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1. Introduction
The Asaro-Tiller-Grinfeld (ATG) instability, driven

by misfit strain in thin films, significantly impacts
the stability and performance of semiconductor
devices[1]. Traditional numerical models for ATG
instability are computationally expensive and lim-
ited in predictive accuracy. This study integrates
Physics-Informed Neural Networks (PINNs) with a
phase-field model to predict and analyze ATG insta-
bility. PINNs embed physical laws into deep learn-
ing, significantly reducing computational timewhile
improving accuracy. [2]

2. Methodology
We reformulate the governing equations of ATG

instability into a residual-based PINN framework.
The surface chemical potential, interface motion,
and phase-field evolution are encoded into the loss
function, ensuring physical consistency. The PINN-
enhanced phase-field model is implemented using
the Allen-Cahn framework, enabling efficient pre-
diction of instability thresholds and morphology
evolution, as shown in Figure 1.
The phase-field evolution is governed by the

Allen-Cahn equation[3]:
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where ϕα is the phase-field variable, F is the free en-
ergy, andMαβ is the mobility coefficient.
The PINN loss function is defined as:

Ltotal = λ1Lµ+λ2Lvn +λ3Lh+λ4Lω+λ5Lϕ+λ6Lσ,

where Lµ, Lvn , Lh, Lω, Lϕ, and Lσ are the residuals
for surface chemical potential, interface motion, in-
terface height, dispersion relation, phase-field evo-
lution, and mechanical equilibrium, respectively.
Physics-Informed Neural Networks (PINNs) ap-

proximate the solutions by minimizing residuals of
the governing equations.

3. Results and discussion
The PINN method is nearly 10× faster than tra-

ditional numerical solvers.Traditional methods re-
quire extensive iterative solving (120-140 sec per
simulation).PINNs leverage physics constraints and
deep learning to predict results in 10 sec. Traditional
methods show higher error rates (7.8-8.9 percent)
due to numerical approximations. The PINN model

has a much lower error (2.0-2.4 percent ), indicating
better predictive capability. Traditional numerical
solvers struggle with long-wavelength perturbation
predictions, leading to high instability errors (ca. 15
percent). PINN models significantly reduce stabil-
ity prediction errors (ca.5 percent), meaning better
handling of nonlinear effects,as shown in Figure 2.
This comparison demonstrates that PINNs offer a

game-changing alternative to traditional numerical
simulations for fast, accurate, and efficient ATG in-
stability analysis. We utilized the Physics-Informed
Neural Network (PINN) algorithm to investigate and
determine the maximum critical stress that a grow-
ing film can sustain under varying values of the
parameter ε. By leveraging the PINN framework,
which integrates physical laws into the neural net-
work’s training process, we were able to accurately
model the stress distribution and evolution over
time.as shown in Figure 3.

Acknowledgments
The authors are grateful for all contributors of the

PACE3D framework[4].

References

[1] BGChirranjeevi, TAAbinandanan, andMPGuru-
rajan. A phase field study ofmorphological insta-
bilities in multilayer thin films. Acta Materialia,
57(4):1060–1067, 2009.

[2] Christoph Herrmann, Ephraim Schoof, Daniel
Schneider, Felix Schwab, Andreas Reiter,
Michael Selzer, and Britta Nestler. Multiphase-
field model of small strain elasto-plasticity
according to the mechanical jump conditions.
Computational Mechanics, 62(6):1399–1412, 2018.

[3] Daniel Schneider, Felix Schwab, Ephraim
Schoof, Andreas Reiter, Christoph Herrmann,
Michael Selzer, Thomas Böhlke, and Britta
Nestler. On the stress calculation within phase-
field approaches: a model for finite deforma-
tions. Computational Mechanics, 60(2):203–217,
2017.

[4] J. Hötzer, A. Reiter, H. Hierl, P. Steinmetz,
M. Selzer, and Britta Nestler. The parallel multi-
physics phase-field framework pace3d. Journal of
Computational Science, 26:1–12, 2018.

https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
mailto:chenxuyang@iet.cn


AI4X 2025, Singapore, 8–11 July 2025

Fig. 1: The framework of Physics-informed neural network combined Phase-field model.

Fig. 2: Comparison of the PINNmethod with classic Phase-field model.

Fig. 3: The variation of the stress with time at different eps.
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