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1. Introduction

The Asaro-Tiller-Grinfeld (ATG) instability, driven
by misfit strain in thin films, significantly impacts
the stability and performance of semiconductor
devices[1]. Traditional numerical models for ATG
instability are computationally expensive and lim-
ited in predictive accuracy. This study integrates
Physics-Informed Neural Networks (PINNs) with a
phase-field model to predict and analyze ATG insta-
bility. PINNs embed physical laws into deep learn-
ing, significantly reducing computational time while
improving accuracy. [2]

2. Methodology

We reformulate the governing equations of ATG
instability into a residual-based PINN framework.
The surface chemical potential, interface motion,
and phase-field evolution are encoded into the loss
function, ensuring physical consistency. The PINN-
enhanced phase-field model is implemented using
the Allen-Cahn framework, enabling efficient pre-
diction of instability thresholds and morphology
evolution, as shown in Figure 1.

The phase-field evolution is governed by the
Allen-Cahn equation[3]:
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where ¢,, is the phase-field variable, F'is the free en-
ergy, and M, is the mobility coefficient.
The PINN loss function is defined as:

£t0tal = Al‘cu + )\Q‘C’Un + )\3£h + )\4£w + )\5£¢ + A6‘507

where L, L., L1, Lo, Lo, and L, are the residuals
for surface chemical potential, interface motion, in-
terface height, dispersion relation, phase-field evo-
lution, and mechanical equilibrium, respectively.

Physics-Informed Neural Networks (PINNs) ap-
proximate the solutions by minimizing residuals of
the governing equations.

3. Results and discussion

The PINN method is nearly 10x faster than tra-
ditional numerical solvers.Traditional methods re-
quire extensive iterative solving (120-140 sec per
simulation).PINNs leverage physics constraints and
deep learning to predict results in 10 sec. Traditional
methods show higher error rates (7.8-8.9 percent)
due to numerical approximations. The PINN model

has a much lower error (2.0-2.4 percent ), indicating
better predictive capability. Traditional numerical
solvers struggle with long-wavelength perturbation
predictions, leading to high instability errors (ca. 15
percent). PINN models significantly reduce stabil-
ity prediction errors (ca.5 percent), meaning better
handling of nonlinear effects,as shown in Figure 2.

This comparison demonstrates that PINNs offer a
game-changing alternative to traditional numerical
simulations for fast, accurate, and efficient ATG in-
stability analysis. We utilized the Physics-Informed
Neural Network (PINN) algorithm to investigate and
determine the maximum critical stress that a grow-
ing film can sustain under varying values of the
parameter . By leveraging the PINN framework,
which integrates physical laws into the neural net-
work’s training process, we were able to accurately
model the stress distribution and evolution over
time.as shown in Figure 3.
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Fig. 1: The framework of Physics-informed neural network combined Phase-field model.
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Fig. 2: Comparison of the PINN method with classic Phase-field model.
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Fig. 3: The variation of the stress with time at different eps.
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