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A RELATED DEFINITIONS

This section presents background information on the Matern covariance function, differential en-
tropy, and information gain.

A.1 MATERN COVARIANCE FUNCTION

The Matern covariance function, widely used in BO, is defined as

1 d ) 2vd
kMaterrl—V(070/) - 1—‘(1/)21,71 <\/7 ) Bl/ <\/? > 5 (23)

where | > 0, d = ||@ — 0'||2 represents the Euclidean distance between 6 and 6’, v > 0 denotes
the smoothness parameter, I'(-) represents the gamma function, and B, (-) denotes the modified
Bessel function of the second kind. Varying v determines the smoothness of samples drawn from a
Gaussian process with this covariance function. Smaller values of v correspond to rougher samples.
Additionally, these samples are [v] — 1 times continuously differentiable (Williams & Rasmussen,
2006). Figure [3]illustrates samples drawn from a Gaussian process with this covariance function
using different values of v.
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Figure 3: Samples drawn from a Gaussian process with the Matern covariance function
kMatern—v (0, 0") using smoothness parameters v from v = 0.5 to v = 6.5.

A.2 DIFFERENTIAL ENTROPY

Let X be a random variable with a probability density function ¢ whose support is a set X. The
differential entropy H (X)) is defined as

H[X] = E[~ log(¢(X))] ::/qu<x>1ogq<x>dx. (24)

Specifically, the differential entropy of a multivariate Gaussian random variable Xgaussian With
distribution N (u, K) is expressed as

1
H[Xcassian] = 5 log(det(2me ), (25)

where p denotes the mean vector and K represents the covariance matrix.

A.3 INFORMATION GAIN

Let St = {(61,9(61)),- -, (07,y(0r))} be T accumulated observations about the function f(8),
where y(6;) denotes the estimation of f(8;) for t € [T]. The informativeness of St regarding f(0)
is quantified by the information gain gz, which is the mutual information (Shannon, [1948) between

yr = [y(61)---y(0r)]" and fr = [f(61)--- f(6r)]". Specifically,
gr = Hlyr| — Hlyr|fr], (26)

where H[yr| represents the information entropy of yr and H[yr|fr] denotes the conditional infor-
mation entropy of yr given fr.
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B PROOF OF LEMMA (4.3

In this section, we present a complete proof of Lemma through a sequence of lemmas. We
initially establish the following result regarding the partial derivative 9; f(0) of the noise-free PS-
QNN objective function f(0) : D = [0,27]?” — R for any j € [2p] and any 8 € D.

Lemma B.1. Assuming that Assumptionholds, let f(0) : D = [0,27]?" — R be the noise-free
PS-QNN objective function. Given a failure probability 6 € (0,1), the partial derivative 0; f ()

satisfies

Vj € (2,70 € D, 10,£(0)] < \/Vo[01(0)]/0 @)
with a success probability of at least > 1 — 6, where Vg[0, f(0)] is the variance of 0, f(0) with
index a = arg max;epap) (Supgep |95 f(0)]).

Proof. Fix a € [2p], by Chebyshev’s Inequality, we have

Pr{V¥0 € D,Vs > 0, |0, f(8) — Eo[0. f(8)]] < s} > 1 — Vo[af(8)]/52, 28)

where Eg[0, f(0)] and V[0, f (0)] are the expectation value and the variance of 9, f(0). Assuming
that Assumption [4.2/ holds, we demonstrate that Eg [0, f(0)] = 0. The detailed proof can be found
in Ref.|Cerezo et al.|(2021b)). This implies

Pr{V0 € D,Vs > 0, [0.f(0)| < s} > 1 —Vg[0.f(0)]/5°. (29)
By choosing a = arg max;¢op) (Supgep |05 f(0)|), we have
Pr {Vs >0, sup |0, f(0)| < s} >1—Ve[0.f(0)]/5% (30)
6eD
The use of the index a and the notation sup(-) immediately implies
Pr{Vj € [2p],¥0 € D,Vs > 0, |0, f(0)| < s} > 1 — Vg[0,f(0)]/5> (3D
Let the failure probability 6 = V[0, f(0)]/s? € (0, 1), we have
Pr{vj € [2).¥0 € D, 10,/(0)] < Vo[8[ (0)]/5} > 14, (32)
O

Lemma B.2. Given a noise-free PS-QNN objective function f(0) : D = [0,27]?? — R, we have
V0.0' € D, |f(0) — f(6')] < max (SHP 0;£()] ) 10 — 0|1, (33)
jel2p] \oeD

where 0, f(0) is the partial derivative of f(0) for j € [2p].

Proof. Let 6 be represented as [01, - - - ,02,] 7. For any 8,0’ € D, we have
f(9>_f(0/) :f(eh 792p)_f( /1a927"' a92p)+"'+

f(0,17 59;'—150j7'” 79210) 7f(9/1’ 79;703'-‘1-17"' 592p)+"'+ (34)
f(gllv o a9/2p71,92p) - f(glla e 79/2p)'

By Triangle Inequality, for any 8, 6’ € D, we have

1£(0) = F(O) <1f(Or, -, 02p) = f(07,02, -, O2p)| + - +

‘f( /17 5 _;—159.77"' 7921)) _f( /la 76;a9j+17"' 50213)’ + (35)
|f(9,17 e 50/2[)—17021)) - f(ella e 79l2p)| :

For any j € [2p], the partial derivative with respect to the problem-oriented Hamiltonian H;

8, (8) = i{wo|UL [Hy, UL H\UJU_|00) (36)
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and the partial derivative with respect to the mixing Hamiltonian Ho
0;£(6) = i(po|UT [Ha, UL HiULJU_|¢po) (37

exist and are continuous on D = [0, 27]??, where U_ is the left slice circuit and U is the right slice
circuit of the variational parameter 8, in the noise-free PS-QNN U (), and |) is the initial state.

Fix [07, -+ ,05 1,0541,--- ,02,]" € [0,27]*’~', f(6) can be seen as an uni-variable function
in ;. By Lagrange’s Mean Value Theorem (Sohrab, [2003), for any 0;, 93 € [0,2x] and for any
(07, 05_y,0541, 02,7 €[0,27]2P~" denoted as 6 € D, we have
|f(9/17 o 30; 130j7’ o ;02p) - f(allv T 79]aaj+17' o 302p)’ < Lj7é |9] - 0;| ) (33)
where L 5 = supy. ¢(o,2x) [0;.f(0)|. In light of this, for any 0;, 6’ € [0, 27] and for any 6 € D, we
have
|f( /la ; ;‘—lvoja"' a92p) _f( /17 39;79J+1a"' 792P)| < L.’/ |91 _9”7 (39)
where Lj = supgp Lj ¢- Therefore, for any 8,60’ € D, we have
|f(8) — f(0")] < L]0y — 01|+ -+ Loy |92p - 9/2p| (40)
L; 0, — 0] 41
< (pagia) 1 o
= max L;[0 — 6’| (42)
j€(2p]
— max (sup 10,1(60)1) 16 - ). @3)
16[217]
O
Given Lemma [B.T|and Lemma[B.2] we come to Lemma [4.3] straightforwardly.
Proof of Lemma[.3] By Lemma|[B.1] we pick & € (0,1) and have
e { s (sup [0,10)]) < Va7 @5} =1~ (@)
j€l2p] \oeD

where Vg[0,f(0)] is the variance of the partial derivative 0,f(0) with index a =
arg max;c(ap] (Supgep |95/ (6)]). Substituting this into Lemma B.2} the statement holds. O

C PROOF OF THEOREM [4.3]

Theorem C.1 (Formal). Given a constant threshold €, a failure probability § € (0,1) and an n-
qubit noise-free PS-QNN objective function f(0) : D = [0,27]*? — R induced by the network
U(0) that satisfies Assumption run BO for T = poly(n'/ 62) steps, where the scaling parameter
N for the acquisition function UCB,(0) used in each step t is predefined as

ne = 2log (27t /38) + 4plog(8mpt*\/Ve[0u £(0)]/0). (45)
If the parameter dimension

p<0(Viogn), 46)

then the optimization error rp satisfies rp < € with a success probability of at least 1 —
5.  Here, Vg[0,f(0)] is the variance of the partial derivative O,f(0) with index a =

arg max;e(ap] (SuPgep |0;.f(6)))-
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C.1 OUTLINE OF THE PROOF PROCEDURE

Our objective is to determine the effective parameter dimension p of the noise-free PS-QNN U ()
such that the optimization error r = f(6*) — f(07) after T = poly(n) steps of executing BO
can be upper bounded by a constant threshold e. Here, 6* represents the global maximum point
and 0; denotes the approximation of the maximum point in the previous 7" steps. We investigate
this question through the perspective of the Bayesian approach, which considers the corresponding
noise-free PS-QNN objective function f(@) as a sample drawn from a Gaussian process with the
Matern covariance function kypatern—» (6, 0”) (Eq. . We first establish that 7 is upper bounded

by + Z?:l (f(0%) — f(6:)), where 6, represents the next point selected in each step ¢. It is ev-
ident that the condition + ZtT:1 (f(0%) — f(6:)) < e is sufficient to deduce the result r < e.

Hence, by ensuring that the upper bound on Z;le (f(6*) — f(6:)) is no greater than €, we can
determine the effective p that guarantees rr < e. Subsequently, we utilize the continuity property
of the noise-free PS-QNN objective function f(6) (Lemma to establish an upper bound on

LT (f(67) — £(8))).

The complete proof of Theorem [4.5]is supported by a series of lemmas (Lemma [C.2}Lemma[C.8§).
We will introduce how these lemmas are employed in our proof. For convenience, we ini-
tially present explanations of several notions that commonly occur in the following sections.
Specifically, Vg[0,f(0)] denotes the variance of the partial derivative 0, f(6) with index a =
arg max;eap (Supgep |05 f(0)|). Additionally, p1;1(6) represents the posterior mean function of
f(@) and o;_1(0) denotes the posterior standard deviation of f(8) based on the accumulated obser-
vations S;_1 from the previous ¢t — 1 steps.

To facilitate the analysis in the continuous domain D = [0, 27]??, we discretize D into a finite grid
D; in each step ¢, as it has been employed in Ref. |Srinivas et al.| (2012)). Specifically, the size of
D; is determined by the degree of discretization 74, such that [D;| = (7;)?”. In the subsequent
discussion, we use [0*]; to denote the closest point in D; to 6*. Next, we will evaluate upper
bounds on f(0*) — f([0*]+) (the first term) and f([6*];) (the second term) to obtain an upper bound
on f(6*). Regarding the first term, according to Lemma if 7, = 8mpt?\/V[0,f(0)]/9, then
f(6%) — £([6*]:) can be upper bounded by 1/t? with a success probability of at least 1 — § /4. Con-
sidering that 6, is selected by maximizing the acquisition function UCB,(0) over D, according to
Lemma UCB,(0¢) = p14—1(6:) +/t01—1(6;) can be used to upper bound f([0*];) with a suc-
cess probability of at least 1 —&/4. Here, a predefined scaling parameter 1, = 2 log (2%t? | Dy /30)
is used. Taking the two upper bounds mentioned above into account, Lemma[C.4]demonstrates that

F(07) = (£(0") = f([6"]) + £(10"]) < 1/ + p1—1(80) + /0eo1—1(81)
with a success probability of at least 1 — § /2. Furthermore, we establish that f(6;) is lower bounded
by pi—1(6:) — \/n;0:—1(6¢) with a success probability of at least 1 — §/2 using Lemma where

n; = 2log(w*t?/34). Since 1, > 7;, we can also use 1¢—1(6;) — /N;0¢—1(6;) as a lower bound for
f(6,). Afterward, Lemma|C.6|establishes that

F(07) = f(8:) < 1/t* +2/nioe—1(61)
with a success probability of at least 1 — §. Then, Lemma establishes a connection between
the sum of posterior variances 23:1 o? 1(0,;) and the information gain gr (Eq. . As f(0)
is considered as a sample drawn from a Gaussian process with kyfatern— (6, 0’), we can bound
ZZ;I o?_1(0;) by the upper bound O(T 77 log77 (T)) on the maximal g7 for kyfatern—y (6, 60')
in Ref. |Vakili et al| (2021). By applying Cauchy-Schwarz Inequality and considering the non-

decreasing property of 7; as t increases, we can substitute the form of 1 to obtain the result stated
in Lemma

rr <0 (\/plog (PT%(Ve[0a f(0)])1/2) (1ogT/T)uip>

with a success probability of at least 1 — §. Finally, we obtain the effective p by solving for this
upper bound is no greater than a constant threshold e with 7' = poly (n'/ ¢ ).

C.2 PROOF DETAILS

In this section, we provide a comprehensive introduction to the corresponding lemmas.
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Lemma C.2. Assuming that Assumption 4.2 holds, let f(8) : D = [0,27]%" — R be the n-qubit
noise-free PS-QNN objective function. Given a failure probability § € (0,1) and a finite grid D; of
size |Dy| = (71)?P with the degree of discretization T, = 4wpt?\/V[0,f(0)]/6 in each step t, run
BO for T = poly(n) steps. The following relationship

vt € [T],96 € D, |/(6) — f([6])] < 1/¢* @7)

holds with a success probability of at least 1 — 0, where [0); represents the closest point in Dy to 6.

Proof. By choosing a finite grid D; of size (7;)?" in each step ¢, for any & € D we have
16 — [6]:]l, < 4mp/7. Given Lemma.3] we have

Pr{vt € [T],¥0 € D, |£(6) - £(6]0)] < 4np\/ VO O)/0/m} > 1-5,  (48)
where the failure probability § € (0,1). Since 7, = 4wpt?+/V[d, f(0)]/9, then
Pr{vt € [T],¥0 € D, |f(6) — f([0]:)] < 1/t*} > 1 4. (49)

Furthermore, we consider V[0, f(0)] to be 1/poly(n), as shown in Ref. |Park & Killoran| (2024).
Additionally, we assume that parameter dimension p is at most poly(n). In order to guarantee
the degree of discretization 7; of at least 1, we enforce a constraint that the number of steps T' =
poly(n). This constraint is consistent with the scenario we are exploring. O

Lemma C.3. Given a failure probability § € (0,1), an n-qubit noise-free PS-QNN objective func-
tion f(0) : D = [0,27]?? — R and a finite grid D, C D of size | D;| in each step t, run BO for
T = poly(n) steps, where a scaling parameter 1, for the acquisition function UCB.(0) used in
each step t is predefined as 0y, = 2log(n?t? | Dy| /66). The following relationship

vt € [T],V0 € Dy, f(0) € Ci(0) (50)
holds with a success probability of at least 1 — §, where Ci(0) represents a confidence interval

(1t-1(0) — /1iot-1(0), pi—1(0) + \/nro1—1(0)]-

Proof. Fixt € [T] and 8 € D;. Conditioned on accumulated observations S;_; from the previous
t — 1 steps, the posterior distribution f(8) ~ N(u;—1(0),02_1(0)). Now, if b ~ N(0, 1), then

Pr{b > w} = exp(—w?/2)(27) "2 exp (=(b—w)?/2 — w(b— w)) (1)
< exp(—w?/2) Pr{b > 0} (52)
= %exp(—w2/2) (53)

for w > 0, since exp(—w(b — w)) < 1 forb > w. Using b = (f(0) — ut—1(0))/0+—1(0) and
w = /1, we have

Pr{f(0) ¢ C:(8)} < exp(—1:/2). (54)
Applying the union bound for 8 € D;, we have
Pr{v0 € Dy, f(0) € C:(6)} > 1 — [Difexp(—m:/2). (55)

Given that |D;| exp(—1;/2) = /q;, where ), (1/q;) = 1, ¢; > 0, by applying the union bound
for t € N, the statement holds. For example, we can use q; = 722 /6. O

Lemma C.4. Assuming that Assumption [4.2] holds, let f(0) : D = [0,27]* — R be the n-
qubit noise-free PS-QNN objective function. Given a failure probability § € (0,1), run BO for
T = poly(n) steps, where a scaling parameter 1 for the acquisition function UCB(0) used in
each step t is predefined as n; = 2log(m*t?/36) + 4plog(4mpt®\/2Ve[0.f(0)]/5). The following
relationship

vt € [T], f(6%) < j—1(0:) + /7eor—1(6;) + 1/ (56)

holds with a success probability of at least 1 — §, where 8* denotes the global maximum point and
0. represents the next point selected in each step t.
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Proof. Using the failure probability §/2 in Lemma for the global maximum point 6*, we have
Pr{vt € [T], f(0") — f([67]:) <1/t*} > 1-4/2, (57)

where [6*]; denotes the closest point in D, to 6*. Here, a finite grid D, of size |D;| = (7;)?" with

7, = 47pt?/2V[0,f(0)] /5. Then, applying Lemmawith the failure probability §/2, for [0*];,

we have

Pr{vt € [T, £(16"].) < ju1(18"]0) + Vo1 (18710)} = 1 - 8/2, (58)
where 1; = 2log(n%t? |Dy| /36). As the next point ; is selected by maximizing UCB;(8) in each
step ¢, we have UCB;([0*];) < UCB,(6;). Then, we have

Pr{vt € [T], f([0"]¢) < pe-1(0) + /neor—1(60:)} > 1—6/2. (59)
Taking Eq. and Eq. together, the statement holds since (1 —§/2)? > 1 — 4. O

Lemma C.5. Given a failure probability § € (0,1) and an n-qubit noise-free PS-QNN objective
function f(0) : D = [0,27]?" — R, run BO for T = poly(n) steps, where a scaling parameter 1,
for the acquisition function UCB,(0) used in each step t is predefined as n, = 2log(n*t?/665). The
following relationship

vt € [T], f(6:) € C:(6:) (60)
holds with a success probability of at least 1 — §, where 0, represents the next point selected in
each step t and C(0,) denotes the confidence interval [p;—1(6;) — mgt_l(et), wi—1(0) +

n0t-1(6)]-

Proof. Fixt € [T]. Conditioned on S;_1 from the previous ¢ — 1 steps, for the next point 6; selected
in each step ¢, the posterior distribution f(6;) ~ N (p—1(6),07_1(8;)). Now, if b ~ N(0,1), then

Pr{b > w} < Lexp(—w?/2) for w > 0. Using b = (f(6:) — p1e—1(601))/0¢—1(6;) and w = /7],

we have

Pr{f(6:) ¢ C:(6:)} < exp(—1;/2). (61)
Given that exp(—;/2) = 6/q:, where }_,-,(1/q:) = 1, ¢ > 0, by applying the union bound for
t € N, the statement holds. For example, we can use ¢; = 22 /6. O
Lemma C.6. Assuming that Assumption holds, let f(0) : D = [0,27]*" +— R be the n-

qubit noise-free PS-ONN objective function. Given a failure probability 6 € (0,1), run BO for
T = poly(n) steps, where a scaling parameter 1, for the acquisition function UCB.(0) used in

each step t is predefined as n; = 2log(27t?/36) + 4plog(8mpt2+\/V[0,.f(0)]/5). The following

relationship

vt € [T, £(0%) — f(6,) < 2y/mo—1(0;) + 1/ (62)
holds with a success probability of at least 1 — §, where 0* denotes the global maximum point and
0, represents the next point selected in each step t.

Proof. Using the failure probability §/2 in Lemma [C.4] for the global maximum point 8*, we have
Pr{vt € [T, f(07) < pue-1(0r) + \/meoe—1(0:) +1/t7} > 1~ 6/2 (63)

with 1, = 2log(2n%t?/35) + 4plog(8mpt?/ V[0, f(0)]/9) in each step t. Then, using the failure
probability §/2 in Lemma|C.5| for the next point 6, selected in each step ¢, we have

Pr{Vt € [T}, f(6:) > pe—1(6:) — V/mjor-1(6:)} > 1—6/2 (64)
with 7, = 2log(m%t?/36) in each step t. As the aforementioned 7, is greater than 7, used here,
choosing 7, here is also valid. Taking Eq.[63]and Eq. [64] together, the proof is completed. O

Lemma C.7. Given an n-qubit noise-free PS-QNN objective function f(0) : D = [0,27]*? — R,
run BO for T = poly(n) steps. Let St = {(01,y(01)), - ,(07,y(07))} be the accumulated
observations from the previous T steps, where the estimation y(0;) = f(0;) + £2°'¢ in each step
t. Here, £1°¢ ~ N(0,1/4M) is independent and identically distributed Gaussian noise with M
representing the fixed number of measurements. The information gain gr (Eq.[26) can be expressed

as
T

1
gr = ZlOg(l +4Mo? | (6y)). (65)

t=1
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PVOOf Let Yi—1 — [ (91) (0t 1)] and ft 1 = [f(01) f(Bt 1)]T fort € [T+ 1] Plug—
ging in the differential entropy of a multlvanate Gaussian random variable (Eq 25), we have

H(y(6:)|yi—1] = 1/2log(2me(1/4M + 0?2 1(0,))) for t € [T] and H[yr|fr] = flog(Tre/QM)
Using the fact that H[y;] = H[y;—1] + H[y(0:)|y:—1], we have

Hlyr| = Hlyo] + Hly(61)|yo] + H[y(62)[y1] + - + Hly(07)[yr 1] (66)
T
1
=3 > log(2me(1/4M + o7, (6y))). (67)
t=1
Recalling the definition of g7 (Eq.[26), the statement holds. O

Lemma C.8. Assuming that Assumption [4.2] holds, let f(0) : D = [0,27]*? — R be the n-
qubit noise-free PS-QNN objective function. Given a failure probability § € (0,1), run BO with
the Matern prior covariance function kyiatern—v(0,0") (Eq.[23) for T = poly(n) steps, where a
scaling parameter 1, for the acquisition function UCB¢(0) used in each step t is predefined as

ne = 21log(2m2t2/36) + 4plog(8mpt?+/Ve[0. f(0)]/6). The optimization error rr satisfies

rp <O (\/p log (pT2(Ve[0.f(8)])1/2) (log T/TW) (68)

with a success probability of at least 1 — 6.

Proof. Noted that 7; in Lemma is non-decreasing. Since 0 < 4Mo? ,(0,) <
4AMEatern—v (0, 6;) < 4M, denoted as 4Mo? | (6;) € [0,4M], we have 4Mo? | (6;) <
(4M/log(1 4+ 4M))log(1 + 4Mo?_,(6;)). Moreover, Lemma links the sum of the posterior
variances Zthl o2 ,(0,) to the information gain g7. By Cauchy-Schwarz Inequality, we have

T 2 T T
(Z 2\/%1(90) <D dAmYy o7 1(6) (69)

t=1 t=1 t=1
Tn r
T
<=r ;(4Ma?_1<0t>) (70)
%ilo (1+4Mo? (8,)) (71)
= log(1 + 401) &= % -1\t
= coTnrgr, (72)

where the parameter ¢g = 8/log(1 + 4M). The optimization error is given by r7 = f(0*) —
f(65), where 6* represents the global maximum point and 07 = argmaxge 4, f(0) denotes the
approximation of the maximum point with the accumulated points Ay = {64,--- ,0r} from the
previous T steps. Now, we have

T
rp < T; 1(0) — £(6,)) (73)
T T
<7 (Z Vi1io-1(61) +Zl/t2> (74)
t=1 t=1
1
< = (VaTunrgr +7/6). 75)

As f(0) is considered as a sample drawn from a Gaussian process with knatern—v (0, 6'), we can
use the upper bound O(T e logv+P (T')) on the maximal g7 for kytatern—» (6, 0’) in Ref. |Vakili
et al.[(2021). By substituting 1 and O(Tﬁ log#7 (T')) into Eq.[75| the statement holds. O

Now we are ready to complete the proof of Theorem §.3]
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Proof of Theorem[{.5] We consider V[0, f(8)] to be 1/poly(n), as shown in Ref. Park & Killoran
(2024). Additionally, we assume that the parameter dimension p is at most poly(n). To ensure
consistency with the scenario under investigation and to guarantee the degree of discretization 74 in
Lemma of at least 1, we impose a constraint that the number of steps 7' = poly(n). Hence,
it is reasonable to treat log (pT%(Vg[0,f(6)])'/2) as a constant. Therefore, our task is to find the

effective p that satisfies the condition (p(log(T)/T)7+7)'/2 < e, where € is a constant threshold
and T' = poly(n). Let

p < % (62 — v+ /(2 —v)2 +4ve? (1 + log(T/ logT))) , (76)
then the above upper bound satisfies the inequality
p? — (2 —v)p —ve? (1 +1log (T/logT)) <O0. a7n
Equivalently, the above inequality can be rewritten by
log (logT/T) < (14 p/v) (1 — p/eQ) . (78)
Considering the relationship log x > 1 — 1/« holds for 2 > 0, then the above inequality implies
log (log T/T) < (1 + p/v)log (¢*/p) (79)
which directly leads to
log T/T < (2/p)" ™", (80)

that is (p(log(T)/T) 77 )'/2 < ¢. Finally, let T = poly(n'/<’) and substitute it into Eq.[76| We
obtain the effective parameter dimension p for the noise-free PS-QNN, which is p < O (\/log n)
O

D PROOF OF LEMMA [5.4]

In this section, we provide the proof of Lemma [5.4] which is similar to the proof of Lemma[4.3]

Proof of Lemma Given an n-qubit noisy PS-QNN objective function with g-strength local Pauli
channels f,(0) : D = [0, 27]* — R, for any j € [2p], the partial derivatives 9; f,(6) exist and are
continuous, as shown in Ref.[Wang et al| (2021). Using a similar proof sketch as in Lemma[B.2] we
have

V60,6’ € D, fq(e) - fq(al)

< max (sup |0,7,(0)]) 16~ 01 @1
j€2p] \oeD
Considering the Maximum Cut problem on an unweighted d-regular graph with n vertices, we can

rely on Corollary 2 in Ref. Wang et al.|(2021) to obtain an upper bound on 9; f,(8) for any j € [2p).
Then, the following relationship

V0,0’ ¢ D,

fa(0) — f(8)| < L|0 -0 (82)

holds, where the Lipschitz continuity factor is given by

I = /In 2/2d2n% HH{\/IaxCutl|ooq((d1+1)p+1) (83)

with the strength ¢ € (0,1) and d; representing the network depth of the implementation of the
unitary corresponding to the problem-oriented Hamiltonian HMaxCut  Since ||HMaxCut|| =
O(nd/2), ¢ € (0,1) and d; = Q(d), we have L = O(d*n"/?q(@+1P), Thus, the proof of
Lemmal5.4lis concluded. U
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E PROOF OF THEOREM

Theorem E.1 (Formal). Consider the Maximum Cut problem on an unweighted d-regular graph
with n vertices, where d is a constant. Given a constant threshold ¢, a failure probability
d € (0,1) and a noisy PS-ONN objective function with q-strength local Pauli channels fq 0) :
D = [0,27]*’ — R induced by the network Uy (@) that satisfies Assumption run BO for
T = poly(n!/ 62) steps, where the scaling parameter 1 for the acquisition function UCB(0) used
in each step t is predefined as

ne = 2log(m%t?/(38)) + 4plog(4mpt?d®n/2 ¢4+ 1P, (84)

Under the condition where the strength q spans 1/poly(n) to 1/n'/V1°e™ if the parameter dimen-

sion
p < O(logn/log(1/q)), (85)

then the optimization error T'r satisfies 71 < € with a success probability of at least 1 — 0.

E.1 OUTLINE OF THE PROOF PROCEDURE

Our objective is to determine the effective parameter dimension p of the noisy PS-QNN 4, (0)
such that the optimization error 7 = f,(0*) — f,(85) after T = poly(n) steps of executing
BO can be upper bounded by a constant threshold ¢. Here, 0~ represents the global maximum
point and ON; denotes the approximation of the maximum point in the previous 7" steps. We in-
vestigate this question through the perspective of the Bayesian approach, which considers the cor-
responding noisy PS-QNN objective function fq(G) as a sample drawn from a Gaussian process
with the Matern covariance function knjatern—, (6, 0”). We first establish that 77 is upper bounded
by =+ Zle( f4(0%) — £,(6)), where 8; represents the next point selected in each step . It is ev-
ident that the condition ZtT:1( f4(0%) — f,(8,)) < e is sufficient to deduce the result 77 < .
Hence, by ensuring that the upper bound on Zthl( fa(6%) = f,(6,)) is no greater than €, we
can determine the effective p that guarantees 7 < €. Subsequently, we utilize the continuity prop-
erty of the noisy PS-QNN objective function fq(G) (Lemma D to establish an upper bound on
+ Zle( fa(6%) — £,(6)). The complete proof of Theorem [5.6|is similar to the proof of Theo-
rem [4.5] and is supported by a series of lemmas analogous to Cemma [C.2]to Lemma[C.§] Instead
of providing a detailed description of each lemma here, we will directly present lemma [E.2] similar
to Lemma[C.8] Additionally, we will emphasize the impact of the difference in continuity property
between the noise-free and noisy PS-QNN objective functions on the result.

E.2 PROOF DETAILS

In this section, we provide a comprehensive introduction to the Lemma

Lemma E.2. Considering a Maximum Cut problem on an unweighted d-regular graph with n ver-
tices, where d is a constant. Assuming that AssumptiOnholds, let f,(0) : D = [0,27]?P — R
be the noisy PS-QNN objective function with q-strength local Pauli channels, where the strength
g € (0,1). Given a failure probability § € (0,1), run BO with the Matern prior covariance
Sunction kntatern—v(0,07) (Eq. for T = poly(n) steps, where a scaling parameter n; for
the acquisition function UCB,(0) used in each step t is predefined as n;, = 2log(m*t?/(39)) +
4p 10g(4ﬂpt2d3n7/2q(d+1)p). If the parameter dimension p is given by

p < O (logn/log(1/q)), (86)

the optimization error v satisfies

i < O (\fplogtpT2atn /26 0r) o 7/7) 75 (87

with a success probability of at least 1 — 6.

Proof. Using the continuity property of the noisy PS-QNN objective function fq(e) as stated in
Lemma [5.4] and a series of lemmas similar to Lemma to Lemma we can easily obtain
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the aforementioned result. It is essential to emphasize the constraint imposed on the parameter
dimension p. To guarantee the degree of discretization 7 of at least 1, as mentioned in LemmalC.2]
we need to discuss the range of p that satisfies p72d®n7/2¢(*t1DP > 1. Since the number of steps
T = poly(n) and p is at most poly(n), we can establish the inequality

n < pT’n™/? <n®, (88)

where ¢y and ¢, are two very close constants. Then, we have

P 1 P
nci d3 S T2n7/2d3 S nczd?) . (89)
Since ¢ € (0, 1), the relationship
p(d+1) d+1
qr2ad < qT2aT/243 (90)
holds. As y¥ is monotonically decreasing in the interval (0, 1/e), we have
1 pT2n17/2d3 1 ncllds
(pT2n7/2d3> = (ncld3> on
Let
ci1logn +3logd
p< BT EIRE 92)
(d +1)log(1/g)nler=c2)
then the above inequality implies
1 T p(d+1)
(nm d3) < gne2ds (93)
which directly leads to
1 pT2nl7/2d3 _d41
<pT2n7/2ds> < g, (94)

that is pT2d®n"/2¢(@+1)P > 1. Considering d as a constant, Eq.implies p < O(logn/log(1/q)).
O

Proof of Theorem[5.6] Furthermore, when the strength ¢ > 1/poly(n), it is reasonable to treat
log(pT2d>n™/?q(+1)P) as a constant. Therefore, our objective is to determine the effective p that
satisfies the condition (p(log(T')/T)7+7)*/2 < e with a constant threshold e. The previous result
shows that p < O(y/Iogn) and T = poly(n'/<’). Therefore, we have

p < min{O(y/logn), O(log n/ log(1/a))}. 95)

Let 1/poly(n) < q < 1/n'/VI°87 then this constraint implies
logn/log(1/q) < \/logn, (96)
thatis p < O (log n/log(1/q)). Thus, the proof of Theorem|5.6]is concluded. O

F NUMERICAL EXPERIMENTS

We perform numerical experiments in three directions: (1) employing a more diverse set of graph
structures, (2) comprehensively comparing BO and GD, and (3) numerically validating our theoreti-
cal results. To ensure conceptual clarity, we first define three key concepts for solving the Maximum
Cut problems using PS-QNN: (1) Exact Solution of the Problem as the exact Maximum Cut value
of a given graph, (2) Circuit-Achievable Value as the maximum objective function value attainable
with the PS-QNN at specified depth, and (3) Algorithm-Optimized Value as the optimized objective
function value obtained via BO or GD.
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Table 2: Performance of BO on diverse graph structures.
Graph(Qubit=6) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 5 5 7 8 6 6 7 8 6 8 6.6
AchievableValue 427 458 5.91 6.83 5.2 549 653 698 557 754 5.89
BO(Iteration=60) 4.19 441 569 6.62 514 535 6.2 6.84 525 712 5.68

Graph(Qubit=8) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 7 9 9 11 12 13 13 11 11 16 11.2
AchievableValue 627 7.84 813 983 10.11 11.05 11.76 10.11 1045 13.69 9.93
BO(Iteration=60) 598 7.6l 747 938 9.66 1065 113 975 10.14 12.37 9.43

Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue 1343 11.07 12.19 10.65 1248 1491 1531 1441 20.13 20.78 14.54
BO(Iteration=60) 12.5 10.8 11.65 1037 11.85 14.66 14.42 1378 19.16 19.89 13.91

Table 3: Performance comparison of BO and GD.
Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue 1343 11.07 12.19 10.65 1248 1491 1531 1441 20.13 20.78 14.54

BO(Iteration=30) 1240 10.61 11.26 1033 11.78 1447 1431 13.59 1844 19.71 13.69
BO(Iteration=60) 12.50 10.80 11.65 10.37 11.85 14.66 1442 1378 19.16 19.89  13.91
BO(Iteration=90) 12.67 10.80 11.78 1037 11.86 14.66 1442 13.78 1935 19.96 1397

GD(Iteration=30) 12.35 9.50 10.84 9.71 11.16 12.01 1327 1194 1843 1870 12.79
GD(Iteration=60) 1237 948 1086 990 11.23 1256 13.28 1225 1842 1894 1293
GD(Iteration=90) 12.55 947 10.87 992 1139 1259 1328 1226 1847 1897 12.98

F.1 PERFORMANCE OF BO ON DIVERSE GRAPH STRUCTURES

We investigate random graphs with 6, 8, and 10 vertices (10 graphs per size) and construct the
Maximum Cut objective function using a 2-layer PS-QNN. For each graph, we run BO with 10
random initializations and 60 iterations per run. The results, summarized in Table @ demonstrate
that BO performs robustly, achieving average accuracies-defined as the ratio of the mean Algorithm-
Optimized Value to the mean Exact Solution-of 86.06%, 84.20%, and 82.80% for graphs with 6, 8,
and 10 vertices, respectively.

F.2 PERFORMANCE COMPARISON OF BO AND GD

We comprehensively compare the performance of BO and GD by evaluating the Algorithm-
Optimized Value and the number of steps to convergence. This comparison uses 10 randomly gen-
erated 10-vertex graphs, with the Maximum Cut objective function constructed for each graph using
a 2-layer PS-QNN. To ensure a rigorous comparison, BO and GD are executed with 10 random
initializations and tested for 30, 60, and 90 iterations. The results are summarized in Table
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Table 4: Numerical validation of theoretical results.

Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average
ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue(depth=1) 1246 9.73 11.13 991 11.73 13.54 14.02 1345 1890 20.21 13.51
Iteration(c=0.9) 2 3 4 6 9 3 6 9 13 17 7.2
Iteration(e=0.8) 3 4 4 7 9 4 6 9 19 18 8.3
Iteration(e=0.7) 3 4 6 7 9 5 6 11 21 22 9.4

AchievableValue(depth=2) 1343 11.07 12.19 10.65 1248 1491 1531 1441 20.13 20.78 14.54

Iteration(e=2.0) 15 7 13 1 5 11 13 10 26 9 11
Iteration(e=1.5) 19 12 17 8 14 19 18 20 36 18 18.1
Iteration(e=1.0) 36 16 28 15 18 25 31 25 59 43 29.6

F.3 NUMERICAL VALIDATION OF THEORETICAL RESULTS

Recognizing that error mitigation techniques can effectively address quantum circuit noise, we fo-
cus our analysis on the noiseless scenario. Our experiments use 10 randomly generated 10-vertex
graphs, with the Maximum Cut objective function implemented via 1-layer and 2-layer PS-QNNss.
For the 1-layer PS-QNN, we analyze the relationship between the optimization error e-defined as
the difference between Circuit-Achievable Value and Algorithm-Optimized Value-and average iter-
ation counts 7" at error levels of 0.7, 0.8, 0.9. Similarly, for the 2-layer PS-QNN, we examine this
relationship at error levels of 1, 1.5, 2. In both cases, we observe log T' o< 1/¢2. The detailed results
are summarized in Table [4l

G THE USE OF LARGE LANGUAGE MODELS(LLMS)

During the preparation of this work, we use LLMs to assist in language polishing and editing the
initial draft. This tool is used solely to improve grammatical fluency and sentence structure.
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