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A PROOFS

A.1 CONVERGENCE GUARANTEE OF THE PROPOSED PROJECTED GRADIENT DESCENT METHOD

Optimization problem (P1) from the main paper is given by

min
b
f(b) s.t. ‖b‖0 = n−m. (1)

This problem can be expressed as an unconstrained optimization problem by using the indicator function1 as follows:

min
b
F (b) , (2)

with
F (b) := f(b) + δC(b), where C = {b ∈ Rn | ‖b‖0 = n−m} .

Recently, for analyzing the convergence rate of first-order methods for nonconvex objective functions, the so-called
Kurdyka–Lojasiewicz (KL) property is often used. If the objective function of F (b) satisfies the KL property with an
exponent of α = 1/2 and the sequence {bk} generated by the proximal gradient algorithm is bounded, then it was proven
that {bk} converges locally and linearly to a stationary point of F (see, for example, Attouch et al. [2010, 2013], Li and
Pong [2018]). Therefore, here, we only need to prove that F (b) is a KL function with exponent 1/2.

The definition of KL functions encompasses broad classes of functions, and it is known that a proper closed semi-algebraic
function is a KL function with a suitable exponent α ∈ [0, 1). The above function F is also a KL function.

Theorem 1. Any sequence {bk} generated by projected gradient algorithm for Problem (1) globally converges to a
stationary point with locally linear convergence rate.

Proof. First, we show global convergence. Bolte et al. [2014] implies that the objective function F of (2) is a proper lower
semi-continuous KL function. Considering that F is lower bounded and ∇f is Lipschitz continuous, we can confirm the
global convergence of the proximal gradient method from [Attouch et al., 2013, Theorem 5.1 and Remark 5.2]. Now for
proving the convergence rate, we will check the KL exponent of F . F can be further rewritten as

F (b) = min
S⊆{1,...,n},|S|=m

f(b) + δΩS
(b) ,

where ΩS := {b ∈ Rn | bi = 0,∀i ∈ S}. Here, for all possible S, δΩS
(b) are proper closed polyhedral functions. Then [Li

and Pong, 2018, Corollary 5.2] implies that F (b) is a KL function with an exponent of 1/2. From this, and the boundedness
of {bk}, [Li and Pong, 2018, Proposition 5.1] implies that {bk} achieves linear convergence locally.

1The indicator function is defined as δC(b) :=

{
0 if b ∈ C ,
∞ else.
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A.2 PROOF OF ASYMPTOTICALLY CORRECT OUTLIER REJECTION

Here we prove Proposition 1. Note that ignoring constants, we may write the negative marginal log-likelihood (NLL) as

NLL(σ2, η, l) := −2 log p(y|X,σ2, η, l)− n log 2π

= yT (Kη,l + σ2I)−1y + log |Kη,l + σ2I|

=
1

η
yT (K +

σ2

η
I)−1y + log(ηn|K +

σ2

η
I|) ,

where K := K1,l (that means K is Kη,l, with η being set to 1).

First, we establish a lower bound on NLL. Let λ0 denote the smallest possible eigenvalue of K1,l, i.e.

λ0 := min
l∈D

λmin(K1,l) ,

where λmin(A) denotes the smallest eigenvalue of a matrix A. Note that 1 ≥ λ0 > 0. Analogously, let λ1 denote the largest
possible eigenvalue of K1,l, i.e.

λ1 := min
l∈D

λmax(K1,l) ,

where λmax(A) denotes the largest eigenvalue of a matrixA. Note that 1 ≤ λ1 < n. Therefore, for any l ∈ D, all eigenvalues
of K are bounded. In particular, we have

λmin

(
K +

σ2

η

)
≥ λ0 +

σ2

η
,

and

λmin

(
(K +

σ2

η
)−1

)
≥ (λ1 +

σ2

η
)−1 .

Define

g2(σ2, η) :=
1

η
(λ1 +

σ2

η
)−1||y||22 + log(ηn(λ0 +

σ2

η
)n) ,

then we have

g2(σ2, η) ≤ NLL(σ2, η, l) .

Since the function g2 is still slightly difficult to analyze, we establish another lower bounding function g1.

First note that g2 can be written as follows

g2(σ2, η) = (ηλ1 + σ2)−1||y||22 + n log(ηλ0 + σ2) .

Noting that

n log(λ0) + n log(η + σ2) = n log(λ0η + λ0σ
2)

≤ n log(ηλ0 + σ2) ,

and

λ−1
1 (η + σ2)−1 = (λ1η + λ1σ

2)−1

≤ (λ1η + σ2)−1 ,

we have

g1(σ2, η) ≤ g2(σ2, η) ,



where we defined

g1(σ2, η) := λ−1
1 (η + σ2)−1||y||22 + n log(λ0) + n log(η + σ2) .

Therefore, we have

min
σ2,η

g1(σ2, η) ≤ min
σ2,η

g2(σ2, η) ≤ min
σ2,η,l

NLL(σ2, η, l) . (3)

Next, we will show that, if ||y||22 →∞, then

min
σ2,η

g1(σ2, η)→∞ .

First, note that g1 depends only on the sum η + σ2, rather than the individual values. Therefore, we can re-parameterize g1

as follows

g1∗(z) := λ−1
1 z||y||22 + n log(λ0)− n log z ,

where z := (η + σ2)−1, and we have

min
z
g1∗(z) = min

σ2,η
g1(σ2, η) .

Since g1∗ is a convex function, the minimum value of g1∗ is attained for ẑ with

∂g1∗

∂z
(ẑ) =

||y||22
λ1
− n

ẑ
= 0 ,

and therefore

ẑ = n
λ1

||y||22
,

and

min
z
g1∗(z) = n+ n log(λ0)− n log(λ1n) + n log(||y||22) .

Therefore, if ||y||22 →∞,

min
z
g1∗(z)→∞ ,

and as a consequence, from Inequalities (3), we have

min
σ2,η,l

NLL(σ2, η, l)→∞ .

Therefore, as long as one or more observations belonging to V are selected, we must have that minσ2,η,l NLL(σ2, η, l)→∞.
Since NLL(σ2, η, l) is bounded from above for observations belonging to U , the trimmed marginal likelihood GP will select
only observations from U .

A.3 ASYMPTOTIC BIAS CORRECTION FOR σ2

Here, we explain the asymptotic correction for estimating the noise variance for Algorithm 2 in the main paper.

The derivation presented here, generalizes the derivation for the correction of the median linear regression Rousseeuw [1984].
Let Qf denote the quantile function for distribution f , and by Q{r2i }ni=1

the empirical quantile function of observed squared
residuals r2

i . We define Q{r2i }ni=1
(p) = r2

(bpnc), where r2
(1) ≤ r

2
(2) . . . ≤ r

2
(n). Let ν be the user-set maximum outlier-ratio,

i.e. 1− ν = m
n . Furthermore, note that each r2

i is distributed according to σ2χ2(1), where χ2(1) is the χ2 distribution with
1 degree of freedom. For n→∞, we have, see e.g. [Walker, 1968],

Q{r2i }ni=1
(1− ν)

p−→ Qσ2χ2(1)(1− ν) .



Therefore, for sufficiently large n, we have that

Q{r2i }ni=1
(1− ν) ≈ Qσ2χ2(1)(1− ν)

= σ2Qχ2(1)(1− ν) .

The last line follows from properties of the quantile function (see for example Lemma 1 in this supplement material).
Therefore, we set

σ2 =
r2
(b(1−ν)nc)

Qχ2(1)(1− ν)
.

Lemma 1. Let QX be the quantile function of a real valued random variable X , and define Y := αX , where α > 0. Then
the following holds

QY = αQX .

Proof. First note that

P (Y ≤ y) = P (Xα ≤ y)

= P (X ≤ y

α
) .

For any u ∈]0, 1[, we have

QY (u) = inf{y ∈ R |u ≤ P (Y ≤ y)}

= inf{y ∈ R |u ≤ P (X ≤ y

α
)}

= α inf{ y
α
∈ R |u ≤ P (X ≤ y

α
)}

= α inf{x ∈ R |u ≤ P (X ≤ x)}
= αQX(u) .

B DETAILS OF GREEDY METHOD

The function starts with the index set of all data points S := {1, 2, . . . , n}, and then removes the data point i∗ which leads
to the largest marginal likelihood, i.e.

i∗ := arg max
i∈S

(
log p(yS\{i}|XS\{i},θ)

)
. (4)

This is repeated until |S| = d(1− ν)ne. Naively solving the optimization in Equation (4) is in O(n4), since we need to
repeat n-times the calculation of the determinant and inverse of KS\{i}, where KS\{i} denotes the covariance matrix (plus
σ2I) of the data points in S \ {i}. However, using the block matrix inversion lemma (together with the Woodbury formula)
and the cofactor representation of the determinant, we can solve it in O(n3) as follows. Without loss of generality assume
that sample i corresponds to the last row and column of KS and write

KS =:

(
A b
bT c

)
, and K−1

S =:

(
U v
vT w

)
.

Using the block matrix inversion lemma, we have

U = A−1 +A−1b(−vT )

= A−1(I − bvT ) ,



and therefore

A−1 = U(I − bvT )−1

= U(I + bvT
1

1− vTb
) ,

where in the last line we used the Woodbury formula. Since A = KS\{i}, this allows for an efficient calculation of K−1
S\{i}.

Finally, the determinant |KS\{i}| can also be efficiently calculated as follows. Denote the the cofactor matrix of KS as C,
therefore we have Cnn = |A|. Using the cofactor representation of the inverse, we have

K−1
S =

1

|KS |
C ,

and therefore

|A| = Cnn

= |KS |(K−1
S )nn .

C COMMENT ON BIAS MODEL FROM PREVIOUS WORKS

The method in [Park et al., 2021] ("Constant Bias Model", Section 3.1) introduces a bias vector δ ∈ Rn, where n is the
number of samples. If δi 6= 0, then sample i is considered an outlier. Furthermore, introducing a Laplace prior on each δi,
with common scale λ, they propose to jointly estimate δ and λ as follows:

δ̂, λ̂ = arg min
δ,λ

1

2
(y − δ)TA−1(y − δ) + λ||δ||1 − log λ ,

for some positive definite matrix A, and responses y ∈ Rn.2 They suggest to alternate between the optimization of δ and λ.
However, even only one outlier can lead to a δ̂ which has no zero entry, that is all samples are treated as outliers. To see
this, first consider the optimization of δ, leaving λ fixed. Assume that sample i∗ is an outlier with yi∗ →∞, then we have
|δi∗ | → ∞. (On the other hand, if |δi∗ | were bounded, then yi∗ would have an arbitrarily large influence on the marginal
likelihood.) Next, consider the optimization of λ, leaving δ fixed: the problem is convex with the unique minimum at

λ̂ =
1

||δ||1
.

Note that 1
||δ||1 <

1
|δi∗ |

. Since |δi∗ | → ∞, we have that λ̂→ 0. However, if λ̂ is close to 0, the penalty λ||δ||1 will in effect

be switched off, leading to δ̂ = y.

D ADDITIONAL DETAILS AND EXPERIMENTS

For all methods, we initialize all hyper-parameters θ to log 2, except the variance σ2 which is initialized to 10. For all data,
we standardize the response and covariates using the median and and the interquartile range (IQR). For all experiments, we
used an Nvidia DGX-2. For the real datasets, for evaluating the predictive performance of all methods, we randomly split
the data into training (90%) and test data (10%).

D.1 ADDITIONAL RESULTS

References

Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating minimization and projection
methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz inequality. Mathematics of operations
research, 35(2):438–457, 2010.

2The term λ||δ||1 − log λ is supposed to correspond to a Laplace prior on each component of δi. However, note that the resulting
penalty on λ, should be −n log λ rather than − log λ.



Table 1: Estimated upper bound on outlier ratio ν. Except "no extra outliers", the true ratio of added outliers is 0.1.

no extra outliers uniform focused asym

bow 0.02 (0.01) 0.08 (0.0) 0.09 (0.02) 0.07 (0.0)
F100 0.03 (0.01) 0.07 (0.01) 0.08 (0.03) 0.08 (0.01)
F400 0.02 (0.0) 0.07 (0.0) 0.1 (0.0) 0.07 (0.0)
body 0.02 (0.0) 0.06 (0.01) 0.06 (0.02) 0.07 (0.01)

house 0.02 (0.0) 0.06 (0.0) 0.06 (0.02) 0.06 (0.0)
spacega 0.03 (0.0) 0.07 (0.0) 0.08 (0.0) 0.07 (0.0)

Table 2: Runtime in minutes of each GP regression method.

no extra added outliers

GP γ-GP t-GP ν-GP

bow 0.06 (0.0) 0.1 (0.0) 0.1 (0.0) 5.93 (0.76)
F100 0.09 (0.01) 0.13 (0.0) 0.17 (0.0) 4.33 (3.42)
F400 0.1 (0.01) 0.25 (0.02) 0.31 (0.03) 2.88 (0.6)
body 0.1 (0.0) 0.27 (0.0) 0.23 (0.0) 67.3 (0.0)

house 0.12 (0.0) 0.25 (0.0) 0.36 (0.0) 17.85 (0.0)
spacega 1.02 (0.0) 8.88 (0.0) 8.79 (0.0) 9.05 (0.0)

uniform outliers

bow 0.06 (0.0) 0.1 (0.0) 0.1 (0.0) 3.44 (0.44)
F100 0.09 (0.0) 0.13 (0.01) 0.17 (0.0) 2.53 (1.32)
F400 0.11 (0.01) 0.24 (0.01) 0.15 (0.01) 3.04 (1.23)
body 0.77 (0.48) 0.25 (0.01) 0.22 (0.0) 29.44 (15.93)

house 0.41 (0.38) 0.24 (0.02) 0.24 (0.03) 25.76 (29.33)
spacega 0.76 (0.02) 8.8 (0.06) 8.78 (0.07) 9.07 (0.17)

focused outliers

bow 0.06 (0.0) 0.1 (0.0) 0.1 (0.0) 3.51 (0.53)
F100 0.09 (0.01) 0.13 (0.0) 0.17 (0.01) 3.24 (2.37)
F400 0.1 (0.0) 0.23 (0.0) 0.12 (0.02) 4.71 (1.13)
body 0.1 (0.0) 0.24 (0.01) 0.22 (0.0) 55.5 (43.44)

house 0.11 (0.0) 0.23 (0.01) 0.28 (0.01) 20.09 (4.42)
spacega 0.84 (0.01) 8.74 (0.11) 8.67 (0.09) 23.81 (3.73)

asymmetric outliers

bow 0.06 (0.0) 0.1 (0.0) 0.1 (0.01) 3.33 (0.36)
F100 0.09 (0.0) 0.13 (0.01) 0.17 (0.0) 3.66 (3.32)
F400 0.12 (0.02) 0.23 (0.01) 0.15 (0.02) 2.68 (0.46)
body 0.46 (0.42) 0.24 (0.03) 0.22 (0.0) 26.23 (14.72)

house 0.3 (0.38) 0.24 (0.01) 0.23 (0.01) 9.58 (4.56)
spacega 0.76 (0.02) 8.8 (0.06) 8.78 (0.08) 8.92 (0.23)



Table 3: Runtime in minutes of each optimization method.

no extra added outliers

PGD Greedy (batch) Greedy (1-by-1)

bow 0.2 (0.02) 10.37 (7.07) 169.51 (32.26)
F100 0.14 (0.12) 8.86 (7.98) 5.01 (3.68)
F400 0.12 (0.05) 10.89 (9.67) 173.58 (52.01)
body 1.49 (0.0) 3.4 (0.0) 27.17 (0.0)

house 0.27 (0.0) 7.29 (0.0) 76.35 (0.0)
spacega 0.82 (0.0) 23.8 (0.0) -

uniform outliers

bow 0.14 (0.04) 2.37 (0.29) 160.39 (3.15)
F100 0.13 (0.15) 1.74 (1.85) 7.76 (5.66)
F400 0.15 (0.06) 2.59 (1.44) 42.53 (4.65)
body 0.79 (0.75) 5.17 (3.97) 65.61 (59.16)

house 0.21 (0.26) 2.82 (2.64) 150.36 (107.69)
spacega 0.6 (0.15) 8.52 (0.11) -

focused outliers

bow 0.17 (0.01) 3.49 (0.78) 170.7 (26.81)
F100 0.14 (0.18) 1.37 (1.06) 8.13 (4.43)
F400 0.13 (0.0) 2.94 (0.62) 139.74 (19.06)
body 0.21 (0.24) 2.03 (0.82) 33.37 (37.42)

house 0.71 (1.19) 6.12 (7.69) 227.69 (209.95)
spacega 0.9 (0.07) 9.09 (1.44) -

asymmetric outliers

bow 0.09 (0.0) 2.2 (0.07) 48.24 (1.08)
F100 0.13 (0.15) 2.61 (3.26) 5.23 (3.56)
F400 0.13 (0.0) 2.13 (1.34) 42.8 (5.34)
body 0.41 (0.48) 3.18 (4.07) 42.09 (37.34)

house 0.15 (0.1) 1.3 (1.0) 73.9 (69.2)
spacega 0.54 (0.01) 8.47 (0.35) -



Table 4: Marginal likelihood of solution found by different optimization methods.

no extra added outliers

PGD Greedy (batch) Greedy (1-by-1)

bow 1.76 (0.09) 1.75 (0.09) 1.76 (0.08)
F100 0.07 (0.12) -0.06 (0.24) -0.0 (0.46)
F400 0.34 (0.2) 0.36 (0.23) 0.42 (0.24)
body 3.35 (0.0) 3.11 (0.0) 3.23 (0.0)

house 0.11 (0.0) 0.09 (0.0) 0.18 (0.0)
spacega -0.31 (0.0) 0.38 (0.0) -

uniform outliers

bow 1.7 (0.07) 1.54 (0.08) 1.7 (0.07)
F100 0.01 (0.18) -0.1 (0.14) 0.1 (0.17)
F400 0.19 (0.12) 0.07 (0.19) 0.2 (0.12)
body -1.34 (2.33) -1.5 (2.02) -1.34 (2.3)

house -1.99 (1.13) -2.0 (1.11) -1.96 (1.16)
spacega -0.26 (0.03) 0.05 (0.07) -

focused outliers

bow 1.8 (0.05) 1.57 (0.05) 1.8 (0.05)
F100 0.13 (0.13) -0.08 (0.25) 0.22 (0.13)
F400 0.15 (0.04) -0.0 (0.05) 0.22 (0.16)
body 0.72 (1.19) 0.46 (0.91) 0.74 (1.25)

house 0.27 (0.18) 0.15 (0.26) 0.32 (0.25)
spacega -0.26 (0.01) -0.02 (0.14) -

asymmetric outliers

bow 1.67 (0.1) 1.49 (0.11) 1.67 (0.1)
F100 0.15 (0.13) -0.13 (0.21) 0.14 (0.32)
F400 0.17 (0.07) 0.03 (0.14) 0.23 (0.13)
body -1.17 (2.25) -1.56 (1.5) -1.14 (2.27)

house -1.23 (0.96) -1.29 (0.92) -1.23 (0.96)
spacega -0.25 (0.02) -0.07 (0.09) -



Table 5: Outlier ranking performance (R-precision) of different optimization methods.

uniform outliers

PGD Greedy (batch) Greedy (1-by-1)

bow 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F100 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F400 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
body 0.87 (0.06) 0.86 (0.06) 0.86 (0.06)

house 0.86 (0.06) 0.85 (0.06) 0.86 (0.05)
spacega 0.98 (0.0) 0.99 (0.01) -

focused outliers

bow 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F100 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F400 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
body 1.0 (0.01) 0.95 (0.11) 0.98 (0.05)

house 0.91 (0.16) 0.55 (0.24) 0.71 (0.32)
spacega 0.97 (0.0) 0.31 (0.3) -

asymmetric outliers

bow 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
F100 1.0 (0.0) 0.99 (0.03) 1.0 (0.0)
F400 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
body 0.86 (0.06) 0.86 (0.06) 0.86 (0.06)

house 0.85 (0.05) 0.85 (0.05) 0.85 (0.05)
spacega 0.98 (0.0) 0.99 (0.0) -

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-algebraic and tame problems:
proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods. Mathematical Programming,
137(1):91–129, 2013.

Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1):459–494, 2014.

Guoyin Li and Ting Kei Pong. Calculus of the exponent of kurdyka–łojasiewicz inequality and its applications to linear
convergence of first-order methods. Foundations of computational mathematics, 18(5):1199–1232, 2018.

Chiwoo Park, David J Borth, Nicholas S Wilson, Chad N Hunter, and Fritz J Friedersdorf. Robust gaussian process
regression with a bias model. Pattern Recognition, page 108444, 2021.

Peter J Rousseeuw. Least median of squares regression. Journal of the American Statistical Association, 79(388):871–880,
1984.

AM Walker. A note on the asymptotic distribution of sample quantiles. Journal of the Royal Statistical Society: Series B
(Methodological), 30(3):570–575, 1968.



Table 6: Root mean squared error (RMSE) on test data of different optimization methods.

no extra added outliers

PGD Greedy (batch) Greedy (1-by-1)

bow 0.06 (0.0) 0.06 (0.0) 0.06 (0.0)
F100 0.32 (0.05) 0.34 (0.08) 0.42 (0.19)
F400 0.25 (0.05) 0.23 (0.06) 0.24 (0.05)
body 0.08 (0.1) 0.05 (0.08) 0.08 (0.09)

house 0.55 (0.12) 0.46 (0.11) 0.54 (0.13)
spacega 0.49 (0.03) 0.37 (0.02) -

uniform outliers

bow 0.05 (0.0) 0.06 (0.0) 0.05 (0.0)
F100 0.31 (0.06) 0.31 (0.07) 0.29 (0.07)
F400 0.25 (0.03) 0.23 (0.05) 0.24 (0.03)
body 0.05 (0.08) 0.05 (0.07) 0.05 (0.07)

house 0.4 (0.14) 0.37 (0.12) 0.4 (0.13)
spacega 0.4 (0.02) 0.36 (0.01) -

focused outliers

bow 0.05 (0.0) 0.05 (0.0) 0.05 (0.0)
F100 0.26 (0.06) 0.3 (0.14) 0.25 (0.05)
F400 0.25 (0.01) 0.25 (0.01) 0.24 (0.03)
body 0.07 (0.08) 0.1 (0.09) 0.08 (0.08)

house 0.4 (0.07) 0.34 (0.06) 0.39 (0.09)
spacega 0.41 (0.06) 0.43 (0.04) -

asymmetric outliers

bow 0.06 (0.0) 0.06 (0.0) 0.06 (0.0)
F100 0.26 (0.05) 0.33 (0.09) 0.3 (0.12)
F400 0.25 (0.02) 0.24 (0.04) 0.24 (0.03)
body 0.12 (0.11) 0.15 (0.11) 0.12 (0.12)

house 0.35 (0.13) 0.33 (0.09) 0.34 (0.12)
spacega 0.4 (0.02) 0.37 (0.02) -
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