batch size of 8, for 3 epochs. We set the maximum number of tokens to 512.178

CivilComments-WILDS: We used the val group as the validation set. We followed [4] to fine-tune179

a DistilBERT-base-uncased model [9]. We used AdamW [5] with weight decay of 10−2, learning180

rate of 10−5, and batch size of 16, for 5 epochs. We set the maximum number of tokens to 300.181
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