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A. Implementation Details
A.1. Prompt Encoding

We encode the image I , a 2D bounding box B, camera in-
trinsics K, and the object depth z into the conditioning sig-
nal c through

c = g(I,B,K, z), (1)

The 2D bounding box B is described by the centre of the
box along with its height and width on the image plane, i.e.

B := [u2d, v2d, w2d, h2d] (2)

To account for variation in depth and focal length, we fur-
ther unproject the width and height of the 2D box into 3D
using the following equation:

(w3d, h3d) = (w2d
z

fx
, h2d

z

fy
), (3)

where fx and fy are the focal lengths from the intrinsics K.
For the input image I , we first encode it with a pre-

trained Swin Transformer [3] to generate multi-scale fea-
ture maps F . Next, we extract local image features inside
the region of the 2D box prompt to obtain FRoI. Addition-
ally, we apply a cross-attention layer [6] between F and the
2D box B to obtain Fatten.

By concatenating the transformed box prompt, image
features and the object depth, the final conditioning signal
c can be written as

c = [FRoI, Fattn, u2d, v2d, w3d, h3d, z]. (4)

A.2. Loss Function

The Chamfer distance between the corners of the predicted
3D boxes Mpred = {ai|i = 1...8} and the corners of the
ground truth boxes Mgt = {bi|i = 1...8} is computed as

Lchamfer =
∑

ai∈Mpred

min
bi∈Mgt

∥ai−bi∥1+
∑

bi∈Mgt

min
ai∈Mpred

∥bi−ai∥1.

(5)
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Figure 1. Generalisation Performance: Results for Cross-
Dataset Test. We show predictions on ARKitScenes and Hyper-
sim made by our method trained on SUN RGB-D.

A.3. Baseline Models

Unprojection Fig. 3 illustrates how we obtain the Unpro-
jection baseline for experiments in Sec.5.3 of the main pa-
per.

Total3DUnderstanding [4] We use their publicly released
code and the model pre-trained on SUN RGB-D in experi-
ments of Section 5.

Cube R-CNN [2] For the results on the SUN RGB-D
dataset in the second row of Table 1 in the main paper, we
use the numbers reported directly from their paper. For the
other experiments in Section 5, we use their publicly avail-
able code and pre-trained models.
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Figure 2. Generalisation Performance: Additional Results for In-the-Wild Objects on COCO Dataset. We show predictions made by
our method without knowing object depths or camera intrinsics. By using constant values for depths and camera intrinsics, our approach
accurately predicts 3D boxes with well-aligned projections on the image.
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Figure 3. Unprojection Baseline Illustration. The Unprojection baseline (green) converts GT 2D boxes to 3D using GT depth and
dimensions that match the GT 3D box (blue), with the 3D rotation to zero degrees.

A.4. Algorithms

The training and inference algorithms are shown in Algo-
rithm 1 and Algorithm 2.

B. Additional Results

B.1. Generalisation

Cross-dataset generalisation Our model trained on SUN
RGB-D achieves an average IoU of 39.0 on the Hyper-
sim [5] test set and 48.2 on the ARKitScenes [1] test
set, highlighting its strong generalisation across different
datasets. Fig. 1 presents some of the test results.

Additional COCO results Fig. 2 shows additional results
on COCO dataset.

Table 1. Randomness Analysis on SUN RGB-D test set. We
evaluate the model using 10 different random seeds and report the
mean, maximum, minimum, and standard deviation σ for both IoU
and NHD.

Mean Max Min σ
IoU (%) ↑ 61.38 61.46 61.24 6.4e-4
NHD ↓ 0.1140 0.1146 0.1133 3.9e-4

B.2. Per-category SUN RGB-D Performance

In Table 1 of the main paper, we report the average IoU
and NHD on 10 common categories of the SUN RGB-D
dataset to make a fair comparison for baseline methods with
different categories. Tab. 2 and Tab. 3 show the per-category
IoU and NHD performances respectively.



Table 2. Per-category IoU (%) on SUN RGB-D test set. The top three rows use GT 2D boxes along with predicted depths. The depths
of our predictions are set to the same as [2] for fair comparison. The bottom three rows use GT 2D boxes and GT depths for all methods.

Methods Trained on table bed sofa bathtub sink shelves cabinet fridge chair toilet avg.
Total3D SUN RGB-D 28.0 37.0 30.1 27.6 20.1 10.8 14.3 20.2 24.8 35.4 24.8
Cube R-CNN SUN RGB-D 39.2 49.5 46.0 32.2 31.9 16.2 26.5 34.7 39.9 45.7 36.2
Cube R-CNN Omni3D Indoor 41.4 50.9 50.8 39.2 35.0 17.8 28.2 35.1 41.3 48.1 38.8
Ours-d SUN RGB-D 42.2 54.4 50.5 38.9 40.3 19.7 29.4 33.5 43.2 50.1 40.2
Total3D* SUN RGB-D 45.0 47.9 49.7 49.5 44.8 30.8 38.2 48.2 56.3 55.8 46.6
Cube R-CNN* Omni3D Indoor 54.8 57.0 62.9 52.7 49.7 37.5 47.6 58.5 63.6 61.7 54.5
Ours* SUN RGB-D 63.1 64.3 64.8 56.7 62.6 44.0 56.5 62.2 70.3 68.9 61.4

Table 3. Per-category NHD on SUN RGB-D test set. The top three rows use GT 2D boxes along with predicted depths. The depths of
our predictions are set to the same as [2] for fair comparison. The bottom three rows use GT 2D boxes and GT depths for all methods.

Methods Trained on table bed sofa bathtub sink shelves cabinet fridge chair toilet avg.
Total3D SUN RGB-D 0.352 0.254 0.314 0.288 0.526 0.497 0.443 0.380 0.408 0.297 0.376
Cube R-CNN Omni3D Indoor 0.230 0.162 0.164 0.215 0.244 0.324 0.384 0.229 0.233 0.172 0.236
Ours-d SUN RGB-D 0.219 0.156 0.167 0.219 0.231 0.322 0.372 0.233 0.230 0.162 0.231
Total3D* SUN RGB-D 0.204 0.168 0.180 0.157 0.188 0.251 0.210 0.177 0.148 0.160 0.184
Cube R-CNN* Omni3D Indoor 0.148 0.125 0.107 0.149 0.146 0.181 0.176 0.117 0.107 0.112 0.137
Ours* SUN RGB-D 0.114 0.107 0.101 0.120 0.114 0.161 0.127 0.111 0.093 0.090 0.114

B.3. Randomness Analysis

As discussed in Section 5.1 of the main paper, the diffusion
process involves inherent randomness, so we conducted the
experiments using 10 different random seeds and report the
averaged results. To assess the model’s stability, in addition
to the averaged value reported in the main paper, we also
provide the maximum, minimum, and standard deviation
across these 10 runs in Tab. 1.

B.4. Noise on 2D Box

We analyse the model’s robustness towards noise during in-
ference in Tab. 4. We simulate box noise by applying Gaus-
sian noise to box scales and translations separately, which
can be written as:

w′ = w +N (0, σ2
scale) h′ = h+N (0, σ2

scale), (6)

x′ = x+N (0, σ2
trans · w) y′ = y +N (0, σ2

trans · h), (7)

where w, h are the height and width of the ground truth
boxes, x, y are the centre coordinates and w′, h′, x′, y′ are
the noisy parameters. σ2

scale and σ2
trans are the variances of

scale and translation noise. Tab. 4 shows that while the
model is robust to noise in box scale and translation, trans-
lation errors have a greater impact on accuracy.

Table 4. Noise on the 2D box. We add different levels of random
noise to the scale and translation of the 2D object box and report
the model performance with these noisy box inputs.

σscale σtrans IoU (%) ↑ NHD ↓
0.00 0.00 61.4 0.114
0.05 0.00 59.9 0.120
0.00 0.05 56.1 0.132
0.05 0.05 55.2 0.135
0.10 0.10 46.1 0.174



Algorithm 1: Training

def train_loss(images, gt_cubes, boxes_2d):
"""
images: [B, H, W, 3]
gt_cubes: [B, 1, D]
boxes_2d: [B, 4]

D: dimension of cubes
N_train: number of sampled boxes during

training
"""

# Encode image features
feats = image_encoder(images)

# Separate depth information
# from cube parameters
cube_params, depths = separate_depth(gt_cubes

)

# normalise cube_params to [0, 1]
cube_params = normalise_cube(cube_params)

# Duplicate cube_params to N_train
x_0 = duplicate_cubes(cube_params)

# Signal scaling
x_0 = (x_0 * 2 - 1) * scale

# Corrupt x_0
t = randint(0, T) # time step
eps = normal(mean=0, std=1) # noise: [B,

N_train, D-1]
x_t = (

sqrt(alpha_cumprod(t)) * x_0
+ sqrt(1 - alpha_cumprod(t)) * eps

)

# Predict
x_0_pred = denoising_model(

x_t, feats, t, boxes_2d, depths
)

# Set prediction loss
loss = L(x_0_pred, gt_cubes)

return loss

Algorithm 2: Inference

def infer(images, steps, T, boxes_2d, depths):
"""
images: [B, H, W, 3]
steps: number of sampling steps
T: total number of time steps
boxes_2d: [B, 4]
depths: object depths [B, 1]

N_eval: number of proposal boxes during
inference

"""

# Encode image features
feats = image_encoder(images)

# Initialise noisy cube parameters (excluding
depth) [B, N_eval, D-1]

x_t = normal(mean=0, std=1)

# Define uniform sampling step sizes
times = reversed(

linspace(0, T, steps)
)

# Generate pairs of consecutive time steps
time_pairs = list(

zip(times[:-1], times[1:])
)

# Iterate through time pairs
for t_now, t_next in time_pairs:

# Predict cube parameters x_0 from x_t
x_0_pred = denoising_model(

x_t, feats, t_now, boxes_2d, depths
)

# Estimate x_t at t_next
x_t = ddim_step(

x_t, x_0_pred, t_now, t_next
)

# Combine predicted cube parameters with
depth information

pred_cubes = combine_cubes(x_0_pred, depths)

return pred_cubes
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