
A Limitations

In this study, we mainly focus on the cases where PDE parameters are the coefficients of various
PDE terms. In particular, we train the proposed model on a set of benchmark PDEs (e.g., convection
equations or reaction equations or Helmholtz equations). As a future direction of this study, we list
the following potential extensions:

1. Extending our framework so that the set of basis vectors are parameter dependant to some
extent, as we did to have adaptive rank (i.e, the rank structure is parameter dependant),

2. (Related to the above extension) Extending our framework to be equipped with a specialized
optimizer, which alternately update the basis vectors and diagonal elements,

3. Extending our framework to more general settings, attempting to learn the solutions of
parameterized PDEs where the PDE parameters define initial/boundary conditions.

Regarding the alternating solver: we expect that making the basis vector learnable in phase 2 would
increase expressivity. However, in achieving low error, the difficulty is expected to come from the
training algorithm, where the similar phenomena were observed in matrix decomposition methods.
Consider finding a low-rank decomposition of matrix such that min with a norm induced from an
inner product. In such a problem, updating all together in an interactive solver typically introduces
more complexity. To avoid such difficulty, special solvers have been developed such as direct linear
algebraic decompositions [38] which does not use a gradient-based optimization method, or notably,
alternating minimization for matrix completion [39]. In the context of low-rank approximation of
solutions of PDEs, similar alternating approaches (e.g., alternating least-squares or alternating energy
minimization) have been shown to be more effective [40–42].

B Remark on our low-rank approximation in general deep learning

It had been reported that deep neural networks have low-rank biases for learned representations,
which is the reason why over-parameterized neural networks do not always fail even when relatively
small data is given [43–45]. One can consider that our proposed method imposes an effective learning
bias, i.e., our adaptive low-rank approximation, on PINNs to make their learning process easier than
before. Thus, we focus on the PINN’s notorious failure modes and empirically prove the efficacy of
our design.

C Reduced-Order Modeling (ROM)

In the following, we summarize the offline and the online phases of traditional linear-subspace
reduced-order modeling approaches.

Offline phase

• Perform high-fidelity simulations on a training PDE parameter instances {µµµ(i)
train}

ntrain
i=1 , i.e.,

duuu

dt
= fff(uuu;µµµ(i)

train)

• Collect solution snapshots from the high-fidelity simulation

U = [uuu(t1,µµµ
(1)
train),uuu(t2,µµµ

(1)
train), · · · ,uuu(T,µµµ

(1)
train),uuu(t1,µµµ

(2)
train), · · · ,uuu(T,µµµ

(ntrain)
train )]

• Compute SVD on U : U =  D�T

• Truncate the series  p

Online phase

• Perform inexpensive simulation on unseen test PDE parameter instances {µµµ(i)
test}ntest

i=1,

• Represent a solution as ũ(t,µµµ(i)
test) =  pccc(t,µµµ

(i)
test)
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: Test query points

PDE parameter space Reduced-order modeling
1. (Offline) high-fidelity simulation

: Training query points 1. (Offline) training a Hyper-LR-PINN

- Run high-fidelity PDEs simulations on training queries

- Compute a set of bases to approximate solutions

- Train a hypernetwork and the sets of basis vectors
on training queries

Hyper Low-Rank PINNs

2. (Online) low-fidelity simulation

2. (Online) training a Hyper-LR-PINN

- Compute approximate solutions on test queries

- Compute a set of bases to approximate solutions

- Fine-tune the diagonal elements of low-rank
PINNs on test queries

Parameters trained

: Offline phase

: Online phase

Figure 8: Graphical comparisons between ROMs and Hyper-LR-PINNs.

• Project the dynamical system into the low-dimensional space

d( pccc)

dt
= fff( pccc;µµµ

(i)
test)

,
d( T

p pccc)

dt
=  T

pfff( pccc;µµµ
(i)
test) (multiply  T

pon both sides)

, d(ccc)

dt
= f̂ff( pccc;µµµ

(i)
test) ( T

p p = I and f̂ff =  T
pfff 2 Rp)

Analogy between ROMs and the proposed Hyper-LR-PINNs Figure 8 draws an analogy between
ROMs and Hyper-LR-PINNs. It is highlighted that the both approaches perform heavy-lifting in the
offline phase to make the online phase less expensive so that solutions at the large number of test
PDE parameter instances can be evaluated rapidly.

Difference from reservoir computing We agree that there is a very high-level analogy that can
be made to reservoir computing (RC) [46], since in the second phase of our two-phase training
procedure only part of the parameters are trained. However, this is a feature shared with all models
making use of encoding-decoding schemes. Moreover, an important distinguishing feature in RC
is the recurrent neural network, whereas our neural network architecture is feedforward. The fact
that we are specifically solving parametrized partial differential equations also makes our model
more specialized. We believe these points makes our model much more similar to a ROM, where a
dimension-reduced implicit representation is learned in the first phase. In the second phase, a family
of functions is quickly approximated by training a few parameters.

D Preliminary experiments

D.1 Approximating trained PINNs’ weights with low-rank matrices

To motivate our study, we perform some preliminary experiments on the canonical one-dimensional
viscous Burgers’ equation. We parameterize a PINN as a multi-layer perceptron (MLP) with 5 hidden
layers and 40 neurons in each layer, followed by the TANH nonlinearity; the l-th layer of the MLP can
be represented as hl+1 = �(W lhl+bl), where W and b denote the weight and the bias, respectively,
� denotes the nonlinear activation, and h denotes the post activation. Training with L-BFGS results
in the solution accuracy measured in the relative L2 error (around .1% error, the black dashed line in
Figure 9).
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Figure 9: [Viscous Burgers’ equation] The relative L2 errors of the low-rank reconstructed models
and the low-rank retrained models.

After the training, we build a low-rank PINN in the following steps: we i) take the weight matrices of
hidden layers (except the input and the output layers), ii) take the SVDs, and iii) assemble weight
matrices by retaining the r largest singular values and corresponding singular vectors such that

W
l = U

l⌃l
V

lT
, and W

l
r = U

l
r⌃

l
rV

l
r
T
, (3)

which results in a low-rank PINN (LR-PINN) with a rank of r, which shares the same model
parameters with the trained PINN, except the hidden layer weights obtained from the previous
truncation step. We then vary the value of r from 1 to 40 and evaluate the resulting LR-PINNs on
the test set (“reconstruction” in Figure 9); the blue line depicts the error measured on the test set for
LR-PINNs with varying r. Even truncating 3–4 smallest singular values seems to yield significant
accuracy degradation by an order of magnitude.

Next, we investigate what happens if we further train LR-PINN from the model parameters obtained
from the truncation Eq. (3). Instead of training all model parameters, U,⌃, V , we i) represent the
hidden layer weights in a factored form W

l
r = U

l
r⌃

l
rV

l
r
T, ii) fix the basis matrices (U l

r, V
l
r ) and iii)

make sr only the trainable parameters, ⌃l
r = diag

�
slr
�
. After training, we test the trained models on

the same test data set. As shown by the red dashed line in Figure 9, its accuracy becomes comparable
to that of the full model when r � 20, which shows that the weights of hidden layers have low-rank

structures.

D.2 A study on the effect of rank and orthogonality of basis sets for varying PDE parameters

As an example parameterized PDE, we consider a one-dimensional convection-diffusion equations:

@u

@t
+ �

@u

@x
� ⌫

@
2
u

@x2
= 0, x 2 ⌦, t 2 [0, T ],

where u(x, t;µµµ) denotes the solution satisfying the equation, with µµµ = (�, ⌫) denote the convection
and diffusion coefficients, respectively. The higher the ratio �

⌫ is, the more convection-dominated
the problem is, which is considered to be a more challenging scenario for PINNs. In the following
experiments, we set ⌫ = 1 fixed and vary � from 2 to 40 to control the difficulty of training LR-PINNs.
For training, we use a curriculum-learning-type training approach proposed in [18]; in a high �

regime (e.g., � � 20), training PINNs directly on the target � typically fails and the authors resolved
this issue by curriculum learning which i) starts with a low � value (e.g., � = 1) and ii) over the
course of training, gradually increases the value of � until it reaches to the target �.

Setting the basis vectors, Ur and Vr: We have tested four different schemes for setting the
basis vectors: three schemes that are commonly used for initializing the weights of FC layers: HE-
UNIFORM, HE-NORMAL [47], and ORTHOGONAL [48], and one scheme that extracts the left and
right singular vectors from a PINN trained for � = 1 and use them for setting the basis vectors, which
we denote by SVD-INIT.

Figure 10(a) shows the errors of approximate solutions obtained by all trained full-rank PINNs
(FR) and LR-PINNs with r = 5 for varying � values. Among the LR-PINNs, the ones initialized
with ORTHOGONAL (LR-ortho) and SVD-INIT (LR-svd) outperform the ones initialized with HE-
UNIFORM (LR-unif) and HE-NORMAL (LR-norm). LR-ortho tends to perform better than LR-svd in

16



(a) Varying initializations (b) Varying ranks

Figure 10: [Convection-diffusion equations] The relative L2 errors of full-rank PINNs (FR) and
low-rank PINNs (LR): (a) LR-PINN with varying weight initialization schemes including orthogonal,
He-uniform, He-normal, and extracted basis from the pre-trained PINN, and (b) LR-PINN with
varying ranks (r = 5, 15, 30, 50) and the orthogonal initialization.

very high � regime (� � 30). Compared to LR-svd, LR-ortho has another advantage not requiring
pretrainig of a PINN. An apparent observation is that orthogonality in basis vectors helps achieving

better accuracy (Observation #1).

The effect of rank: Next, with LR-ortho, we vary the rank r = {5, 15, 30, 50}. Figure 10(b)
depicts the errors of LR-PINNs for varying � and ranks. For lower � (� < 20), LR-PINNs with
r = 15, 30, 50 produce comparable results. For higher � values (� � 20), it appears that a higher rank
is required to achieve a certain level of accuracy, presumably due to the difficulty of the numerical
optimization problem. From this result, the second observation we make is that required ranks for

varying µµµ to achieve a certain level of accuracy could vary (Observation #2) and, thus, a solution
method that adaptively decides the ranks of each individual hidden layers is required.

E Proposed two-phase training algorithm

Algorithm 1 summarizes the two-phase algorithm we describe in Section 3.2.

F Reproducibility

Software and hardware environments We implement and conduct experiments with PYTHON
3.9.7 and PYTORCH 1.13.0, CUDA 11.6.1, NVIDIA Driver 470.74, i9 CPU, NVIDIA RTX
A5000, and RTX 2080 TI. Our source code for the benchmark PDEs is mainly based on https:
//github.com/a1k12/characterizing-pinns-failure-modes (MIT License).

Hyperparameters We collect 256/100/1,000 points from initial/boundary/collocation points, and
1,000 test points for each CDR equation. For the 2D Hemlholtz equation, we collect 400/1,000/10,000
points from boundary/collocation/test points. The train/test sets contain non-overlapping spa-
tial/temporal collocation points. The PINN baselines consist of 6 FC layers with 50 neurons. For our
methods, we employ 3 hidden layers (L=M=3). The Adap optimizer is used with learning rate 1e-3
for PINN baselines, and 1e-3 and 2.5e-4 for Phase1 and Phase2 of meta-learning methods. These
hyperparameters are common in all our experiments.
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Algorithm 1 Two-phase training of the proposed method
/* Phase 1 */
Input: A set of training sampled points: {(xxx, t,µµµ(i))}np1

i=1, where np1 is number of PDE equations
used in Phase 1.
Initialize weights and biases {(U l

, V
l
, bbb

l)}Ll=1, W 0
,W

L+1
, b

0
, b

L+1 of LR-PINN, and those
{(W emb,m

, bbb
emb,m)}Mm=1, {(W hyper,l

, bbb
hyper,l)}Ll=1 of the hypernetwork.

for epoch = 1 to ep1 do
for i = 1 to np1 do
{sssl(µµµ(i))}Ll=1 = f

hyper(µµµ(i))
Compute forward pass: u⇥((xxx, t); {sssl(µµµ(i))}Ll=1)
Compute PINN loss and update model parameters via backpropagation

end for
end for

/* Phase 2 */
Input: A set of training sampled points: {(xxx, t,µµµtarget)}
Freeze {(U l

, V
l
, bbb

l)}Ll=1, {(W emb,m
, bbb

emb,m)}Mm=1, and {(W hyper,l
, bbb

hyper,l)}Ll=1

Initialize {sssl}Ll=1 = f
hyper(µµµtarget)

for epoch = 1 to ep2 do
Compute forward pass: u⇥((xxx, t); {sssl(µµµtarget)}Ll=1)
Compute PINN loss and update model parameters via backpropagation

end for

G Meta-learning baselines: MAML and Reptile

We consider the two most representative optimization-based meta-learning algorithms: model-
agnostic meta learning (MAML) [20] and Reptile [21]. In the parameterized PDEs setting, we can
define a task, ⌧ (i), as a specific setting of PDE parameters, µµµ(i). Both MAML and Reptile seek an
initial weights of a PINN, which can serve as a good starting point for gradient-based optimizers
when a solution of a new unseen PDE parameters is sought. Both methods consist of an inner loop
and an outer loop. The inner loop takes k optimization gradient descent steps to update model
parameters from a current of the meta initial points ✓l0 given a training task ⌧

(i). Here, this k-step
update is denoted as ✓k(✓l0, ⌧ (i)). Then the outer loop updates the meta-learned initial points using
the information obtained from the inner loop such that

✓
l+1
0 = ✓

l
0 � �r✓L(✓k(✓, ⌧

(l)))|✓=✓l
0
, (MAML)

✓
l+1
0 = ✓

l
0 � �(✓k(✓

l
0, ⌧

(l))� ✓
l
0), (Reptile)

where Reptile has a simpler update rule, which does not require the second-order gradients.

H Comparisons of baselines and our method

Table 5 compares the baseline models with our method in three aspects: a target function being
approximated, an initialization scheme, and the rank structure. For vanilla PINN and their variants,
the function being approximated is u(xxx, t;µµµ)|µµµ=µµµi , which is the solution of the parameterized PDE
that is realized at a certain PDE parameter µµµi. On the other hand, PINN-P and our proposed method
models the parameterized solution itself u(xxx, t;µµµ). The initilization column indicates if meta-learning
is used or not. The rank structure column indicates if the rank is adaptively chosen for different values
of µµµ.

I Train and test datasets generation

Train/test datasets are collected at collocations points for varying PDE parameters of a specific PDE
type; e.g., for convection equation, we only vary �, resulting in {{(xxxk, tk;�(i))}n

`
c

k=1}
n�

i=1, where n
`
c

denotes the number of collocation points in train (` = 0) and test (` = 1) sets, n� denotes the number
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Table 5: Comparisons of baselines and our method
Target function Initialization Rank structure

u(xxx, t;µµµ)|µµµ=µµµ(i) u(xxx, t;µµµ) Random Meta-learned Fixed Adaptive
PINN X X X
PINN-R X X X
PINN-S2S X X X
Naïve LR-PINN X X X
PINN-P X X X
MAML X X X
Reptile X X X
HyperPINN X X X
Hyper-LR-PINN X X X

of distinct � values. The test dataset, which also includes the reference solution is constructed by
either analytically or numerically solving the CDR equations.

J Ablation Study

As an ablation study, we check training loss and test MSE with and without the orthogonality penalty
Eq. (2) (w1 = w2 = 1). We observe that when the orthogonality penalty plays an important role in
minimizing the train loss and learning the representative basis vectors of the solutions for varying
range of parameter values.

(a) Training loss (b) Test MSE (c) Training loss (d) Test MSE

Figure 11: [Convection equations] training loss and test MSE with/without the orthogonality penalty
(Eq. (2)) for the � 2 [1, 20] (a-b), and � 2 [1, 40] (c-d).

K Adaptive rank: learned rank structure of hidden layers
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(c) sss3(µµµ)

Figure 12: [Convection equation] Learned rank structures of the three hidden layers. � 2 [1, 20]

L Visualization of learned diagonal elements for varying PDE parameters

As we shown in the main manuscript, we visualize the magnitude of learned diagonal coefficients
in the heatmap format. The results of the convection equations and reaction equations are plotted.
One evident observation is that as we vary the PDE parameter in a wider range (e.g., � 2 [1, 30])
(as opposed to a shorter range, e.g., � 2 [30, 40] or ⇢ 2 [1, 5]), the adaptive way of learning
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the rank results in more dynamic rank structure and, thus, will be more beneficial in terms of
computational/memory efficiency. When the considered model parameters lie in a relative shorter
range, the characteristics of the solutions are similar to each other and, thus, it does not require for
the network to learn different rank structures (e.g., Figure 16, Figure 17).

(a) Hypernetwork output: sss1(µµµ) (b) Hypernetwork output: sss2(µµµ) (c) Hypernetwork output: sss3(µµµ)

Figure 13: Convection equation (� 2 [1, 10])

(a) Hypernetwork output: sss1(µµµ) (b) Hypernetwork output: sss2(µµµ) (c) Hypernetwork output: sss3(µµµ)

Figure 14: Convection equation (� 2 [1, 20])

(a) Hypernetwork output: sss1(µµµ) (b) Hypernetwork output: sss2(µµµ) (c) Hypernetwork output: sss3(µµµ)

Figure 15: Convection equation (� 2 [1, 40])

(a) Hypernetwork output: sss1(µµµ) (b) Hypernetwork output: sss2(µµµ) (c) Hypernetwork output: sss3(µµµ)

Figure 16: Convection equation (� 2 [30, 40])

Nevertheless, from the experiments of all considered PDEs, we observe the low-rank structures,
which our model captures well and leading to the improved training process even compared to the
well-known meta-learning algorithms (MAML and Reptile). Also, as we train our model by showing
multiple PDEs describing similar physical phenomena, the proposed model overcomes the failure
modes without any special learning approaches (i.e., curriculum or sequence-to-sequence).
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(a) Hypernetwork output: sss1(µµµ)
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(b) Hypernetwork output: sss2(µµµ)
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(c) Hypernetwork output: sss3(µµµ)

Figure 17: Reaction equation (⇢ 2 [1, 5])
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(a) Hypernetwork output: sss1(µµµ)
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(b) Hypernetwork output: sss2(µµµ)
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(c) Hypernetwork output: sss3(µµµ)

Figure 18: Reaction-diffusion equation (⌫ 2 [1, 5], ⇢ = 5)

M More experimental results on general cases

To verify the performance of Hyper-LR-PINNs in the general cases, we measure the average perfor-
mance of baselines and our method in various PDEs with �, ⌫, ⇢ 2 [1, 5]. The initial condition of
each equation is Gaussian distribution N(⇡, (⇡/2)2).

Table 6: The average absolute and relative errors on general cases

PDE-type Metric No pre-training Meta-learning
PINN PINN-R PINN-P PINN-S2S MAML Reptile Hyper-LR-PINN

Convection Abs. err. 0.0183 0.0222 0.0112 0.1281 0.0579 0.0173 0.0038
Rel. err. 0.0327 0.0381 0.0217 0.2160 0.1036 0.0347 0.0085

Diffusion Abs. err. 0.1335 0.1665 0.1433 0.1987 0.0803 0.0844 0.1169
Rel. err. 0.2733 0.3462 0.2920 0.4050 0.1673 0.1742 0.2458

Reaction Abs. err. 0.3341 0.3336 0.1749 0.4714 0.0029 0.0033 0.0025
Rel. err. 0.3907 0.3907 0.2024 0.5907 0.0057 0.0064 0.0045

Conv.-Diff. Abs. err. 0.0610 0.0654 0.0733 0.0979 0.0354 0.0372 0.0331
Rel. err. 0.1175 0.1289 0.1437 0.1950 0.0667 0.0713 0.0664

Reac.-Diff. Abs. err. 0.1900 0.1876 0.2201 0.4201 0.0310 0.0250 0.0684
Rel. err. 0.2702 0.2777 0.3179 0.5346 0.0537 0.0427 0.1168

C-D-R Abs. err. 0.1676 0.1629 0.1704 0.4878 0.0090 0.0461 0.0201
Rel. err. 0.2210 0.2149 0.2308 0.5983 0.0144 0.0701 0.0329

N Experimental results on failure modes

In this section, we present the results of additional experiments on the failure mode. We show
comparisons with baselines using additional metrics for convection equations, reaction equations, and
reaction-diffusion equations, such as maximum error and explained variance. The initial condition of
convection equations are 1 + sin(x), and the initial conditions of reaction equations and reaction-
diffusion equations are Gaussian distribution N(⇡, (⇡/4)2). As shown in the following Tables, our
Hyper-LR-PINNs overwhelmingly outperform other baselines.
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N.1 Convection equation

For experiments on convection equations, meta-learning methods train convection equations in the
range � 2 [30, 40].

Table 7: The absolute and relative errors of the solutions of convection equations with � =
{30, 35, 40}

���
PINN PINN-R PINN-P PINN-S2S

Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err.

30 0.4015 0.4033 0.5435 0.5219 0.3821 0.3889 0.6342 0.5831

35 0.4785 0.4701 0.5579 0.5309 0.1701 0.1621 0.6396 0.5868

40 0.5490 0.5219 0.5897 0.5558 0.4988 0.4861 0.7319 0.7300

Table 8: The max error and explained variance score of the solutions of convection equations with
� = {30, 35, 40}

���
PINN PINN-R PINN-P PINN-S2S

Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var.

30 1.0471 0.5431 1.1105 0.2453 1.0394 0.5747 1.1719 0.0564

35 1.0685 0.3435 1.0987 0.1707 0.4289 0.9216 1.3323 0.0092

40 1.1018 0.2136 1.1356 0.1175 1.0714 0.3160 1.5677 -0.0155

Table 9: The max error and explained variance score of the solutions of convection equations with
� = {30, 35, 40}

��� Rank

[w/o] Pre-training [w] Pre-training

Naïve-LR-PINN Curriculum
learning MAML Reptile Hyper-LR-PINN

(Full rank)
Hyper-LR-PINN
(Adaptive rank)

Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var.

30

10 1.1096 0.2067 1.0303 0.5321 1.3550 0.0050 1.1645 0.1445

0.1270 0.9959 0.1229 0.9957

20 1.0961 0.2322 1.0188 0.5539 1.4006 0.0074 1.1810 0.1008

30 1.1901 0.1314 1.0417 0.5084 1.1445 0.1662 1.1780 0.1214

40 1.1140 0.2850 0.9798 0.6097 1.1580 0.1542 1.1240 0.1712

50 1.1114 0.2709 1.0346 0.5257 1.1670 0.1428 1.1430 0.1592

35

10 1.1088 0.1592 1.1725 0.1177 1.4062 0.0031 1.1540 0.1260

0.1269 0.9941 0.1390 0.9936

20 1.1025 0.1546 1.1867 0.0693 1.4412 -0.0047 1.1911 0.0966

30 1.1805 0.0784 1.1753 0.1134 1.1683 0.1172 1.1752 0.1125

40 1.0959 0.1949 1.1646 0.1084 1.1603 0.1255 1.1480 0.1276

50 1.0967 0.1999 1.1883 0.0900 1.1759 0.1119 1.1377 0.1358

40

10 1.1718 0.1008 1.1671 0.0953 1.4451 0.0007 1.1741 0.0908

0.2437 0.9875 0.2672 0.9848

20 1.1259 0.1225 1.1781 0.0469 1.4981 -0.0075 1.2091 0.0715

30 1.1853 0.0757 1.1859 0.0894 1.1878 0.0787 1.2095 0.0817

40 1.1133 0.1953 1.1864 0.0843 1.2176 0.0789 1.1717 0.0885

50 1.2450 0.0947 1.1880 0.0730 1.1987 0.0743 1.1791 0.0886
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N.2 Reaction equation

For experiments on reaction equations, meta-learning methods train reaction equations in the range
⇢ 2 [1, 5].

Table 10: The absolute and relative errors of the solutions of reaction equations with ⇢ = {4, 5, 6, 7}

⇢⇢⇢
PINN PINN-R PINN-P PINN-S2S

Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err.

4 0.0242 0.0750 0.0260 0.0720 0.0208 0.0614 0.4085 0.8280

5 0.5501 0.9862 0.0334 0.1017 0.4981 0.9349 0.4497 0.8205

6 0.5987 0.9913 0.0403 0.1200 0.5981 0.9906 0.5434 0.9068

7 0.6431 0.9950 0.0275 0.0848 0.6459 0.9976 0.6285 0.9794

Table 11: The absolute and relative errors of the solutions of reaction equations with ⇢ = {4, 5, 6, 7}

⇢⇢⇢ Rank

[w/o] Pre-training [w] Pre-training

Naïve-LR-PINN Curriculum
learning MAML Reptile Hyper-LR-PINN

(Full rank)
Hyper-LR-PINN
(Adaptive rank)

Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err.

4

10 0.0448 0.1221 0.1287 0.2897 0.1509 0.3396 0.1426 0.3108

0.0126 0.0395 0.0151 0.0460
20 0.0498 0.1362 0.1333 0.2977 0.1476 0.3305 0.1243 0.3017

30 0.0511 0.1494 0.1203 0.2683 0.0949 0.2237 0.0570 0.1534

40 0.0425 0.1247 0.1182 0.2629 0.1218 0.2947 0.1076 0.2528

50 0.0551 0.1498 0.1195 0.2644 0.0749 0.1913 0.0741 0.1912

5

10 0.5381 0.9647 0.1349 0.3031 0.5166 0.9273 0.5472 0.9806

0.0157 0.0518 0.0211 0.0655
20 0.5471 0.9810 0.1372 0.3049 0.5489 0.9816 0.5483 0.9845

30 0.5385 0.9664 0.1209 0.2724 0.5378 0.9662 0.5454 0.9778

40 0.5413 0.9696 0.1208 0.2701 0.5321 0.9538 0.5450 0.9785

50 0.5475 0.9822 0.1186 0.2648 0.5478 0.9815 0.5536 0.9906

6

10 0.5987 0.9912 0.1355 0.2957 0.5926 0.9806 0.5969 0.9882

0.0167 0.0552 0.0183 0.0572
20 0.5981 0.9905 0.1303 0.2822 0.5988 0.9906 0.5989 0.9919

30 0.5959 0.9863 0.1306 0.2854 0.5947 0.9853 0.5992 0.9931

40 0.5988 0.9917 0.1196 0.2613 0.5951 0.9854 0.6001 0.9936

50 0.5989 0.9919 0.1194 0.2586 0.6004 0.9930 0.6022 0.9970

7

10 0.6431 0.9949 0.1448 0.3011 0.6394 0.9890 0.6413 0.9922

0.0180 0.0575 0.0203 0.0456
20 0.6425 0.9942 0.1363 0.2837 0.6410 0.9914 0.6423 0.9941

30 0.6424 0.9938 0.1285 0.2764 0.6401 0.9903 0.6431 0.9955

40 0.6430 0.9949 0.1145 0.2445 0.6401 0.9901 0.6436 0.9958

50 0.6428 0.9948 0.1140 0.2418 0.6417 0.9927 0.6437 0.9962

23



Table 12: The max error and explained variance score of the solutions of reaction equations with
⇢ = {4, 5, 6, 7}

⇢⇢⇢
PINN PINN-R PINN-P PINN-S2S

Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var.

4 0.2282 0.9881 0.2055 0.9881 0.1681 0.9921 0.9895 0.0514

5 0.9961 0.0288 0.3297 0.9745 1.0077 -0.0375 0.9746 -0.0890

6 0.9982 0.0163 0.4422 0.9596 0.9983 0.0158 1.0877 -0.1455

7 0.9996 0.0088 0.4038 0.9750 1.0042 0.0139 1.0267 -0.0224

Table 13: The max error and explained variance score of the solutions of reaction equations with
⇢ = {4, 5, 6, 7}

⇢⇢⇢ Rank

[w/o] Pre-training [w] Pre-training

Naïve-LR-PINN Curriculum
learning MAML Reptile Hyper-LR-PINN

(Full rank)
Hyper-LR-PINN
(Adaptive rank)

Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var.

4

10 0.3395 0.9699 0.6069 0.8453 0.6653 0.8064 0.5896 0.8443

0.1356 0.9964 0.1524 0.9953
20 0.3618 0.9649 0.5921 0.8352 0.6820 0.8162 0.6349 0.8420

30 0.4223 0.9556 0.5635 0.8770 0.5249 0.9131 0.3748 0.9559

40 0.3601 0.9680 0.5438 0.8825 0.6538 0.8423 0.5659 0.8874

50 0.3900 0.9576 0.5507 0.8805 0.4316 0.9350 0.4767 0.9320

5

10 0.9828 0.0690 0.6997 0.8061 0.9639 0.1355 0.9951 0.0418

0.1967 0.9929 0.2287 0.9891
20 0.9909 0.0371 0.6969 0.8030 0.9910 0.0482 0.9951 0.0261

30 0.9850 0.0626 0.6576 0.8472 0.9883 0.0591 0.9865 0.0452

40 0.9824 0.0640 0.6464 0.8525 0.9776 0.0917 0.9935 0.0377

50 0.9899 0.0333 0.6405 0.8568 0.9928 0.0399 0.9980 0.0279

6

10 1.0073 0.0163 0.7566 0.7896 0.9942 0.0402 0.9989 0.0223

0.2405 0.9905 0.2418 0.9899
20 0.9986 0.0165 0.7293 0.8042 0.9968 0.0223 1.0113 0.0136

30 0.9967 0.0272 0.7319 0.8111 0.9985 0.0253 1.0118 0.0081

40 1.0089 0.0135 0.6944 0.8407 0.9965 0.0278 1.0064 0.0118

50 1.0071 0.0131 0.6918 0.8448 1.0089 0.0178 1.0231 0.0049

7

10 1.0115 0.0084 0.7502 0.7513 0.9991 0.0225 1.0014 0.0142

0.2922 0.9882 0.2150 0.9920
20 1.0048 0.0092 0.7136 0.7820 0.9996 0.0180 1.0064 0.0080

30 1.0057 0.0116 0.7468 0.7961 1.0001 0.0183 1.0126 0.0044

40 1.0110 0.0075 0.6827 0.8394 0.9994 0.0193 1.0061 0.0071

50 1.0090 0.0077 0.6765 0.8443 1.0008 0.0137 1.0142 0.0046
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N.3 Reaction-diffusion equation

For experiments on reaction-diffusion equations, meta-learning methods train reaction equations
in the range ⌫ 2 [1, 5], ⇢ = 5. To learn reaction-diffusion equations, PINN baselines employ 2000
epochs, but meta-learning methods train only 10 epochs, after pre-training.

Table 14: The absolute and relative errors of the solutions of reaction-diffusion equations with
⌫ = {4, 5, 6, 7}, ⇢ = 5

(⌫, ⇢)(⌫, ⇢)(⌫, ⇢)
PINN PINN-R PINN-P PINN-S2S

Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err.

(4, 5) 0.2909 0.4902 0.2909 0.4914 0.2804 0.4744 0.7265 0.9950

(5, 5) 0.3186 0.5134 0.3364 0.5400 0.3380 0.5456 0.7383 1.0037

(6, 5) 0.3183 0.4891 0.3810 0.5884 0.4255 0.6648 0.7265 0.9881

(7, 5) 0.4860 0.7273 0.4126 0.6273 0.5229 0.7925 0.6630 0.9213

Table 15: The absolute and relative errors of the solutions of reaction-diffusion equations with
⌫ = {4, 5, 6, 7}, ⇢ = 5

(⌫, ⇢⌫, ⇢⌫, ⇢) Rank
[w/o] Pre-training [w] Pre-training

Naive-LR-PINN Curriculum
learning MAML Reptile Hyper-LR-PINN

(Full rank)
Hyper-LR-PINN
(Adaptive rank)

Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err.

(4, 5)

10 0.0333 0.0631 0.6862 0.9744 0.0522 0.0873 0.7284 0.9882

0.0439 0.0850 0.0440 0.0851

20 0.0470 0.0791 0.6633 1.0030 0.6976 0.9408 0.7443 1.0108
30 0.0175 0.0312 0.6628 0.9630 0.0481 0.0817 0.7088 0.9597
40 0.0658 0.1128 0.6667 0.9709 0.0516 0.0874 0.7428 1.0068
50 0.0794 0.1331 0.6693 0.9718 0.0458 0.0767 0.7269 0.9856

(5, 5)

10 0.1036 0.1688 0.7156 0.9985 0.0604 0.0998 0.7407 0.9964

0.0518 0.0934 0.0519 0.0936

20 0.1001 0.1633 0.7084 1.0030 0.7106 0.9511 0.7567 1.0190
30 0.0731 0.1161 0.7079 0.9928 0.0824 0.1258 0.7198 0.9667
40 0.0946 0.1569 0.7073 0.9968 0.0678 0.1116 0.7563 1.0164
50 0.0875 0.1416 0.7126 1.0036 0.0733 0.1136 0.7390 0.9935

(6, 5)

10 0.1009 0.1593 0.6936 0.9542 0.1100 0.1626 0.7512 1.0045

0.0665 0.1106 0.0665 0.1104

20 0.1024 0.1616 0.6370 0.8897 0.7125 0.9499 0.7669 1.0265
30 0.0938 0.1454 0.6962 0.9589 0.1354 0.1903 0.7291 0.9735
40 0.0983 0.1561 0.6470 0.8983 0.1145 0.1707 0.7672 1.0250
50 0.1125 0.1804 0.7022 0.9694 0.1298 0.1822 0.7492 1.0014

(7, 5)

10 0.0926 0.1430 0.2754 0.4140 0.1676 0.2312 0.7607 1.0127

0.0796 0.1262 0.0800 0.1269

20 0.1158 0.1785 0.2935 0.4473 0.7135 0.9485 0.7760 1.0341
30 0.0907 0.1381 0.2463 0.3696 0.1679 0.2306 0.7379 0.9811
40 0.1065 0.1666 0.2583 0.3926 0.1571 0.2218 0.7763 1.0327
50 0.1417 0.2231 0.2560 0.3837 0.1674 0.2287 0.7583 1.0090
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Table 16: The max error and explained variance score of the solutions of reaction-diffusion equations
with ⌫ = {4, 5, 6, 7}, ⇢ = 5

(⌫, ⇢)(⌫, ⇢)(⌫, ⇢)
PINN PINN-R PINN-P PINN-S2S

Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var.
(4, 5) 0.9624 0.0038 0.9697 -0.0073 0.9400 0.0542 1.0706 -0.0136
(5, 5) 0.9452 -0.0278 0.9782 -0.1213 1.0000 -0.1643 1.1295 -0.0634
(6, 5) 0.8441 0.8441 0.9931 -0.2086 1.1412 -0.6138 1.1584 -0.1617
(7, 5) 1.1444 -0.6415 1.0150 -0.348 -0.6138 -0.6138 1.2363 -0.4552

Table 17: The max error and explained variance score of the solutions of reaction-diffusion equations
with ⌫ = {4, 5, 6, 7}, ⇢ = 5

(⌫, ⇢⌫, ⇢⌫, ⇢) Rank
[w/o] Pre-training [w] Pre-training

Naïve-LR-PINN Curriculum
learning MAML Reptile Hyper-LR-PINN

(Full rank)
Hyper-LR-PINN
(Adaptive rank)

Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var.

(4, 5)

10 0.1859 0.9745 1.3388 -0.5457 0.2907 0.9450 1.0065 0.1604

0.2189 0.9588 0.2189 0.9588

20 0.1967 0.9719 1.4119 -0.9933 1.0161 0.3333 1.0145 0.1023
30 0.1668 0.9934 1.3659 -0.8454 0.3037 0.9530 1.0199 0.2398
40 0.2753 0.9439 1.3921 -0.9100 0.2747 0.9402 1.0225 0.1462
50 0.3133 0.9265 1.3897 -0.8704 0.3118 0.9613 1.0200 0.1754

(5, 5)

10 0.3998 0.8848 1.2749 -0.5216 0.2794 0.9345 1.0176 0.1469

0.2317 0.9523 0.2317 0.9523

20 0.3778 0.8922 1.3262 -0.7929 1.0325 0.3102 1.0250 0.0883
30 0.2498 0.9470 1.2717 -0.5948 0.3300 0.9435 1.0310 0.2275
40 0.3739 0.8953 1.2902 -0.6908 0.2792 0.9250 1.0352 0.1322
50 0.3216 0.9213 1.3184 -0.7047 0.3214 0.9503 1.0314 0.1628

(6, 5)

10 0.3527 0.9007 1.1203 -0.2824 0.3264 0.9240 1.0264 0.1345

0.2570 0.9430 0.2578 0.9429

20 0.3580 0.8992 1.1396 -0.3386 1.0354 0.2814 1.0345 0.0753
30 0.3095 0.9235 1.1204 -0.3159 0.3742 0.9327 1.0397 0.2153
40 0.3493 0.9037 1.1130 -0.2780 0.3305 0.9126 1.0457 0.1182
50 0.4116 0.8689 1.1388 -0.3871 0.3679 0.9397 1.0407 0.1501

(7, 5)

10 0.3048 0.9225 0.7000 0.4155 0.3745 0.9149 1.0334 0.1238

0.2827 0.9284 0.2833 0.9286

20 0.3802 0.8820 0.7686 0.2740 1.0365 0.2589 1.0418 0.0635
30 0.2823 0.9318 0.6453 0.5257 0.3956 0.9202 1.0467 0.2049
40 0.3676 0.8915 0.6842 0.4392 0.3789 0.8998 1.0537 0.1066
50 0.5088 0.8037 0.6560 0.4977 0.3944 0.9276 1.0482 0.1398
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O Loss curves of meta-learning methods in Phase 2

(a) � = 30 (b) � = 35 (c) � = 40

Figure 19: Training loss curve in phase 2. We follow the experimental setting of Figure 5. � =
{30, 35, 40}

(a) � = 30 (Abs. err.) (b) � = 35 (Abs. err.) (c) � = 40 (Abs. err.)

(d) � = 30 (Rel. err.) (e) � = 35 (Rel. err.) (f) � = 40 (Rel. err.)

Figure 20: Curves of L2 absolute error (top row) and L2 relative error (bottom row) in phase2. We
follow the experimental setting of Figure 5. � = {30, 35, 40}
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P Adaptive rank: � outside of the range in training phase 1
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(c) sss3(µµµ)

Figure 21: [Convection equation] Learned rank structures of the three hidden layers. � 2 [1, 20] are
used in phase 1.

Q Comparison of learnable basis and fixed basis on Hyper-LR-PINN

(a) � = 30 (b) � = 35 (c) � = 40

Figure 22: Training loss curve on convection equations in phase 2. � = {30, 35, 40}

(a) � = 30 (Abs. err.) (b) � = 35 (Abs. err.) (c) � = 40 (Abs. err.)

(d) � = 30 (Rel. err.) (e) � = 35 (Rel. err.) (f) � = 40 (Rel. err.)

Figure 23: Curves of L2 absolute error (top row) and L2 relative error (bottom row) on convection
equations in phase 2. � = {30, 35, 40}
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Table 18: Experimental results of learnable basis and fixed basis. � = {30, 35, 40}

���
Learnable basis Fixed basis

Abs. err. Rel. err. Abs. err. Rel. err.

30 0.0567 0.0656 0.0386 0.0405
35 0.1344 0.1454 0.0490 0.0509
40 0.2169 0.2208 0.0790 0.0883

Table 19: Number of learnable parameters in Phase2

� = 30 � = 35 � = 40

Learnable basis 9,392 9,594 9,594
Fixed basis 292 294 293

To compare fixed basis and learnable basis, we provide training loss curves in Figure 22 and curves
of absolute error (Abs.err.) and relative error (Rel.err.) in Figure 23. In all cases, fixed basis exhibits
more stable learning and superior performance compared to learnable basis. Additionally, as can
be seen in Table 19, fixed basis is also significantly more efficient with a model size over 30 times
smaller.

R Visualization of the results in phase 1 and phase 2

(a) � = 30 (phase 1) (b) � = 35 (phase 1) (c) � = 40 (phase 1)

(d) � = 30 (phase 2) (e) � = 35 (phase 2) (f) � = 40 (phase 2)

Figure 24: The figures in the top row are the results of phase 1, and the figures in the bottom row are
the results of phase 2. We follow the experimental setting of Table 2. � = {30, 35, 40}

S Other experiments

S.1 Model size study for PINNs

In Table 20, we report the performance by the model size, i.e., the number of model parameters.
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Table 20: PINNs performance by varying the model size. The numbers inside parentheses are model
parameter numbers.

���
dim=50 (10,401) dim=40 (6,721) dim=30 (3,841) dim=20 (1,761) dim=10 (481) dim=8 (321)

Abs.err. Rel.err. Abs.err. Rel.err. Abs.err. Rel.err. Abs.err. Rel.err. Abs.err. Rel.err. Abs.err. Rel.err.

30 0.4015 0.4033 0.4077 0.4114 0.4576 0.4524 0.4365 0.4369 0.4398 0.4409 0.4479 0.4478
35 0.4785 0.4701 0.4815 0.4736 0.5132 0.4971 0.4491 0.4464 0.4823 0.4763 0.5023 0.4903
40 0.5490 0.5219 0.5599 0.5333 0.5792 0.5467 0.5302 0.5097 0.5088 0.4966 0.5410 0.5207

Table 21: Comparison of full rank and adaptive rank in Phase2

���
Phase1 Phase2

(Full rank)
Phase2

(Adaptive rank)
Abs.err. Rel.err. Abs.err. Rel.err. Abs.err. Rel.err.

30 0.2294 0.2346 0.0360 0.0379 0.0375 0.0389
35 0.2443 0.2534 0.0428 0.0443 0.0448 0.0461
40 0.2443 0.2534 0.0603 0.0655 0.0656 0.0722

S.2 Performance comparisons on full-rank and adaptive-rank in Hyper-LR-PINNs

In Table 21, we compare the cases where we fix weights to be of full-rank and where we make them
adaptive (i.e., some singular values are truncated by ReLU). The adaptive rank approach still achieve
the comparable performance.

S.3 Performance comparisons against Hyper-PINNs

Table 22: Comparison of HyperPINN and Hyper-LR-PINN

���
HyperPINN Hyper-LR-PINN

Abs.err. Rel.err. Abs.err. Rel.err.

30 0.9491 0.9856 0.0375 0.0389
35 0.9639 0.9831 0.0448 0.0461
40 0.9773 0.9989 0.0656 0.0722

We provide the results of the comparison between HyperPINN and Hyper-LR-PINN (Adaptive rank)
in Table 22. In all cases, Hyper-LR-PINN demonstrates overwhelmingly superior performance. All
experimental settings are the same as in Table 2.

S.4 Performance on extrapolation in the PDE parameter domain

Table 23: Detailed results of the experiment in Figure 5

� = 27� = 27� = 27 � = 28� = 28� = 28 � = 29� = 29� = 29 � = 41� = 41� = 41 � = 42� = 42� = 42 � = 43� = 43� = 43

Abs. err. 0.0311 0.0351 0.0358 0.1002 0.1089 0.1490
Rel. err. 0.0318 0.0366 0.0377 0.1174 0.1238 0.1624
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T 2D-Helmholtz equation

We present the results of applying Hyper-LR-PINN to compute solutions of parameterized 2D
Helmholtz equations:

@
2
u(x, y)

@x2
+

@
2
u(x, y)

@y2
+ k

2
u(x, y)� q(x, y) = 0,

q(x, y) = (�(a1⇡)
2 � (a2⇡)

2 + k
2) sin(a1⇡x) sin(a2⇡y),

where the forcing term q is chosen such that the analytical expression for the solutions are available:

u(x, y) = k
2 sin(a1⇡x) sin(a2⇡y).

Figure 25 shows the solution snapshots of 2D-Helmholtz equations for varying parameters and
demonstrates that the proposed approach outperforms the vanilla PINNs.

(a) PINN (a = 2.0) (b) Ours (a = 2.0) (c) Exact (a = 2.0)

(d) PINN (a = 2.5) (e) Ours (a = 2.5) (f) Exact (a = 2.5)

(g) PINN (a = 3.0) (h) Ours (a = 3.0) (i) Exact (a = 3.0)

Figure 25: [2D-Helmholtz equation] Solution snapshots
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The comparison results of the absolute and relative errors between PINN and Hyper-LR-PINN can be
observed in Table 24. In all cases, Hyper-LR-PINN consistently exhibits significantly smaller errors
compared to PINN.

Table 24: [2D-Helmholtz equation] The absolute and relative errors of the solutions of 2D-Helmholtz
equations with a = {2.0, 2.5, 3.0}

a = 2.0 a = 2.5 a = 3.0

Abs.err. Rel.err. Abs.err. Rel.err. Abs.err. Rel.err.

PINN 0.1698±0.0553 0.4258±0.0939 0.7403±0.1050 1.8232±0.2464 2.0537±0.4904 4.8401±0.7366
Hyper-LR-PINN 0.0137±0.0021 0.0330±0.0032 0.0285±0.0029 0.0611±0.0071 0.0153±0.0028 0.0389±0.0060

U Standard deviation

Table 2 presents the mean error of the experimental results and additionally, we provide the standard
deviation for the evaluation metrics in Tables 25 and 26.

Table 25: Standard deviation of the evaluation metrics (Abs. err. and Rel. err.) � = {30, 35, 40}

��� Rank

[w/o] Pre-training [w] Pre-training

Naïve-LR-PINN Curriculum
learning MAML Reptile Hyper-LR-PINN

(Full rank)
Hyper-LR-PINN
(Adaptive rank)

Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err. Abs. err. Rel. err.

30

10 ±0.0526 ±0.0397 ±0.0000 ±0.0000 ±0.0172 ±0.0247 ±0.0521 ±0.0474

±0.0023 ±0.0023 ±0.0025 ±0.0014
20 ±0.0374 ±0.0300 ±0.0000 ±0.0000 ±0.0164 ±0.0243 ±0.0260 ±0.0217
30 ±0.0522 ±0.0423 ±0.0000 ±0.0000 ±0.0508 ±0.0446 ±0.0135 ±0.0125
40 ±0.0446 ±0.0339 ±0.0015 ±0.0005 ±0.0780 ±0.0870 ±0.0024 ±0.0021
50 ±0.0385 ±0.0298 ±0.0001 ±0.0003 ±0.0610 ±0.0647 ±0.0055 ±0.0047

35

10 ±0.0484 ±0.0382 ±0.0016 ±0.0006 ±0.0243 ±0.0353 ±0.0545 ±0.0498

±0.0029 ±0.0028 ±0.0025 ±0.0027
20 ±0.0254 ±0.0201 ±0.0000 ±0.0000 ±0.0267 ±0.0414 ±0.0218 ±0.0163
30 ±0.0143 ±0.0151 ±0.0000 ±0.0000 ±0.0483 ±0.0437 ±0.0069 ±0.0051
40 ±0.0303 ±0.0224 ±0.0001 ±0.0002 ±0.0788 ±0.0942 ±0.0016 ±0.0012
50 ±0.0307 ±0.0228 ±0.0001 ±0.0000 ±0.0734 ±0.0848 ±0.0041 ±0.0028

40

10 ±0.0331 ±0.0273 ±0.0014 ±0.0005 ±0.0418 ±0.0648 ±0.0506 ±0.0537

±0.0038 ±0.0043 ±0.0043 ±0.0042
20 ±0.0215 ±0.0188 ±0.0000 ±0.0000 ±0.0410 ±0.0589 ±0.0233 ±0.0214
30 ±0.0107 ±0.0116 ±0.0000 ±0.0000 ±0.0468 ±0.0510 ±0.0091 ±0.0109
40 ±0.0363 ±0.0305 ±0.0001 ±0.0001 ±0.0703 ±0.0899 ±0.0005 ±0.0009
50 ±0.0065 ±0.0080 ±0.0004 ±0.0005 ±0.0800 ±0.1027 ±0.0086 ±0.0071

Table 26: Standard deviation of the evaluation metrics (Max. err. and Exp. var.) � = {30, 35, 40}

��� Rank

[w/o] Pre-training [w] Pre-training

Naïve-LR-PINN Curriculum
learning MAML Reptile Hyper-LR-PINN

(Full rank)
Hyper-LR-PINN
(Adaptive rank)

Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var. Max. err. Exp. var.

30

10 ±0.0629 ±0.1001 ±0.0000 ±0.0000 ±0.0802 ±0.0126 ±0.1296 ±0.0803

±0.0025 ±0.0015 ±0.0009 ±0.0015

20 ±0.0525 ±0.0760 ±0.0000 ±0.0000 ±0.0572 ±0.0089 ±0.0349 ±0.0512

30 ±0.0198 ±0.0332 ±0.0000 ±0.0000 ±0.1220 ±0.0842 ±0.0180 ±0.0222

40 ±0.0362 ±0.0943 ±0.0004 ±0.0026 ±0.1935 ±0.0999 ±0.0078 ±0.0056

50 ±0.0402 ±0.0809 ±0.0017 ±0.0004 ±0.1697 ±0.0815 ±0.0223 ±0.0137

35

10 ±0.1273 ±0.0817 ±0.0023 ±0.0019 ±0.0571 ±0.0082 ±0.1590 ±0.0742

±0.0024 ±0.0019 ±0.0057 ±0.0018

20 ±0.0640 ±0.0463 ±0.0000 ±0.0000 ±0.0879 ±0.0135 ±0.0349 ±0.0435

30 ±0.0771 ±0.0219 ±0.0000 ±0.0000 ±0.1478 ±0.0686 ±0.0192 ±0.0115

40 ±0.0511 ±0.0603 ±0.0014 ±0.0002 ±0.2414 ±0.0882 ±0.0036 ±0.0026

50 ±0.0556 ±0.0602 ±0.0001 ±0.0001 ±0.2254 ±0.0763 ±0.0152 ±0.0063

40

10 ±0.0672 ±0.0446 ±0.0010 ±0.0019 ±0.1190 ±0.0165 ±0.1741 ±0.0574

±0.0106 ±0.0011 ±0.0105 ±0.0004

20 ±0.0645 ±0.0381 ±0.0000 ±0.0000 ±0.1143 ±0.0205 ±0.0456 ±0.0578

30 ±0.0365 ±0.0143 ±0.0000 ±0.0000 ±0.1748 ±0.0564 ±0.0269 ±0.0093

40 ±0.0539 ±0.0744 ±0.0016 ±0.0001 ±0.2441 ±0.0668 ±0.0047 ±0.0006

50 ±0.0249 ±0.0156 ±0.0025 ±0.0001 ±0.2586 ±0.0626 ±0.0211 ±0.0133
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