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A RELATED DEFINITIONS

This section presents background information on the Matern covariance function, differential en-
tropy, and information gain.

A.1 MATERN COVARIANCE FUNCTION

The Matern covariance function, widely used in BO, is defined as

kMatern−ν(θ,θ
′) =

1

Γ(ν)2ν−1

(√
2νd

l

)ν

Bν

(√
2νd

l

)
, (23)

where l > 0, d = ∥θ − θ′∥2 represents the Euclidean distance between θ and θ′, ν > 0 denotes
the smoothness parameter, Γ(·) represents the gamma function, and Bν(·) denotes the modified
Bessel function of the second kind. Varying ν determines the smoothness of samples drawn from a
Gaussian process with this covariance function. Smaller values of ν correspond to rougher samples.
Additionally, these samples are ⌈ν⌉ − 1 times continuously differentiable (Williams & Rasmussen,
2006). Figure 3 illustrates samples drawn from a Gaussian process with this covariance function
using different values of ν.

Figure 3: Samples drawn from a Gaussian process with the Matern covariance function
kMatern−ν(θ,θ

′) using smoothness parameters ν from ν = 0.5 to ν = 6.5.

A.2 DIFFERENTIAL ENTROPY

Let X be a random variable with a probability density function q whose support is a set X . The
differential entropy H(X) is defined as

H[X] = E[− log(q(X))] =

∫
X
q(x) log q(x)dx. (24)

Specifically, the differential entropy of a multivariate Gaussian random variable XGaussian with
distribution N(µ,K) is expressed as

H[XGaussian] =
1

2
log(det(2πeK)), (25)

where µ denotes the mean vector and K represents the covariance matrix.

A.3 INFORMATION GAIN

Let ST = {(θ1, y(θ1)), · · · , (θT , y(θT ))} be T accumulated observations about the function f(θ),
where y(θt) denotes the estimation of f(θt) for t ∈ [T ]. The informativeness of ST regarding f(θ)
is quantified by the information gain gT , which is the mutual information (Shannon, 1948) between
yT = [y(θ1) · · · y(θT )]T and fT = [f(θ1) · · · f(θT )]T. Specifically,

gT = H[yT ]−H[yT |fT ], (26)

where H[yT ] represents the information entropy of yT and H[yT |fT ] denotes the conditional infor-
mation entropy of yT given fT .
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B PROOF OF LEMMA 4.3

In this section, we present a complete proof of Lemma 4.3 through a sequence of lemmas. We
initially establish the following result regarding the partial derivative ∂jf(θ) of the noise-free PS-
QNN objective function f(θ) : D = [0, 2π]2p 7→ R for any j ∈ [2p] and any θ ∈ D.

Lemma B.1. Assuming that Assumption 4.2 holds, let f(θ) : D = [0, 2π]2p 7→ R be the noise-free
PS-QNN objective function. Given a failure probability δ ∈ (0, 1), the partial derivative ∂jf(θ)
satisfies

∀j ∈ [2p],∀θ ∈ D, |∂jf(θ)| ≤
√
Vθ[∂af(θ)]/δ (27)

with a success probability of at least ≥ 1 − δ, where Vθ[∂af(θ)] is the variance of ∂af(θ) with
index a = argmaxj∈[2p](supθ∈D |∂jf(θ)|).

Proof. Fix a ∈ [2p], by Chebyshev’s Inequality, we have

Pr{∀θ ∈ D, ∀s > 0, |∂af(θ)− Eθ[∂af(θ)]| ≤ s} ≥ 1− Vθ[∂af(θ)]/s
2, (28)

where Eθ[∂af(θ)] and Vθ[∂af(θ)] are the expectation value and the variance of ∂af(θ). Assuming
that Assumption 4.2 holds, we demonstrate that Eθ[∂af(θ)] = 0. The detailed proof can be found
in Ref. Cerezo et al. (2021b). This implies

Pr{∀θ ∈ D, ∀s > 0, |∂af(θ)| ≤ s} ≥ 1− Vθ[∂af(θ)]/s
2. (29)

By choosing a = argmaxj∈[2p](supθ∈D |∂jf(θ)|), we have

Pr

{
∀s > 0, sup

θ∈D
|∂af(θ)| ≤ s

}
≥ 1− Vθ[∂af(θ)]/s

2. (30)

The use of the index a and the notation sup(·) immediately implies

Pr{∀j ∈ [2p],∀θ ∈ D,∀s > 0, |∂jf(θ)| ≤ s} ≥ 1− Vθ[∂af(θ)]/s
2. (31)

Let the failure probability δ = Vθ[∂af(θ)]/s
2 ∈ (0, 1), we have

Pr
{
∀j ∈ [2p],∀θ ∈ D, |∂jf(θ)| ≤

√
Vθ[∂af(θ)]/δ

}
≥ 1− δ. (32)

Lemma B.2. Given a noise-free PS-QNN objective function f(θ) : D = [0, 2π]2p 7→ R, we have

∀θ,θ′ ∈ D, |f(θ)− f(θ′)| ≤ max
j∈[2p]

(
sup
θ∈D

|∂jf(θ)|
)
∥θ − θ′∥1, (33)

where ∂jf(θ) is the partial derivative of f(θ) for j ∈ [2p].

Proof. Let θ be represented as [θ1, · · · , θ2p]T. For any θ,θ′ ∈ D, we have

f(θ)− f(θ′) =f(θ1, · · · , θ2p)− f(θ′1, θ2, · · · , θ2p) + · · ·+
f(θ′1, · · · , θ′j−1, θj , · · · , θ2p)− f(θ′1, · · · , θ′j , θj+1, · · · , θ2p) + · · ·+
f(θ′1, · · · , θ′2p−1, θ2p)− f(θ′1, · · · , θ′2p).

(34)

By Triangle Inequality, for any θ,θ′ ∈ D, we have

|f(θ)− f(θ′)| ≤ |f(θ1, · · · , θ2p)− f(θ′1, θ2, · · · , θ2p)|+ · · ·+∣∣f(θ′1, · · · , θ′j−1, θj , · · · , θ2p)− f(θ′1, · · · , θ′j , θj+1, · · · , θ2p)
∣∣+ · · ·+∣∣f(θ′1, · · · , θ′2p−1, θ2p)− f(θ′1, · · · , θ′2p)

∣∣ . (35)

For any j ∈ [2p], the partial derivative with respect to the problem-oriented Hamiltonian H1

∂jf(θ) = i⟨φ0|U†
−[H1, U

†
+H1U+]U−|φ0⟩ (36)
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and the partial derivative with respect to the mixing Hamiltonian H2

∂jf(θ) = i⟨φ0|U†
−[H2, U

†
+H1U+]U−|φ0⟩ (37)

exist and are continuous on D = [0, 2π]2p, where U− is the left slice circuit and U+ is the right slice
circuit of the variational parameter θj in the noise-free PS-QNN U(θ), and |φ0⟩ is the initial state.
Fix [θ′1, · · · , θ′j−1, θj+1, · · · , θ2p]T ∈ [0, 2π]2p−1, f(θ) can be seen as an uni-variable function
in θj . By Lagrange’s Mean Value Theorem (Sohrab, 2003), for any θj , θ

′
j ∈ [0, 2π] and for any

[θ′1, · · · , θ′j−1, θj+1, · · · , θ2p]T ∈ [0, 2π]2p−1 denoted as θ̂ ∈ D̂, we have∣∣f(θ′1, · · · , θ′j−1, θj , · · · , θ2p)− f(θ′1, · · · , θ′j , θj+1, · · · , θ2p)
∣∣ ≤ Lj,θ̂

∣∣θj − θ′j
∣∣ , (38)

where Lj,θ̂ = supθj∈[0,2π] |∂jf(θ)|. In light of this, for any θj , θ
′
j ∈ [0, 2π] and for any θ̂ ∈ D̂, we

have ∣∣f(θ′1, · · · , θ′j−1, θj , · · · , θ2p)− f(θ′1, · · · , θ′j , θj+1, · · · , θ2p)
∣∣ ≤ Lj

∣∣θj − θ′j
∣∣ , (39)

where Lj = supθ̂∈D̂ Lj,θ̂. Therefore, for any θ,θ′ ∈ D, we have

|f(θ)− f(θ′)| ≤ L1 |θ1 − θ′1|+ · · ·+ L2p

∣∣θ2p − θ′2p
∣∣ (40)

≤
(
max
j∈[2p]

Lj

) 2p∑
j=1

∣∣θj − θ′j
∣∣ (41)

= max
j∈[2p]

Lj∥θ − θ′∥1 (42)

= max
j∈[2p]

(
sup
θ∈D

|∂jf(θ)|
)
∥θ − θ′∥1. (43)

Given Lemma B.1 and Lemma B.2, we come to Lemma 4.3 straightforwardly.

Proof of Lemma 4.3. By Lemma B.1, we pick δ ∈ (0, 1) and have

Pr

{
max
j∈[2p]

(
sup
θ∈D

|∂jf(θ)|
)

≤
√
Vθ[∂af(θ)]/δ

}
≥ 1− δ, (44)

where Vθ[∂af(θ)] is the variance of the partial derivative ∂af(θ) with index a =
argmaxj∈[2p](supθ∈D |∂jf(θ)|). Substituting this into Lemma B.2, the statement holds.

C PROOF OF THEOREM 4.5

Theorem C.1 (Formal). Given a constant threshold ϵ, a failure probability δ ∈ (0, 1) and an n-
qubit noise-free PS-QNN objective function f(θ) : D = [0, 2π]2p 7→ R induced by the network
U(θ) that satisfies Assumption 4.2, run BO for T = poly(n1/ϵ2) steps, where the scaling parameter
ηt for the acquisition function UCBt(θ) used in each step t is predefined as

ηt = 2 log(2π2t2/3δ) + 4p log(8πpt2
√
Vθ[∂af(θ)]/δ). (45)

If the parameter dimension

p ≤ Õ
(√

log n
)
, (46)

then the optimization error rT satisfies rT ≤ ϵ with a success probability of at least 1 −
δ. Here, Vθ[∂af(θ)] is the variance of the partial derivative ∂af(θ) with index a =
argmaxj∈[2p](supθ∈D |∂jf(θ)|).
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C.1 OUTLINE OF THE PROOF PROCEDURE

Our objective is to determine the effective parameter dimension p of the noise-free PS-QNN U(θ)
such that the optimization error rT = f(θ∗) − f(θ+

T ) after T = poly(n) steps of executing BO
can be upper bounded by a constant threshold ϵ. Here, θ∗ represents the global maximum point
and θ+

T denotes the approximation of the maximum point in the previous T steps. We investigate
this question through the perspective of the Bayesian approach, which considers the corresponding
noise-free PS-QNN objective function f(θ) as a sample drawn from a Gaussian process with the
Matern covariance function kMatern−ν(θ,θ

′) (Eq. 23). We first establish that rT is upper bounded
by 1

T

∑T
t=1 (f(θ

∗)− f(θt)), where θt represents the next point selected in each step t. It is ev-
ident that the condition 1

T

∑T
t=1 (f(θ

∗)− f(θt)) ≤ ϵ is sufficient to deduce the result rT ≤ ϵ.
Hence, by ensuring that the upper bound on 1

T

∑T
t=1 (f(θ

∗)− f(θt)) is no greater than ϵ, we can
determine the effective p that guarantees rT ≤ ϵ. Subsequently, we utilize the continuity property
of the noise-free PS-QNN objective function f(θ) (Lemma 4.3) to establish an upper bound on
1
T

∑T
t=1 (f(θ

∗)− f(θt)).

The complete proof of Theorem 4.5 is supported by a series of lemmas (Lemma C.2-Lemma C.8).
We will introduce how these lemmas are employed in our proof. For convenience, we ini-
tially present explanations of several notions that commonly occur in the following sections.
Specifically, Vθ[∂af(θ)] denotes the variance of the partial derivative ∂af(θ) with index a =
argmaxj∈[2p](supθ∈D |∂jf(θ)|). Additionally, µt−1(θ) represents the posterior mean function of
f(θ) and σt−1(θ) denotes the posterior standard deviation of f(θ) based on the accumulated obser-
vations St−1 from the previous t− 1 steps.

To facilitate the analysis in the continuous domain D = [0, 2π]2p, we discretize D into a finite grid
Dt in each step t, as it has been employed in Ref. Srinivas et al. (2012). Specifically, the size of
Dt is determined by the degree of discretization τt, such that |Dt| = (τt)

2p. In the subsequent
discussion, we use [θ∗]t to denote the closest point in Dt to θ∗. Next, we will evaluate upper
bounds on f(θ∗)− f([θ∗]t) (the first term) and f([θ∗]t) (the second term) to obtain an upper bound
on f(θ∗). Regarding the first term, according to Lemma C.2, if τt = 8πpt2

√
V[∂af(θ)]/δ, then

f(θ∗)− f([θ∗]t) can be upper bounded by 1/t2 with a success probability of at least 1− δ/4. Con-
sidering that θt is selected by maximizing the acquisition function UCBt(θ) over D, according to
Lemma C.3, UCBt(θt) = µt−1(θt)+

√
ηtσt−1(θt) can be used to upper bound f([θ∗]t) with a suc-

cess probability of at least 1−δ/4. Here, a predefined scaling parameter ηt = 2 log
(
2π2t2 |Dt| /3δ

)
is used. Taking the two upper bounds mentioned above into account, Lemma C.4 demonstrates that

f(θ∗) = (f(θ∗)− f([θ∗]t)) + f([θ∗]t) ≤ 1/t2 + µt−1(θt) +
√
ηtσt−1(θt)

with a success probability of at least 1−δ/2. Furthermore, we establish that f(θt) is lower bounded
by µt−1(θt)−

√
η′tσt−1(θt) with a success probability of at least 1− δ/2 using Lemma C.5, where

η′t = 2 log(π2t2/3δ). Since ηt ≥ η′t, we can also use µt−1(θt)−
√
ηtσt−1(θt) as a lower bound for

f(θt). Afterward, Lemma C.6 establishes that

f(θ∗)− f(θt) ≤ 1/t2 + 2
√
ηtσt−1(θt)

with a success probability of at least 1 − δ. Then, Lemma C.7 establishes a connection between
the sum of posterior variances

∑T
t=1 σ

2
t−1(θt) and the information gain gT (Eq. 26). As f(θ)

is considered as a sample drawn from a Gaussian process with kMatern−ν(θ,θ
′), we can bound∑T

t=1 σ
2
t−1(θt) by the upper bound O(T

p
v+p log

v
v+p (T )) on the maximal gT for kMatern−ν(θ,θ

′)
in Ref. Vakili et al. (2021). By applying Cauchy-Schwarz Inequality and considering the non-
decreasing property of ηt as t increases, we can substitute the form of ηT to obtain the result stated
in Lemma C.8

rT ≤ O
(√

p log
(
pT 2(Vθ[∂af(θ)])1/2

)
(log T/T )

ν
ν+p

)
with a success probability of at least 1 − δ. Finally, we obtain the effective p by solving for this
upper bound is no greater than a constant threshold ϵ with T = poly(n1/ϵ2).

C.2 PROOF DETAILS

In this section, we provide a comprehensive introduction to the corresponding lemmas.
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Lemma C.2. Assuming that Assumption 4.2 holds, let f(θ) : D = [0, 2π]2p 7→ R be the n-qubit
noise-free PS-QNN objective function. Given a failure probability δ ∈ (0, 1) and a finite grid Dt of
size |Dt| = (τt)

2p with the degree of discretization τt = 4πpt2
√

V[∂af(θ)]/δ in each step t, run
BO for T = poly(n) steps. The following relationship

∀t ∈ [T ], ∀θ ∈ D, |f(θ)− f([θ]t)| ≤ 1/t2 (47)

holds with a success probability of at least 1− δ, where [θ]t represents the closest point in Dt to θ.

Proof. By choosing a finite grid Dt of size (τt)
2p in each step t, for any θ ∈ D we have

∥θ − [θ]t∥1 ≤ 4πp/τt. Given Lemma 4.3, we have

Pr
{
∀t ∈ [T ], ∀θ ∈ D, |f(θ)− f([θ]t)| ≤ 4πp

√
V[∂af(θ)]/δ/τt

}
≥ 1− δ, (48)

where the failure probability δ ∈ (0, 1). Since τt = 4πpt2
√
V[∂af(θ)]/δ, then

Pr
{
∀t ∈ [T ], ∀θ ∈ D, |f(θ)− f([θ]t)| ≤ 1/t2

}
≥ 1− δ. (49)

Furthermore, we consider V[∂af(θ)] to be 1/poly(n), as shown in Ref. Park & Killoran (2024).
Additionally, we assume that parameter dimension p is at most poly(n). In order to guarantee
the degree of discretization τt of at least 1, we enforce a constraint that the number of steps T =
poly(n). This constraint is consistent with the scenario we are exploring.

Lemma C.3. Given a failure probability δ ∈ (0, 1), an n-qubit noise-free PS-QNN objective func-
tion f(θ) : D = [0, 2π]2p 7→ R and a finite grid Dt ⊂ D of size |Dt| in each step t, run BO for
T = poly(n) steps, where a scaling parameter ηt for the acquisition function UCBt(θ) used in
each step t is predefined as ηt = 2 log(π2t2 |Dt| /6δ). The following relationship

∀t ∈ [T ], ∀θ ∈ Dt, f(θ) ∈ Ct(θ) (50)

holds with a success probability of at least 1 − δ, where Ct(θ) represents a confidence interval
[µt−1(θ)−

√
ηtσt−1(θ), µt−1(θ) +

√
ηtσt−1(θ)].

Proof. Fix t ∈ [T ] and θ ∈ Dt. Conditioned on accumulated observations St−1 from the previous
t− 1 steps, the posterior distribution f(θ) ∼ N(µt−1(θ), σ

2
t−1(θ)). Now, if b ∼ N(0, 1), then

Pr{b > w} = exp(−w2/2)(2π)−1/2 exp
(
−(b− w)2/2− w(b− w)

)
(51)

≤ exp(−w2/2)Pr{b > 0} (52)

=
1

2
exp(−w2/2) (53)

for w > 0, since exp(−w(b − w)) ≤ 1 for b ≥ w. Using b = (f(θ) − µt−1(θ))/σt−1(θ) and
w =

√
ηt, we have

Pr{f(θ) /∈ Ct(θ)} ≤ exp(−ηt/2). (54)

Applying the union bound for θ ∈ Dt, we have

Pr{∀θ ∈ Dt, f(θ) ∈ Ct(θ)} ≥ 1− |Dt| exp(−ηt/2). (55)

Given that |Dt| exp(−ηt/2) = δ/qt, where
∑

t≥1(1/qt) = 1, qt > 0, by applying the union bound
for t ∈ N, the statement holds. For example, we can use qt = π2t2/6.

Lemma C.4. Assuming that Assumption 4.2 holds, let f(θ) : D = [0, 2π]2p 7→ R be the n-
qubit noise-free PS-QNN objective function. Given a failure probability δ ∈ (0, 1), run BO for
T = poly(n) steps, where a scaling parameter ηt for the acquisition function UCBt(θ) used in
each step t is predefined as ηt = 2 log(π2t2/3δ) + 4p log(4πpt2

√
2Vθ[∂af(θ)]/δ). The following

relationship
∀t ∈ [T ], f(θ∗) ≤ µt−1(θt) +

√
ηtσt−1(θt) + 1/t2 (56)

holds with a success probability of at least 1 − δ, where θ∗ denotes the global maximum point and
θt represents the next point selected in each step t.
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Proof. Using the failure probability δ/2 in Lemma C.2, for the global maximum point θ∗, we have

Pr{∀t ∈ [T ], f(θ∗)− f([θ∗]t) ≤ 1/t2} ≥ 1− δ/2, (57)

where [θ∗]t denotes the closest point in Dt to θ∗. Here, a finite grid Dt of size |Dt| = (τt)
2p with

τt = 4πpt2
√
2V[∂af(θ)]/δ. Then, applying Lemma C.3 with the failure probability δ/2, for [θ∗]t,

we have
Pr{∀t ∈ [T ], f([θ∗]t) ≤ µt−1([θ

∗]t) +
√
ηtσt−1([θ

∗]t)} ≥ 1− δ/2, (58)
where ηt = 2 log(π2t2 |Dt| /3δ). As the next point θt is selected by maximizing UCBt(θ) in each
step t, we have UCBt([θ

∗]t) ≤ UCBt(θt). Then, we have

Pr{∀t ∈ [T ], f([θ∗]t) ≤ µt−1(θt) +
√
ηtσt−1(θt)} ≥ 1− δ/2. (59)

Taking Eq. 57 and Eq. 59 together, the statement holds since (1− δ/2)2 > 1− δ.

Lemma C.5. Given a failure probability δ ∈ (0, 1) and an n-qubit noise-free PS-QNN objective
function f(θ) : D = [0, 2π]2p 7→ R, run BO for T = poly(n) steps, where a scaling parameter η′t
for the acquisition function UCBt(θ) used in each step t is predefined as η′t = 2 log(π2t2/6δ). The
following relationship

∀t ∈ [T ], f(θt) ∈ Ct(θt) (60)
holds with a success probability of at least 1 − δ, where θt represents the next point selected in
each step t and Ct(θt) denotes the confidence interval [µt−1(θt) −

√
η′tσt−1(θt), µt−1(θt) +√

η′tσt−1(θt)].

Proof. Fix t ∈ [T ]. Conditioned on St−1 from the previous t−1 steps, for the next point θt selected
in each step t, the posterior distribution f(θt) ∼ N(µt−1(θt), σ

2
t−1(θt)). Now, if b ∼ N(0, 1), then

Pr{b > w} ≤ 1
2 exp(−w2/2) for w > 0. Using b = (f(θt)− µt−1(θt))/σt−1(θt) and w =

√
η′t,

we have
Pr{f(θt) /∈ Ct(θt)} ≤ exp(−η′t/2). (61)

Given that exp(−η′t/2) = δ/qt, where
∑

t≥1(1/qt) = 1, qt > 0, by applying the union bound for
t ∈ N, the statement holds. For example, we can use qt = π2t2/6.

Lemma C.6. Assuming that Assumption 4.2 holds, let f(θ) : D = [0, 2π]2p 7→ R be the n-
qubit noise-free PS-QNN objective function. Given a failure probability δ ∈ (0, 1), run BO for
T = poly(n) steps, where a scaling parameter ηt for the acquisition function UCBt(θ) used in
each step t is predefined as ηt = 2 log(2π2t2/3δ) + 4p log(8πpt2

√
V[∂af(θ)]/δ). The following

relationship
∀t ∈ [T ], f(θ∗)− f(θt) ≤ 2

√
ηtσt−1(θt) + 1/t2 (62)

holds with a success probability of at least 1 − δ, where θ∗ denotes the global maximum point and
θt represents the next point selected in each step t.

Proof. Using the failure probability δ/2 in Lemma C.4, for the global maximum point θ∗, we have

Pr{∀t ∈ [T ], f(θ∗) ≤ µt−1(θt) +
√
ηtσt−1(θt) + 1/t2} ≥ 1− δ/2 (63)

with ηt = 2 log(2π2t2/3δ) + 4p log(8πpt2
√

V[∂af(θ)]/δ) in each step t. Then, using the failure
probability δ/2 in Lemma C.5, for the next point θt selected in each step t, we have

Pr{∀t ∈ [T ], f(θt) ≥ µt−1(θt)−
√
η′tσt−1(θt)} ≥ 1− δ/2 (64)

with η′t = 2 log(π2t2/3δ) in each step t. As the aforementioned ηt is greater than η′t used here,
choosing ηt here is also valid. Taking Eq. 63 and Eq. 64 together, the proof is completed.

Lemma C.7. Given an n-qubit noise-free PS-QNN objective function f(θ) : D = [0, 2π]2p 7→ R,
run BO for T = poly(n) steps. Let ST = {(θ1, y(θ1)), · · · , (θT , y(θT ))} be the accumulated
observations from the previous T steps, where the estimation y(θt) = f(θt) + ξnoiset in each step
t. Here, ξnoiset ∼ N(0, 1/4M) is independent and identically distributed Gaussian noise with M
representing the fixed number of measurements. The information gain gT (Eq. 26) can be expressed
as

gT =
1

2

T∑
t=1

log(1 + 4Mσ2
t−1(θt)). (65)
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Proof. Let yt−1 = [y(θ1) · · · y(θt−1)]
T and ft−1 = [f(θ1) · · · f(θt−1)]

T for t ∈ [T + 1]. Plug-
ging in the differential entropy of a multivariate Gaussian random variable (Eq. 25), we have
H[y(θt)|yt−1] = 1/2 log(2πe(1/4M + σ2

t−1(θt))) for t ∈ [T ] and H[yT |fT ] =
T
2 log(πe/2M).

Using the fact that H[yt] = H[yt−1] + H[y(θt)|yt−1], we have

H[yT ] = H[y0] + H[y(θ1)|y0] + H[y(θ2)|y1] + · · ·+H[y(θT )|yT−1] (66)

=
1

2

T∑
t=1

log(2πe(1/4M + σ2
t−1(θt))). (67)

Recalling the definition of gT (Eq. 26), the statement holds.

Lemma C.8. Assuming that Assumption 4.2 holds, let f(θ) : D = [0, 2π]2p 7→ R be the n-
qubit noise-free PS-QNN objective function. Given a failure probability δ ∈ (0, 1), run BO with
the Matern prior covariance function kMatern−ν(θ,θ

′) (Eq. 23) for T = poly(n) steps, where a
scaling parameter ηt for the acquisition function UCBt(θ) used in each step t is predefined as
ηt = 2 log(2π2t2/3δ) + 4p log(8πpt2

√
Vθ[∂af(θ)]/δ). The optimization error rT satisfies

rT ≤ O
(√

p log
(
pT 2(Vθ[∂af(θ)])1/2

)
(log T/T )

ν
ν+p

)
(68)

with a success probability of at least 1− δ.

Proof. Noted that ηt in Lemma C.6 is non-decreasing. Since 0 ≤ 4Mσ2
t−1(θt) ≤

4MkMatern−ν(θt,θt) ≤ 4M , denoted as 4Mσ2
t−1(θt) ∈ [0, 4M ], we have 4Mσ2

t−1(θt) ≤
(4M/ log(1 + 4M)) log(1 + 4Mσ2

t−1(θt)). Moreover, Lemma C.7 links the sum of the posterior
variances

∑T
t=1 σ

2
t−1(θt) to the information gain gT . By Cauchy-Schwarz Inequality, we have(
T∑

t=1

2
√
ηtσt−1(θt)

)2

≤
T∑

t=1

4ηt

T∑
t=1

σ2
t−1(θt) (69)

≤ TηT
M

T∑
t=1

(4Mσ2
t−1(θt)) (70)

≤ 4TηT
log(1 + 4M)

T∑
t=1

log(1 + 4Mσ2
t−1(θt)) (71)

= c0TηT gT , (72)

where the parameter c0 = 8/ log(1 + 4M). The optimization error is given by rT = f(θ∗) −
f(θ+

T ), where θ∗ represents the global maximum point and θ+
T = argmaxθ∈AT

f(θ) denotes the
approximation of the maximum point with the accumulated points AT = {θ1, · · · ,θT } from the
previous T steps. Now, we have

rT ≤ 1

T

T∑
t=1

(f(θ∗)− f(θt)) (73)

≤ 1

T

(
T∑

t=1

2
√
ηtσt−1(θt) +

T∑
t=1

1/t2

)
(74)

≤ 1

T

(√
c0TηT gT + π2/6

)
. (75)

As f(θ) is considered as a sample drawn from a Gaussian process with kMatern−ν(θ,θ
′), we can

use the upper bound O(T
p

v+p log
v

v+p (T )) on the maximal gT for kMatern−ν(θ,θ
′) in Ref. Vakili

et al. (2021). By substituting ηT and O(T
p

v+p log
v

v+p (T )) into Eq. 75, the statement holds.

Now we are ready to complete the proof of Theorem 4.5.
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Proof of Theorem 4.5. We consider V[∂af(θ)] to be 1/poly(n), as shown in Ref. Park & Killoran
(2024). Additionally, we assume that the parameter dimension p is at most poly(n). To ensure
consistency with the scenario under investigation and to guarantee the degree of discretization τt in
Lemma C.2 of at least 1, we impose a constraint that the number of steps T = poly(n). Hence,
it is reasonable to treat log

(
pT 2(Vθ[∂af(θ)])

1/2
)

as a constant. Therefore, our task is to find the
effective p that satisfies the condition (p(log(T )/T )

ν
ν+p )1/2 ≤ ϵ, where ϵ is a constant threshold

and T = poly(n). Let

p ≤ 1

2

(
ϵ2 − ν +

√
(ϵ2 − ν)2 + 4νϵ2 (1 + log(T/ log T ))

)
, (76)

then the above upper bound satisfies the inequality

p2 − (ϵ2 − ν)p− νϵ2 (1 + log (T/ log T )) ≤ 0. (77)

Equivalently, the above inequality can be rewritten by

log (log T/T ) ≤ (1 + p/ν)
(
1− p/ϵ2

)
. (78)

Considering the relationship log x ≥ 1− 1/x holds for x > 0, then the above inequality implies

log (log T/T ) ≤ (1 + p/ν) log
(
ϵ2/p

)
, (79)

which directly leads to

log T/T ≤
(
ϵ2/p

)1+p/ν
, (80)

that is (p(log(T )/T )
ν

ν+p )1/2 ≤ ϵ. Finally, let T = poly(n1/ϵ2) and substitute it into Eq. 76. We
obtain the effective parameter dimension p for the noise-free PS-QNN, which is p ≤ Õ

(√
log n

)
.

D PROOF OF LEMMA 5.4

In this section, we provide the proof of Lemma 5.4 which is similar to the proof of Lemma 4.3.

Proof of Lemma 5.4. Given an n-qubit noisy PS-QNN objective function with q-strength local Pauli
channels f̃q(θ) : D = [0, 2π]2p 7→ R, for any j ∈ [2p], the partial derivatives ∂j f̃q(θ) exist and are
continuous, as shown in Ref. Wang et al. (2021). Using a similar proof sketch as in Lemma B.2, we
have

∀θ,θ′ ∈ D,
∣∣∣f̃q(θ)− f̃q(θ

′)
∣∣∣ ≤ max

j∈[2p]

(
sup
θ∈D

∣∣∣∂j f̃q(θ)∣∣∣) ∥θ − θ′∥1. (81)

Considering the Maximum Cut problem on an unweighted d-regular graph with n vertices, we can
rely on Corollary 2 in Ref. Wang et al. (2021) to obtain an upper bound on ∂j f̃q(θ) for any j ∈ [2p].
Then, the following relationship

∀θ,θ′ ∈ D,
∣∣∣f̃q(θ)− f̃q(θ

′)
∣∣∣ ≤ L∥θ − θ′∥1 (82)

holds, where the Lipschitz continuity factor is given by

L =
√
ln 2/2d2n

5
2 ∥HMaxCut

1 ∥∞q((d1+1)p+1) (83)

with the strength q ∈ (0, 1) and d1 representing the network depth of the implementation of the
unitary corresponding to the problem-oriented Hamiltonian HMaxCut

1 . Since ∥HMaxCut
1 ∥∞ =

O(nd/2), q ∈ (0, 1) and d1 = Ω(d), we have L = O(d3n7/2q(d+1)p). Thus, the proof of
Lemma 5.4 is concluded.
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E PROOF OF THEOREM 5.6

Theorem E.1 (Formal). Consider the Maximum Cut problem on an unweighted d-regular graph
with n vertices, where d is a constant. Given a constant threshold ϵ, a failure probability
δ ∈ (0, 1) and a noisy PS-QNN objective function with q-strength local Pauli channels f̃q(θ) :
D = [0, 2π]2p 7→ R induced by the network Uq(θ) that satisfies Assumption 5.3, run BO for
T = poly(n1/ϵ2) steps, where the scaling parameter ηt for the acquisition function UCBt(θ) used
in each step t is predefined as

ηt = 2 log(π2t2/(3δ)) + 4p log(4πpt2d3n7/2q(d+1)p). (84)

Under the condition where the strength q spans 1/poly(n) to 1/n1/
√
logn, if the parameter dimen-

sion
p ≤ O (log n/ log(1/q)) , (85)

then the optimization error r̃T satisfies r̃T ≤ ϵ with a success probability of at least 1− δ.

E.1 OUTLINE OF THE PROOF PROCEDURE

Our objective is to determine the effective parameter dimension p of the noisy PS-QNN Uq(θ)

such that the optimization error r̃T = f̃q(θ̃
∗) − f̃q(θ̃

+
T ) after T = poly(n) steps of executing

BO can be upper bounded by a constant threshold ϵ. Here, θ̃∗ represents the global maximum
point and θ̃+

T denotes the approximation of the maximum point in the previous T steps. We in-
vestigate this question through the perspective of the Bayesian approach, which considers the cor-
responding noisy PS-QNN objective function f̃q(θ) as a sample drawn from a Gaussian process
with the Matern covariance function kMatern−ν(θ,θ

′). We first establish that r̃T is upper bounded
by 1

T

∑T
t=1(f̃q(θ̃

∗) − f̃q(θ̃t)), where θ̃t represents the next point selected in each step t. It is ev-
ident that the condition 1

T

∑T
t=1(f̃q(θ̃

∗) − f̃q(θ̃t)) ≤ ϵ is sufficient to deduce the result r̃T ≤ ϵ.
Hence, by ensuring that the upper bound on 1

T

∑T
t=1(f̃q(θ̃

∗) − f̃q(θ̃t)) is no greater than ϵ, we
can determine the effective p that guarantees r̃T ≤ ϵ. Subsequently, we utilize the continuity prop-
erty of the noisy PS-QNN objective function f̃q(θ) (Lemma 5.4) to establish an upper bound on
1
T

∑T
t=1(f̃q(θ̃

∗) − f̃q(θ̃t)). The complete proof of Theorem 5.6 is similar to the proof of Theo-
rem 4.5 and is supported by a series of lemmas analogous to Lemma C.2 to Lemma C.8. Instead
of providing a detailed description of each lemma here, we will directly present lemma E.2 similar
to Lemma C.8. Additionally, we will emphasize the impact of the difference in continuity property
between the noise-free and noisy PS-QNN objective functions on the result.

E.2 PROOF DETAILS

In this section, we provide a comprehensive introduction to the Lemma E.2.
Lemma E.2. Considering a Maximum Cut problem on an unweighted d-regular graph with n ver-
tices, where d is a constant. Assuming that Assumption 5.3 holds, let f̃q(θ) : D = [0, 2π]2p 7→ R
be the noisy PS-QNN objective function with q-strength local Pauli channels, where the strength
q ∈ (0, 1). Given a failure probability δ ∈ (0, 1), run BO with the Matern prior covariance
function kMatern−ν(θ,θ

′) (Eq. 23) for T = poly(n) steps, where a scaling parameter ηt for
the acquisition function UCBt(θ) used in each step t is predefined as ηt = 2 log(π2t2/(3δ)) +
4p log(4πpt2d3n7/2q(d+1)p). If the parameter dimension p is given by

p ≤ O (log n/ log(1/q)) , (86)

the optimization error r̃T satisfies

r̃T ≤ O
(√

p log(pT 2d3n7/2q(d+1)p)(log T/T )
ν

ν+p

)
(87)

with a success probability of at least 1− δ.

Proof. Using the continuity property of the noisy PS-QNN objective function f̃q(θ) as stated in
Lemma 5.4 and a series of lemmas similar to Lemma C.2 to Lemma C.8, we can easily obtain
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the aforementioned result. It is essential to emphasize the constraint imposed on the parameter
dimension p. To guarantee the degree of discretization τt of at least 1, as mentioned in Lemma C.2,
we need to discuss the range of p that satisfies pT 2d3n7/2q(d+1)p ≥ 1. Since the number of steps
T = poly(n) and p is at most poly(n), we can establish the inequality

nc2 ≤ pT 2n7/2 ≤ nc1 , (88)

where c1 and c2 are two very close constants. Then, we have

p

nc1d3
≤ 1

T 2n7/2d3
≤ p

nc2d3
. (89)

Since q ∈ (0, 1), the relationship

q
p(d+1)

nc2d3 ≤ q
d+1

T2n7/2d3 (90)

holds. As yy is monotonically decreasing in the interval (0, 1/e), we have(
1

pT 2n7/2d3

) 1

pT2n7/2d3

≤
(

1

nc1d3

) 1
nc1d3

. (91)

Let

p ≤ c1 log n+ 3 log d

(d+ 1) log(1/q)n(c1−c2)
, (92)

then the above inequality implies (
1

nc1d3

) 1
nc1d3

≤ q
p(d+1)

nc2d3 , (93)

which directly leads to (
1

pT 2n7/2d3

) 1

pT2n7/2d3

≤ q
d+1

T2n7/2d3 , (94)

that is pT 2d3n7/2q(d+1)p ≥ 1. Considering d as a constant, Eq. 92 implies p ≤ O(logn/ log(1/q)).

Proof of Theorem 5.6. Furthermore, when the strength q ≥ 1/poly(n), it is reasonable to treat
log(pT 2d3n7/2q(d+1)p) as a constant. Therefore, our objective is to determine the effective p that
satisfies the condition (p(log(T )/T )

ν
ν+p )1/2 ≤ ϵ with a constant threshold ϵ. The previous result

shows that p ≤ Õ(
√
log n) and T = poly(n1/ϵ2). Therefore, we have

p ≤ min{Õ(
√
log n),O(log n/ log(1/q))}. (95)

Let 1/poly(n) ≤ q ≤ 1/n1/
√
logn, then this constraint implies

log n/ log(1/q) ≤
√

logn, (96)

that is p ≤ O (log n/ log(1/q)). Thus, the proof of Theorem 5.6 is concluded.

F NUMERICAL EXPERIMENTS

We perform numerical experiments in three directions: (1) employing a more diverse set of graph
structures, (2) comprehensively comparing BO and GD, and (3) numerically validating our theoreti-
cal results. To ensure conceptual clarity, we first define three key concepts for solving the Maximum
Cut problems using PS-QNN: (1) Exact Solution of the Problem as the exact Maximum Cut value
of a given graph, (2) Circuit-Achievable Value as the maximum objective function value attainable
with the PS-QNN at specified depth, and (3) Algorithm-Optimized Value as the optimized objective
function value obtained via BO or GD.
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Table 2: Performance of BO on diverse graph structures.
Graph(Qubit=6) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 5 5 7 8 6 6 7 8 6 8 6.6
AchievableValue 4.27 4.58 5.91 6.83 5.2 5.49 6.53 6.98 5.57 7.54 5.89
BO(Iteration=60) 4.19 4.41 5.69 6.62 5.14 5.35 6.2 6.84 5.25 7.12 5.68

Graph(Qubit=8) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 7 9 9 11 12 13 13 11 11 16 11.2
AchievableValue 6.27 7.84 8.13 9.83 10.11 11.05 11.76 10.11 10.45 13.69 9.93
BO(Iteration=60) 5.98 7.61 7.47 9.38 9.66 10.65 11.3 9.75 10.14 12.37 9.43

Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue 13.43 11.07 12.19 10.65 12.48 14.91 15.31 14.41 20.13 20.78 14.54
BO(Iteration=60) 12.5 10.8 11.65 10.37 11.85 14.66 14.42 13.78 19.16 19.89 13.91

Table 3: Performance comparison of BO and GD.
Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8
AchievableValue 13.43 11.07 12.19 10.65 12.48 14.91 15.31 14.41 20.13 20.78 14.54

BO(Iteration=30) 12.40 10.61 11.26 10.33 11.78 14.47 14.31 13.59 18.44 19.71 13.69
BO(Iteration=60) 12.50 10.80 11.65 10.37 11.85 14.66 14.42 13.78 19.16 19.89 13.91
BO(Iteration=90) 12.67 10.80 11.78 10.37 11.86 14.66 14.42 13.78 19.35 19.96 13.97

GD(Iteration=30) 12.35 9.50 10.84 9.71 11.16 12.01 13.27 11.94 18.43 18.70 12.79
GD(Iteration=60) 12.37 9.48 10.86 9.90 11.23 12.56 13.28 12.25 18.42 18.94 12.93
GD(Iteration=90) 12.55 9.47 10.87 9.92 11.39 12.59 13.28 12.26 18.47 18.97 12.98

F.1 PERFORMANCE OF BO ON DIVERSE GRAPH STRUCTURES

We investigate random graphs with 6, 8, and 10 vertices (10 graphs per size) and construct the
Maximum Cut objective function using a 2-layer PS-QNN. For each graph, we run BO with 10
random initializations and 60 iterations per run. The results, summarized in Table 2, demonstrate
that BO performs robustly, achieving average accuracies-defined as the ratio of the mean Algorithm-
Optimized Value to the mean Exact Solution-of 86.06%, 84.20%, and 82.80% for graphs with 6, 8,
and 10 vertices, respectively.

F.2 PERFORMANCE COMPARISON OF BO AND GD

We comprehensively compare the performance of BO and GD by evaluating the Algorithm-
Optimized Value and the number of steps to convergence. This comparison uses 10 randomly gen-
erated 10-vertex graphs, with the Maximum Cut objective function constructed for each graph using
a 2-layer PS-QNN. To ensure a rigorous comparison, BO and GD are executed with 10 random
initializations and tested for 30, 60, and 90 iterations. The results are summarized in Table 3.
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Table 4: Numerical validation of theoretical results.
Graph(Qubit=10) 1 2 3 4 5 6 7 8 9 10 Average

ExactSolution 16 14 14 12 14 18 18 16 22 24 16.8

AchievableValue(depth=1) 12.46 9.73 11.13 9.91 11.73 13.54 14.02 13.45 18.90 20.21 13.51
Iteration(ϵ=0.9) 2 3 4 6 9 3 6 9 13 17 7.2
Iteration(ϵ=0.8) 3 4 4 7 9 4 6 9 19 18 8.3
Iteration(ϵ=0.7) 3 4 6 7 9 5 6 11 21 22 9.4

AchievableValue(depth=2) 13.43 11.07 12.19 10.65 12.48 14.91 15.31 14.41 20.13 20.78 14.54
Iteration(ϵ=2.0) 15 7 13 1 5 11 13 10 26 9 11
Iteration(ϵ=1.5) 19 12 17 8 14 19 18 20 36 18 18.1
Iteration(ϵ=1.0) 36 16 28 15 18 25 31 25 59 43 29.6

F.3 NUMERICAL VALIDATION OF THEORETICAL RESULTS

Recognizing that error mitigation techniques can effectively address quantum circuit noise, we fo-
cus our analysis on the noiseless scenario. Our experiments use 10 randomly generated 10-vertex
graphs, with the Maximum Cut objective function implemented via 1-layer and 2-layer PS-QNNs.
For the 1-layer PS-QNN, we analyze the relationship between the optimization error ϵ-defined as
the difference between Circuit-Achievable Value and Algorithm-Optimized Value-and average iter-
ation counts T at error levels of 0.7, 0.8, 0.9. Similarly, for the 2-layer PS-QNN, we examine this
relationship at error levels of 1, 1.5, 2. In both cases, we observe log T ∝ 1/ϵ2. The detailed results
are summarized in Table 4.

G THE USE OF LARGE LANGUAGE MODELS(LLMS)

During the preparation of this work, we use LLMs to assist in language polishing and editing the
initial draft. This tool is used solely to improve grammatical fluency and sentence structure.
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