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A POSTERIOR COLLAPSE AND VARIATIONAL DISTRIBUTION

Here, we present a discussion on the variational posterior collapse. To keep the notation unclut-
tered, we use z instead of z1:L. First, let us look into the Kullback-Leibler divergence between the
variational posterior and the real posterior:

DKL[qϕ(z|x)||pθ(z|x)] =
∫

qϕ(z|x) ln
qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) ln qϕ(z|x)dz−

∫
qϕ(z|x) ln pθ(z|x)dz

=−H[qϕ(z|x)]− Eqϕ(z|x)[ln pθ(z|x)]

=−H[qϕ(z|x)]− Eqϕ(z|x)

[
ln

pθ(x|z)pθ(z)
pθ(x)

]
=−H[qϕ(z|x)]− Eqϕ(z|x) [ln pθ(x|z)]− Eqϕ(z|x) [ln pθ(z)] + Eqϕ(z|x) [ln pθ(x)]

= ln p(x)− L(ϕ, θ;x).
In other words, the the Kullback-Leibler divergence between the variational posterior and the real
posterior calculated is equal to the difference between the true marginal likelihood and the ELBO.
Now, if we assume the variational posterior collapses, i.e., q(z|x) = p(z), then we get:

DKL[qϕ(z|x)||pθ(z|x)] =DKL[p(z)||pθ(z|x)]
=−H[p(z)]− Ep(z) [ln pθ(x|z)]− Ep(z) [ln pθ(z)] + Ep(z) [ln pθ(x)]

=−H[p(z)]− Ep(z) [ln pθ(x|z)] +H[p(z)] + ln pθ(x)

= ln pθ(x)− Ep(z) [ln pθ(x|z)]

As a result, the gap between the collapsed variational posterior (qϕ(z|x) = pθ(z)) and the true
posterior is equal to the difference between the marginal likelihood and Ep(z) [ln pθ(x|z)].
We can consider two cases, that is:

1. If the real posterior collapses, pθ(z|x) = pθ(z), then naturally the variational pos-
terior collapses. The reason is straightforward: We optimize the following objective:
DKL[qϕ(z|x)||pθ(z)].

2. If the variational posterior collapses, then depending on the expressive power of the con-
ditional likelihood pθ(x|z), the true posterior can also collapse. This follows from the fact
that if Ep(z) [ln pθ(x|z)] ≈ ln p(x), then DKL[p(z)||pθ(z|x)] = 0, thus, pθ(z|x) ≈ p(z).

In the second point, it is still possible that the variational posterior can collapse and still the real
posterior is not collapsed (or it is ”partially” collapsed, meaning that it gets closer to pθ(z)).
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B POSTERIOR COLLAPSE AND LATENT VARIABLES NON-IDENTIFIABILITY

Proposition 1. Consider a top-down hierarchical VAE introduced in Section 2.2. Then, for a given
set of parameter values θ∗, the posterior of the latent variable zl collapses if and only if x and zl
are conditionally independent given (zl+1, . . . , zL).

Proof. To simplify the notation, let us split the latent variables of hierarchical VAEs into three
groups:

z1, . . . , zl−1︸ ︷︷ ︸
zA

, zl︸︷︷︸
zB

, zl+1, . . . , zL︸ ︷︷ ︸
zC

. (9)

We can do this for each l ∈ 1, . . . , L, assuming that in the corner case of l = 1, zA is an empty set,
and in the case of l = L, zC is an empty set. Then, the posterior collapse implies pθ∗(zB |zC ,x) =
pθ∗(zB |zC), and the conditional independence is exactly the following equality: pθ∗(x|zB , zC) =
pθ∗(x|zC). The proof follows directly from Theorem 1 in (Wang et al., 2021), where everything is
additionally conditioned on zC . ■

Note, however, that the conditional independence in Proposition 1 is not the same as the latent
variable non-identifiability which is defined as follows:

pθ∗(x|z1:L) = pθ∗(x|z−l), (10)

where z−l = (z1, . . . , zl−1, zl+1, . . . , zL). To see how latent variable non-identifiability is con-
nected to posterior collapse (Eq. 2) in hierarchical VAE, we start with the following proposition.

Proposition 2. Consider a top-down hierarchical VAE introduced in Section 2.2. If x and zl are
conditionally independent given (zl+1, . . . , zL), then the latent variable zl is non-identifiable. How-
ever, if zl is non-identifiable, it does not imply that it is conditionally independent with x given
(zl+1, . . . , zL).

Proof. Let us utilize the same notation as in Proposition 1. Consider conditional independence,
namely pθ∗(x|zB , zC) = pθ∗(x|zC). In other words, if we consider a corresponding graphi-
cal model, all the paths from zB to x should go through zC . Then, for any zA it holds that
pθ∗(x|zA, zB , zC) = pθ∗(x|zA, zC). This can be proved by contradiction. If this is not true, then
there exists a path from zB to x, which does not go through zA or zC . Therefore, there exists a path
from zB to x, which does not go through zC . This contradicts the initial assumption. In summary,
we have shown that if zl and x are conditionally independent given (zl+1, . . . zL), then they are
also conditionally independent given (zl, . . . zl−1, zl+1, . . . zL), which is the definition of the latent
variable non-identifiability.

zC zB zA x

Figure 7: Example of a graphical model where zB
and x are conditionally independent given zA, zC
(non-idetifiability). However, they are not condi-
tionally independent given only zC , since there is
an additional path from zB to x through zA.

To see that the opposite is false, consider the
counter example in Figure 7. In this graphical
model, zB and x are conditionally independent
given zA, zC . Namely, all the paths from zB
to x go through either zA or zC . However, if
we are given only zC , there is still a path from
zB to x (going through zA). Therefore, zB
and x are not conditionally independent given
zC . This implies that the latent variable non-
identifiability does not imply conditional inde-
pendence. ■
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C BACKGROUND OF DIFFUSION PROBABILISTIC MODELS

Diffusion Probabilistic Models or Diffusion-based Deep Generative Models (Ho et al., 2020; Sohl-
Dickstein et al., 2015) constitute a class of generative models that can be viewed as a special case of
the Hierarchical VAEs (Huang et al., 2021; Kingma et al., 2021; Tomczak, 2022; Tzen & Raginsky,
2019).

Denoting the last latent (context) zL ≡ y0 and auxiliary latent variables yt, t = 1, . . . , T , we
define a generative model, also referred to as the backward (or reverse) process, as a Markov
chain with Gaussian transitions starting with p(yT ) = N (yT |0, I), that is: pγ(y0, . . . ,yT ) =

p(yT )
∏T

t=0 pγ(yt−1|yt), where pγ(yt−1|yt) = N (yt−1;µγ(yt, t),Σγ(yt, t)).

Let us further define αt = 1−βt and αt =
∏t

i=0 αi. Since the conditionals in the forward diffusion
can be seen as Gaussian linear models, we can analytically calculate the following distributions:

q(yt|y0) =N (yt;
√
αty0, (1− αt)I), (11)

q(yt−1|yt,x0) =N (yt−1; µ̃(yt,y0), β̃tI), (12)

where µ̃(yt,y0) =

√
αt−1βt

1−αt
y0 +

√
αt(1−αt−1)

1−αt
yt, and β̃t =

1−αt−1

1−αt
βt. We can use (11) and (12) to

define the variational lower bound as follows:

Lvlb =Eq(y1|y0)[ln pγ(y0|y1)]︸ ︷︷ ︸
−L0

−DKL [q(yT |y0)∥p(yT )]︸ ︷︷ ︸
LT

(13)

−
T∑

t=2

Eq(yt|y0)DKL [q(yt−1|yt,y0)∥pγ(yt−1|yt)]︸ ︷︷ ︸
Lt−1

.

Parameters γ of the diffusion model and parameters θ, ϕ of the hierarchical VAE are optimized
simultaneously with the joint objective Eq. 7, where we use the lower bound (Eq. 13) instead of the
ln pγ(f(x)) term.

The conditional distribution over the context We assume that the context is a discrete random
variable. Therefore, it is important to choose an appropriate family of conditional distributions
pγ(y0|y1). Following Ho et al. (2020), we scale y0 linearly to [−1, 1], and use the discretized
(binned) Gaussian distribution:

pγ (y0|y1) =

D∏
i=1

∫ δ+(xi
0)

δ−(xi
0)

N
(
x;µi

γ (x1, 1) , σ
2
1

)
dx, (14)

where D is the dimensionality of y0, and i denotes one coordinate of y0, and:

δ+(x) =

{
∞ if x = 1
x+ 1

b if x < 1
δ−(x) =

{−∞ if x = −1

x− 1
b if x > −1

, (15)

where b is the bin width determined based on training data.
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D CIFAR10 EXPERIMENTS

In addition to the binary datasets, we perform experiments on natural images. We used the CIFAR10
dataset, which is a common benchmark in VAE literature. We report the results in n Table 5. We
observe that our approach works on par with the generative models which have comparable sizes
(OU-VAE, Residual Flows, GLOW). However, there are models with much larger sizes (e.g. VD-
VAE, NVAE), which perform better. Unfortunately, we do not have the computational resources to
train a comparable-size model. Instead, we compare the DCT-VAE with our implementation of the
smaller-size VDVAE.

Table 5: The test performance on CIFAR10 dataset. We compare the total number of trainable
parameters (Size), the number of stochastic layers (L), and NLL.
† Results with data augmentation.

MODEL SIZE L BITS/DIM ≤↓

DCT-VAE (ours) 22M 29 3.26
Small VDVAE 21M 29 3.28(our implementation)
Attentive VAE 119M 16 2.79
(Apostolopoulou et al., 2022)
VDVAE (Child, 2021) 39M 45 2.87
Residual flows 25M 1 3.28
(Perugachi-Diaz et al., 2021)
i-DenseNet flows 25M 1 3.25
(Perugachi-Diaz et al., 2021)
OU-VAE 10M 3 3.39
(Pervez & Gavves, 2021)
CR-NVAE 131M 30 2.51†
(Sinha & Dieng, 2021)
NVAE — 30 2.91
(Vahdat & Kautz, 2020)
BIVA (Maaløe et al., 2019) 103M 15 3.08
GLOW — 1 3.46
(Nalisnick et al., 2019)
IAF-VAE — 12 3.11
(Kingma et al., 2016)
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Figure 8: A diagram of the top-down hierarchical VAE with the context. The decoder consists of
TopDown blocks (blue), which take as input features from the block above hDec

l+1 and the features
from the encoder hEnc

l+1 (only during training). Dotted lines denote that zl is a sample from the prior
(in the generative mode) or from the variational posterior (in the reconstruction mode). The context
(in red) is added to the features of the decoder at the beginning of each scale. The encoder consists
of ResNet blocks (green) We use the same ResNet blocks in the TopDown blocks.

E MODEL DETAILS

E.1 ARCHITECTURE

We schematically depict the proposed deep hierarchical VAE in Figure 8. We extend the architecture
presented in (Child, 2021) by using a deterministic, non-trainable function to create latent variable
zL (the context). It is then used to train the prior pθ(zL), and to obtain x̃context that is eventually
passed to every level (scale) of the top-down decoder.
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Table 6: Full list of hyperparameters.

MNIST OMNIGLOT CIFAR10
VAE DCT-VAE VAE DCT-VAE VAE DCT-VAE

O
pt

im
iz

at
io

n

Optimizer AdamW AdamW AdamW
Scheduler Cosine Cosine Cosine
Starting Learning rate 1e-3 1e-3 4e-4
End Learning rate 1e-5 1e-5 5e-5
Weight Decay 1e-2 1e-2 1e-2
# Epochs 600 600 8000
Grad. Clipping 1 1 0.2
Grad. Skipping Threshold 100 100 100
EMA rate 0 0 0
# GPUs 1 1 4
Batch Size (per GPU) 128 128 96

A
rc

hi
te

ct
ur

e

L 8 8 29

Latent Sizes
4× 142, 4× 142, 4× 142, 4× 142, 10× 322, 10× 322,
4× 72. 3× 72. 4× 72. 3× 72. 10× 162, 5× 82, 10× 162, 5× 82,

3× 42, 1× 12. 2× 42, 1× 12.
Latent Width 1 1 8
Context Size — 1× 6× 6 — 1× 7× 7 — 3× 6× 6
# Channels (input) 32 32 384
# Channels (hidden) 40 40 96
Weight Norm FALSE FALSE TRUE
Activation SiLU SiLU SiLU
Likelihood Bernoulli Bernoulli Discretized Logisitc Mixture

C
on

te
xt

Pr
io

r # Diffusion Steps — 7 — 7 — 40
# Scales in UNet — 1 — 1 — 2
# ResBlocks per Scale — 3 — 3 — 3
# Channels — 32 — 32 — 64
β schedule — linear — linear — linear

E.2 HYPERPARAMETERS

In Table 6, we report all the hyperparameter values that were used to train the baseline VAE and
DCT-VAE.

The context Prior We use the diffusion generative model as a prior over the context. As a back-
bone, we use UNet implementation from (Dhariwal & Nichol, 2021) which is available on GitHub2

with the hyperparameters provided in Table 6.

2https://github.com/openai/guided-diffusion
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F DOWNSAMPLING-BASED CONTEXT

In this work, we propose a DCT-based context. However, downsampling can also be used to create
a lower-dimensional representation of the input. Therefore, we conducted an ablation study where
we used downsampled-based context. Results of this experiment can be found in Section 5.1.

To create a downsampling-based context we use average pooling, as shown in Algorithm 3. Then,
we can decode it back by simply using nearest-neighbours upsampling (Algorithm 4).

Algorithm 3 Create context: downsampling
Input: x, v
zDownsample = Av. Pooling(x, v)
zDownsample = quantize(zDownsample)

Return: zDownsample

Algorithm 4 Decode context: downsampling
Input: zDownsample, D

▷ Apply nearest neighbour upsampling
x̃context = Upsampling(zDownsample, D)

Return: x̃context

18
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G COMPRESSION

To find out how much information about the data is preserved in the top latent variable, we conduct
an experiment where we use the baseline VDVAE and the DCT-VAE pretrained on CIFAR10 for
compression. We use the KODAK dataset, which is a standard compression benchmark containing
24 images with resolution 512×768. Since CIFAR10 images are 32×32, we independently encode
patches of KODAK images. We then reconstruct each patch using only a part of the latent variables
and combine these patches to obtain final reconstructions.

In Figure 9, we present non-cherry-picked reconstructions from the compression experiment. We
use a single latent variable (only context) for DCT-VAE and two top latent variables for the baseline
model. We sample the rest of the latent variables from the prior distribution with a temperature
equal to 0.1. We also show images compressed with JPEG for comparison. We use PSNR and
MSSSIM to measure the reconstruction error. We report KL-divergence converted to bits-per-pixel
as a compression rate. All latent variables (except for the context in DCT-VAE) are continuous.
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PSNR = 18.0, MSSSIM = 0.36, BPP* = 0.05 PSNR = 23.8, MSSSIM = 0.80, BPP = 0.17 PSNR = 23.9, MSSSIM = 0.78, BPP = 0.31

PSNR = 17.7, MSSSIM = 0.35, BPP* = 0.06 PSNR = 25.7, MSSSIM = 0.79, BPP = 0.17 PSNR = 27.7, MSSSIM = 0.83, BPP = 0.29

PSNR = 15.6, MSSSIM = 0.27, BPP* = 0.05 PSNR = 19.8, MSSSIM = 0.75, BPP = 0.19 PSNR = 18.7, MSSSIM = 0.59, BPP = 0.30

PSNR = 15.7, MSSSIM = 0.29, BPP* = 0.05 PSNR = 23.3, MSSSIM = 0.83, BPP = 0.20 PSNR = 22.9, MSSSIM = 0.79, BPP = 0.33

PSNR = 15.2, MSSSIM = 0.35, BPP* = 0.05 PSNR = 26.0, MSSSIM = 0.79, BPP = 0.15 PSNR = 26.3, MSSSIM = 0.81, BPP = 0.31

PSNR = 15.2, MSSSIM = 0.38, BPP* = 0.05 PSNR = 25.1, MSSSIM = 0.84, BPP = 0.19 PSNR = 26.6, MSSSIM = 0.84, BPP = 0.32

(a) VAE (b) DCT-VAE (c) JPEG

Figure 9: Examples of the compressed images. We use 2 top latent variables of VDVAE to recon-
struct the image in col. (a) and only context of DCT-VAE in col. (b). We choose JPEG compression
to have a similar PSNR value to DCT-VAE (col. c).
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H ROBUSTNESS TO ADVERSARIAL ATTACKS

In (Kuzina et al., 2022) it was shown that the top latent of deep hierarchical VAEs can be easily
”fooled” by the most straightforward methods of attack construction, and thus, it could serve as a
diagnostic tool to assess the robustness of the latent space. Here, we follow this line of thought to
assess the robustness of the DCT-VAE. For each dataset, we use 50 test points (5 different random
initializations) to construct latent space attacks on the VDVAE and the DCT-VAE. In Figure 10,
we present the average similarity between the real reconstruction and the attacked reconstruction
measured by MSSSIM depending on the latent layers under attack. In all cases, we see a clear
advantage in using the DCT-based context. For MNIST and CIFAR10, the DCT-VAE provides
much better robustness for the two latent layers under attack. In general, the DCT-VAE seems to be
less affected by adversarial attacks than the VDVAE.
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Figure 10: The adversarial robustness measured by MSSSIM.
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