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1 Broader Impact

Vision-Language Pre-training (VLP) serves for a lot of downstream vision-language tasks like
visual question answering, visual reasoning, visual entailment. By extensive experiments, we show
the importance of inter-modality interaction and achieve competitive performance by applying
Transformer for visual embedding. Our study can benefit future researches from providing a view of
designing model for VLP. By revealing the fusion mechanism of multi-modality, our work may also
benefit other multi-modal tasks besides vision-language task.

At the same time, Vision-Language Pre-training may learn biased or offensive content from unsuper-
vised image-text pairs. This may cause improper understanding of images. More work is needed to
automatically filter data for pre-training.

2 Image-Text Retrieval

In this paper we focus on tasks related to visual relation understanding and inter-modal reasoning:
Visual Question Answering (VQA), natural language for visual reasoning (NLVR), and fine-grained
visual reasoning (Visual Entailment). We also show results on Image-Text Retrieval task. Image-text
retrieval aims to retrieve the most relevant text from candidate images, or vice versa. Image-text
retrieval includes two sub-tasks of image-to-text retrieval (TR) and text-to-image retrieval (IR). We
follow the same practice as SOHO [4] to conduct image-text retrieval for fair comparisons. During
training, we construct image-text pairs in a mini-batch by sampling aligned pairs from ground-truth
annotations, and unaligned pairs from other captions within the mini-batch. To predict whether an
image-text pair is aligned or not, we use the joint embedding representation of the [CLS] token from
Transformers to perform binary classification. Since the binary classification objective of image-text
retrieval model is consistent with the image-text matching (ITM) task in pre-training stage, we
initialize the task-specific head from the pre-trained I'TM head for better initialization. We adopt
AdamW optimizer with a learning rate of 5e-5. The mini-batch size is set to 32. We train 10 epochs
until convergence and decay the learning rate by half at 5th epoch empirically.

Experiment results on Flickr30k [12] are shown in Table[T} Our model outperforms ViLT and SOHO
under all metrics on Flickr30k. The promising results of our model on image-text retrieval indicate
the advantage of our fully Transformer architecture for learning cross-modal alignment.

3 Dataset Statistics

We summarizes the statistics of all our pre-training and downstream tasks in Table 2]
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Table 1: Evaluation of image-to-text retrieval (TR) and text-to-image retrieval (IR) on Flickr30K
indicates the detail is not reported.

dataset.

non

Method VSE++[2] SCAN[8] VILBERT[11]] Unicoder-VL[9] UNITER[1] ViLT[6] SOHO[4] Ours

R@l1 529 674 - 86.2 85.9 83.7 86.5 87.0
TR R@5 80.5 90.3 - 96.3 97.1 97.2 98.1 984
R@10 872 95.8 - 99.0 98.8 98.1 99.3  99.5
R@l1 39.6 48.6 582 71.5 72.5 62.2 725 735
IR R@5 70.1 71.7 84.9 90.9 924 87.6 927 931
R@10 795 85.2 91.5 94.9 96.1 93.2 96.1 964

Table 2: Statistics of different tasks. Notation “*”” denotes Karpathy split [5]. Notation “-” denotes

not applicable.
Task Dataset Train Split Test Split Metric
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