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ABSTRACT

Long-tailed distributions are prevalent in real-world semi-supervised learning
(SSL), where pseudo-labels tend to favor majority classes, leading to degraded
generalization. Although numerous long-tailed SSL (LTSSL) methods have been
proposed, the underlying mechanisms of class bias remain underexplored. In this
work, we investigate LTSSL through the lens of learning dynamics and introduce
the notion of baseline images to characterize accumulated bias during training.
We provide a step-wise decomposition showing that baseline predictions are de-
termined solely by shallow bias terms, making them reliable indicators of class
priors. Building on this insight, we propose a novel framework, DyTrim, which
leverages baseline images to guide data pruning. Specifically, we perform class-
aware pruning on labeled data to balance class distribution and label-agnostic soft
pruning with confidence filtering on unlabeled data to mitigate error accumulation.
Theoretically, we show that our method implicitly realizes risk reweighting, effec-
tively suppressing class bias. Extensive experiments on public benchmarks show
that DyTrim consistently enhances the performance of existing LTSSL methods
by improving representation quality and prediction accuracy.

1 INTRODUCTION

Semi-supervised learning (SSL), exemplified by FixMatch (Sohn et al., 2020), has been proven
to demonstrate significant generalization advantages over supervised learning, particularly in deep
neural networks (Li et al., 2025). However, many existing SSL variants (e.g., FlexMatch; Zhang
et al., 2021) implicitly assume that both labeled and unlabeled data are drawn from a balanced
class distribution. In practice, datasets commonly exhibit a long-tailed label distribution, leading to
biased pseudo-label toward majority classes. This discrepancy poses significant challenges to the
effectiveness of SSL algorithms on real-world datasets.

Recent studies on long-tailed semi-supervised learning (LTSSL) have emerged to mitigate pseudo-
label bias caused by class imbalance in both labeled and unlabeled data. These methods range from
distribution alignment (Wei et al., 2021; Kim et al., 2020), data rebalancing (Fan et al., 2022; Lee
et al., 2021), logit adjustment variants (Wei & Gan, 2023; Zhou et al., 2024), to foundation model-
based methods (e.g., LADaS; Zheng et al., 2025). In particular, the approach employ baseline image
was introduced as a simple yet efficient tool to quantify classifier bias by CDMAD (Lee & Kim,
2024), which has attracted considerable attention in the community (Xing et al., 2025). However,
the underlying mechanisms of how class bias emerges and why existing approaches can mitigate it
remain largely unexplored and poorly understood. That also prevents us from exploring a principle-
based method to improve performance.

In this paper, we analyze the underlying mechanisms of class debiasing through an innovative lens
of learning dynamics, investigating how an input affects the generation of biased pseudo-labels. We
first point out that in the training processes of LTSSL, the logits of the baseline image serve as an
indicator of the accumulated influence of the network’s bias term. We further propose a framework
that formalizes the learning dynamics of semi-supervised learning by decomposing the change of
the model’s prediction on the baseline image into three terms. Under this framework, many existing
debiasing methods for class imbalance can be unified.

Furthermore, our analysis of bias accumulation dynamics motivates a pruning-based class debiasing
framework. For labeled data, we compute class-wise pruning ratios to rebalance samples. For un-
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labeled data, we apply a label-agnostic criterion that prunes low-confidence, inconsistent samples.
Beyond empirical gains or ad-hoc analysis, DyTrim provide a principle-based theoretical guarantees
that clarify how the proposed method can alleviate class biasing and why pruning enhances gener-
alization. Extensive experiments confirm that DyTrim consistently enhances LTSSL performance
across standard benchmarks.

2 PRELIMINARIES

Notions. We consider a labeled dataset X = {(z™,y") gzl with N samples and an unlabeled
dataset Y = {u™}M_, with M samples, where 2" € R? is the n-th labeled sample with label
y" € [C] = {1,...,C}, and u™ € R? is the m-th unlabeled sample. Let N, and M, denote the

number of labeled and unlabeled samples in class ¢, such that ZCCZI N.= N and 2521 M.= M.
If classes are sorted by size, we have N; > Ny > ... > N¢, and define the imbalance ratios as
41 = Ni/N, > 1and 7, = Mi/m, > 1, respectively. We denote the classifier by fy : R+ 1,...,C
with parameters 6, and its logits by gg(z) € RY, where fy(z) = arg max, go(z). and (-). denotes
the c-th component. For each iteration of training, we sample minibatches MX = {(z},y7}) : b €
(1,...,B)} ¢ Xand MU = {(uj’) : b € (1,...,uB)} C U from the training set, where B
denotes the minibatch size and p denotes the relative size of MU to MX. For brevity, when clear
from context we drop the superscript on uy* (z3") and simply write wu;, ().

Base SSL algorithms. We use FixMatch (Sohn et al., 2020) as the base SSL algorithm, follow-
ing other LTSSL studies. Specifically, FixMatch first predicts the class probability of a weakly
augmented unlabeled data point o(up) as g = mg(y|a(up)) and then generates hard pseudo-label
gp = argmax,(qp,c), where mg(y|-) = Softmax(gg(-)). For consistency regularization, FixMatch
uses a hard pseudo-label g, only when max.(gp,.) > 7, where 7 denotes a predefined confidence
threshold, to improve the quality of the pseudo-labels used for training. We express the training
losses of FixMatch L as:

‘C(xlh Up, Cja T3 9) = Esup(a(xb); 0) + Econ(A(ub)v (jb7 T; 9) (1)

where x;, (up) denotes the b-th labeled (unlabeled) samples in a minibatch MX (MU). A(up)
denotes the strongly augmented version of u;. The losses and other base SSL algorithms, i.e. Flex-
Match (Zhang et al., 2021) and FreeMatch (Wang et al., 2023b), are detailed in Appendix B.

Learning dynamics and its per-step decomposition. Inspired by Ren & Sutherland (2024), we
study how a single gradient update changes the model’s confidence on an observation x,. With
mo(y | ) denoting the predicted class probability distribution, the learning dynamics become,

AGE O —0" = —n-VL(fo(x),yp); Alogn'(y|zo) £ log moes (y|zo) —log mor (y|zo). (2)

where the update of 6 during step ¢ — ¢ + 1 is given by one gradient update on the sample pair
(zp,yp) with learning rate n). L is the loss function, we use the cross-entropy loss H in our setting.

Definition 1 (Per-step decomposition of learning dynamics). Let 7 = Softmax(z) withz = go(x).
Then the one-step learning dynamics decompose as

Alogmh(y | x0) = =0T (20) K (0, 26)G" (w1, 1) + O (n*[|Voz(2s)|12,) » 3)

where T'(z,) = V.logmg:(z,) = I — 1mj.(z,) only depends on the model’s current pre-
dicted probability, K!(x,, zp) = (Vez(x,)|e: ) (Vez(xp)|et) | is the empirical neural tangent kernel
(eNTK, Jacot et al. 2018) of the model, the product of the model’s gradients with respect to x, and
. G (b, yv) = VoL (b, yb)|a is the loss gradient. ||-||7, denotes the spectral norm, which bounds
the second-order remainder term.

This decomposition characterizes how each update at (23, y;) influences predictions at x,, forming
the basis for our SSL analysis under class imbalance.
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3 LEARNING DYNAMICS OF LONG-TAILED SEMI-SUPERVISED DEBIASING

3.1 LEARNING DYNAMICS OF SEMI-SUPERVISED LEARNING

In this section, we characterize the learning dynamics of the semi-supervised version of gradient
descent (GD) for the FixMatch algorithm Eq. (1),

AO £ — 0" = —n - (VLoup(fo(a(2)), y6) + VLeon (fol(up)), fo(Aup))) ;
Af(zo) £ forri(zo) — for (o).

where x, denotes the observation data point, the update of 6 during step t — ¢ + 1 is given by one
gradient update on the labeled sample pair (23, y5) and unlabeled sample (u;p) with learning rate
1. Previous work (Ren & Sutherland, 2024) showed how a single gradient update influences model
predictions in supervised learning. We now examine whether such characterization extends to the
semi-supervised setting. Since FixMatch (Sohn et al., 2020) update naturally consists of a supervised
part L, and a consistency part L., the gradient update can be decomposed accordingly. For an
unlabeled sample u;, with target §j = argmax.qj ., where ¢j = mge(- | a(up)). The per-step
learning dynamics of semi-supervised learning become

“4)

t,sup t,con

Alogm (ylzo) £ Alogmy™ P (y | wo; wp) + Alog my ™ (y | @0 up) (5)

where A7}*"P denotes the influence caused by 2, and Ay denotes the influence caused by uy,

respectively. We now state the decomposition of the per-step influence below:

Proposition 1. For an labeled (unlabeled) sample xy, (uy) with target y, (4, = argmax, qa o

where g = gt (y|a(up)). The one-step learning dynamics of SSL decompose as
Alogmy™ (y | zos ) = =0T (20)K' (€0, @) Goup (@), o) + O (n* | Voz(a(zs))ll5)

t,con

Alog my " (y | To;up) = —0T (26)K" (To, A(us))Glon (A(us), d8) + O (n*|Voz(A(us))||3,)

where K'(z,,a(xp)) and K'(z,, A(up)) are eNTK evaluations of the logit network z(-) =
9o(-), with different inputs. Gt (c(xp),yp) = ViLsup(a(xs),ys)lze and Gl (s, Alup)) =
V2Lcon (G, A(up))|4t, respectively.

(6)
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Figure 1: The per-step semi-supervised learning
rors, even if small at each step, can accumulate dynamics and the accumulated influence in an

across iterations into a negative reinforcement MNIST experiment.

loop. The bottom row shows that under class imbalance, such accumulated influence can drive the
classifier to consistently predict the majority class (here 0), regardless of the true label. This con-
firms the implication of our dynamics analysis: in SSL, the effect of labeled data is mediated through
pseudo-labels, so local errors can be amplified rather than averaged out, leading to catastrophic bias.
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3.2 LEARNING DYNAMICS ANALYSIS OF ACCUMULATED BIAS UNDER CLASS IMBALANCE

The aforementioned phenomenon, together with the learning dynamics of the semi-supervised
framework, illustrates how class imbalance accumulates into systematic bias. While per-update
dynamics capture the influence of individual samples on predictions, they fall short of reflecting the
global effect of imbalance. This motivates the search for an indicator that bridges class-imbalance
bias with the underlying learning dynamics. We propose to use a baseline image T as such an in-
dicator. To justify this choice, we analyze its theoretical properties in both linear and deep settings,
and then incorporate it into the per-step influence decomposition.

Baseline image and its invariance property. For simplicity, we first consider a two-layer MLP
with no bias in the first layer and a bias vector b € R in the output layer h(x) = h(®) o h(V)(z),
where h") (z) = o(W1z) and h(?) = Wax + b. This setting allows us to isolate and examine the
predicted class probability 7 (Z) of a baseline image. For a baseline image Z € R, we have

hI) = WahD(Z) + b. (7)
In modern neural networks, the explicit bias term b is typically absorbed into the normalization
layer, e.g., BatchNorm, LayerNorm, while other layers are usually set without bias. Without loss
of generality, we take BatchNorm as an example for analysis. Since the BatchNorm transformation
can be equivalently viewed as an affine linear layer with learnable parameters, we may replace h(2)
with a BatchNorm(+) layer, i.e.,
_ V(@) ~ ERM(T)]

Var[h(1)(T)]

This replacement highlights that the baseline image prediction 7y(Z) is directly governed by the BN

bias b, thus allowing us to focus on its role in encoding and accumulating class-imbalance bias. We
now state the main results regarding the 7y (Z) below:

h(Z) = BatchNorm(h(V(T)) Wo + b. (8)

Proposition 2 (Invariance of baseline image under affine normalization). LetZ = k - 14 be a base-
line image, where k € {0,1,...,255} and 14 € R? is an all-one vector. Suppose the output of the
first hidden transformation is normalized by a normalization layer (e.g., BatchNorm, LayerNorm,
InstanceNorm, or GroupNorm) with affine parameters (W4, b). Then the logits h(Z) are indepen-
dent of k and reduce to

hZ)=0b, me(T)= Softmax(b). 9)

One can immediately notice that mg(Z) in Eq. (9) does not contain any term related to the pixel
value k of Z. This observation implies that the representation 7y (Z) of a baseline image is entirely
determined by the BatchNorm bias term b, and is invariant to the actual pixel value k.

Building upon this invariance, we now establish a connection between the baseline image and the
underlying class distribution. Specifically, for the classifier formulation in Eq. (8), we show that the
logits of the baseline image encode the class-imbalance ratio of the training data, thereby providing
a direct bridge between 7y (Z) and the long-tailed class prior.

Theorem 1 (Bias as the conditional distribution prior). Assume the model h(x) which characterized
in Eq. (8), is trained by cross-entropy,
L=Ey, |-y logsoftmax(h(z))]. (10)
At a population risk minimizer (W5, b*) we have
p*(x) = P(y|z), p(I) = Softmax(b*) = P(y| W =0). (D
In particular, for solid-color I satisfying Proposition 2, the baseline prediction equals the condi-

tional class distribution at the “normalized-zero” feature state, thereby encoding the class prior
induced during training.

Therefore, 7¢(Z) can naturally serve as a proxy for the accumulated bias of the model, providing a
bridge between class imbalance and learning dynamics.

Per-step influence decomposition of the baseline image. Let the estimate of the underlying class
prior Py(y|-) be denoted by 7. Then we can track the change in the model’s confidence by observing
log 7 (y|-). Then learning dynamics become,

Alog 7wt (y|T) £ log mpe+1 (y|T) — log mge (y|T). (12)
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Proposition 3. Let m = Softmax(z) and z = gg(x). The one-step dynamics decompose as
Alogn'(y | Z) = —nTH(T)KHZ, 2)G (z,y) + O || Voz(2)|3,), (13)

where THZI) = V. logn"(Z) = I — 173, (Z), K"(Z,z) = (Vgz(Z |9 ) (Vez(x)|9t)T is the em-
pirical Neural Tangent Kernel (NTK) of the logit network z, and G'(z,y) = Vzﬁ(x,y)|zt (see
Appendix F for details).

3.3 EFFECT OF THE BASELINE IMAGE FOR GUIDING DATA PRUNING

The training objective can be interpreted as the minimization of the empirical risk £. Assuming
that all labeled samples z;' from X and unlabeled samples uy* from U/ are drawn from continuous
distributions p!(z}) and p*(u}"), respectively, the training objective can be formulated as:

arg min E [L(zy,uy';0)] = /

gmin | B Lol 00 + [ Lo 00! 0 b

(14)
After applying a data pruning policy, we sample x} and u;" to obtain the labeled pruned subset S!
and the unlabeled pruned subset S, according to the labeled pruning probabilities P} (x}) and un-
labeled pruning probabilities P;*(u}"), respectively. For the labeled samples, we directly optimize
over the pruned subset S} without reweighting the loss terms. Notably, the class-aware pruning
probability 7. = 7y (Z). inherently adjusts S} toward an asymptotically balanced class distribution.
By retaining more samples from minority classes (lower 7.) and pruning more samples from major-
ity classes (higher 7.), the pruned subset S! naturally mitigates class imbalance. As a result, even
without explicit rescaling, the empirical risk over S} approximates:

n
Ty

argmin E  [Layp(ay,0)] Pt xb /Esup (zy, 0)pi (zy ) dxy (15)
0cO azpPeS!

1- Pt (z)
Cl

where ¢} = Eypp, [1 — Pf(z)]. The term acts as an implicit reweighting due to the class-

aware pruning policy. For unlabeled samples,tpmning with uniform probability r and rescaling
losses by v;(u) = #u(u) yields

3 m m 1 m m m
argmin [ [Ye(up") Leon(uy', 0)] oc — /Econ(ub ,Q)pl(ub )duy®, (16)
6coO uy €S Ct Jz
where ¢ = Eym~p, [1 — Py(uy')]. Crucially, even with uniform pruning rates, the interplay of

consistency regularlzatlon and confidence thresholding ensures S;* to be implicitly balanced, thus
training on S;* with rescaled factor ¢ (u;") could achieve a better result as training on the /.

4 DYTRIM: A BASELINE IMAGE GUIDED DATA PRUNING FRAMEWORK FOR
CISSL

The theoretical results in Section 3 suggest that the distribution of the baseline image’s logits is
affected by imbalanced data and directly acts on the bias term in the shallow layers. This imbalance
directly causes the model to produce bias. Fortunately, we indicated that this bias can be effectively
reduced if the data is pruned to be more balanced. Based on these insights, we propose the algorithm
DyTrim, which extends the data pruning by incorporating guidance from the baseline image’s logits
to select a balanced subset for the training of CISSL, as illustrated in Figure. 2.

Dynamic data pruning for CISSL. We use X = {(2",4™)}N_; to denote the labeled set and
U = {u™}M_, for unlabeled set. Critically, the distribution mismatch between X" and U neces-
sitates separate scoring mechanisms for labeled and unlabeled samples—unlike conventional su-
pervised dynamic pruning methods that assume identical data distributions. To this end, we define
step-dependent scoring functions ! for labeled samples and ¥ for unlabeled samples, which dy-
namically quantify sample utility at training step ¢. For the dynamic pruning process, samples are
discarded by the step-dependent pruning probabilities P} and P}:

Pl(z;HL) = LW Hi(2), <o HLy); and Pp(ws Hy) = L(HY (u), 7Y, (17)



Under review as a conference paper at ICLR 2026

— Reference logits Class-aware dynamic dataset pruning for class ¢
o m& = class-aware <roHer Seores e
] . —9Jo—> pruning
— — .
- r K
0| “dog” baseline &< L= ¢
e N YL { 09 image ryry Tre Min Max
- labeled pruned set S! biased degree
Tail n “bird” class-aware more -
| S i ry X/8
] 7 pruning r2 r. | balanced
gl ! —) N
@ S
Labeled Dataset X o= i B2 Se

~

& > % unlabeled pruned set S Gradient rescaling
L LY “ ”

label-insensitive

rescaling|
= s © .| |confidence gi— —

Unkown §£ ? pruning u |82 QU
3 N\ —_— Sy >T keeping

A Tju
dient
: o= [
&= e —!
oo [Scb— >
@ S
S« confidence =

-~

Unlabeled Dataset U

Figure 2: Illustration of the proposed DyTrim framework. DyTrim mainly consists of two opera-
tions, named labeled pruning and unlabeled pruning. .., ch,t and H}' denote the adaptive thresholds
of scores of labeled samples and unlabeled samples, with slight abuse of symbols. S%_ denote the
low confidence unlabeled sample which p*(u}*) > 7. Labeled pruning provides a class-aware prun-
ing policy for each sample from class c. Unlabeled pruning provides a random pruning policy from
the original data I/, and uses a gradient rescaling strategy (x1/(1 — r) for which sample from s¥ is
selected to prune) to keep the approximately same gradient expectation.

where -, ’ch’t and HY are adaptive thresholds, 1(-, -) is the indicator function. Thus, two dynami-
cally pruned datasets S! and S are formed for labeled and unlabeled datasets, respectively.

Dynamic pruning for labeled data. Since the labeled data follow a long-tailed class distribution,
we design a class-aware pruning policy P! guided by 74(Z). Critically, the classifier’s pseudo-
labels are primarily influenced by the labeled samples, which introduce bias toward majority classes.
Since Proposition 2 shows that the baseline image has invariance to solid-color intensity, from first
principles, we leverage the logits from a black image 7 to calibrate pruning probabilities. Given
the labeled dataset X" in the ¢-th epoch, a class-aware pruning probability is assigned to each sample
based on its score, which is formulated as:

L my __ 1 H:ls(l"?) € <TcHzl:,ta
Pt ={ o b 19

where ., ch,t denotes the . x N, smallest scoring values of the class cand . = 7y(Z).. is the class-

aware pruning probability. The labeled scoring function ”cht(x?) is defined using the supervised
loss Lsup(xy', yyt) to quantify sample utility. Specifically, we exploit the pruning policy to prune
samples based on their scores. Then, for the pruned labeled samples, their scores remain unmodified
as previously. For the remaining samples, their scores are updated by the losses in the current epoch.

To ensure dynamic adaptation:

l n n l
Hct(xz) xp € XnS', (19)
b

! ny __ ,
Hc,t+1(xb) = { Loup(zD) al € S

Dynamic pruning for unlabeled data. While the distribution of the label of the unlabeled data
and its imbalance ratio v, are unknown. To address the uncertainty and bias of pseudo-labels, we
design a label-insensitive soft pruning policy P;* inspired by (Qin et al., 2024), which introduces
randomness and gradient scaling into the pruning process. Specifically, for an unlabeled dataset
U at the t-th epoch, a pruning probability is assigned to each sample based on its score, which is
formulated as: _

pry = { T MR < AP and () > 7
et 0 HM(u) = HYorp (u) <7,

where H}" is the adaptive threshold and 7 is a randomized pruning rate, 7 is the confidence threshold
7 and p*(u}") = max(softmax(g;(a(up”)))) denote the debiased pseudo-label confidence. For

(20)
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Table 1: Comparison of bACC/GM on CIFAR-10-LT.

CIFAR-10-LT (v = v; = 7Y, Yu 1s assumed to be known)

Algorithm
v =50 v =100 v =150

Vanilla 65.2+0.05/61.1+£0.09 58.8+0.13/58.2+0.11 55.6+0.43/44.0+0.98
Re-sampling 64.3+0.48/60.6+£0.67 55.8+0.47/45.1+£030 52.2+0.05/38.2+1.49
LDAM-DRW 68.9+0.07/67.0+£0.08 62.8+£0.17/58.9+0.60 57.9+0.20/50.4 £0.30
cRT 67.8+0.13/66.3+0.15 63.2+0.45/59.9+0.40 59.3+0.10/54.6+0.72
FixMatch 79.24+0.33/77.8+£036 71.5+0.72/66.8 £1.51 68.4+0.15/59.9 £0.43
w/+DARP+cRT 85.8+0.43/85.6+£0.56 82.4+0.26/81.8+£0.17 79.6+£0.42/78.9 £0.35
w/+CReST+LA 85.6+0.36/81.9+0.45 81.2+0.70/74.5+£0.99 71.9+2.24/64.4+1.75
w/+ABC 85.6+0.26/85.2+0.29 81.1+1.14/80.3+1.29 773+£1.25/75.6+1.65
w/+CoSSL 86.8+£0.30/ 86.6 +0.25 83.2+0.49/82.7+0.60 80.3 £0.55/79.6 £0.57
w/+SAW+LA 86.24+0.15/83.9+0.35 80.7+0.15/77.5+0.21 73.7+0.06/71.2£0.17
w/+Adsh 83.440.06/82.94+0.13 76.5+0.35/74.8+£0.34  71.5+0.30/68.8 £0.35
w/+DebiasPL 85.6+0.20/85.24+0.23 80.6+0.50/79.9+0.57 76.6+0.12/75.8 £0.71
w/+UDAL 86.5+0.29/86.24+0.26 81.44+0.39/80.6+0.38 77.9+0.33/75.8 £0.71
w/+L2AC 86.6+£0.31/86.7+0.30 82.1+0.57/81.5+0.64 77.6+0.53/75.8+0.71
w/+CDMAD 87.340.12/87.0+0.15 83.6+0.46/83.1+£0.57 80.8+£0.86/79.9£1.07
w/+DYTRIM 88.0 £0.31/87.8£0.32 84.8+0.48/84.4+0.51 82.040.09/81.34+0.03
FlexMatch 72.6+0.72/70.2 £0.88 67.7+0.73/63.6 £1.27 62.6+0.63/56.1 £1.13
w/+CDMAD 74.4+0.82/73.0+1.12 68.4+0.46/66.8 £0.53 67.0+£0.52/63.24+0.44
w/+DYTRIM 77.21+042/76.21+0.44 70.7£0.49/67.8+0.70 68.61+0.22/66.3 +0.07
FreeMatch 71.94+0.24/69.4+£0.61 65.7+0.18/60.9+0.69 62.5+0.12/57.340.53
w/+CDMAD 74.7+0.64/73.6+£1.23 69.9+0.65/68.2+0.74 66.2+£0.27/63.2+0.44
w/+DYTRIM 76.9 £0.45/75.9+0.52 72.3+0.12/71.4£0.57 69.4+0.35/67.5+0.63

a remaining sample with score Hj'(u}") < HI", whose corresponding pruning probability is 7, its
gradient is scaled to 1/(1 — r) times of the original, otherwise the gradient remains unchanged. The
score ' | (uy") is derived from the consistency regularization loss values Lon (a(up®), A(up*)) for
unlabeled data points. To enhance pseudo-label reliability, we further apply a confidence threshold
7, where only samples with p*(u}*) > T contribute to Lo, Where Lo, = % Zle I(p*(uy®) >
T)H(Py(y|A(ug*), ¢y). Thus, we formulate the update of H}", | (u;") as:

Ht+1(ub ) - { Econ(uzn) u;,n c Sv,

Initialization: at t = 0, scores H and H' are all set to {1}, as no prior loss is available.

2L

5 EXPERIMENT

In this section, we conducted comprehensive experiments to verify the effectiveness of the pro-
posed DyTrim on CIFAR10-LT, CIFAR100-LT (Cui et al., 2019), STL10-LT (Kim et al., 2020), and
ImageNet-127 (Deng et al., 2009; Huh et al., 2016) datasets. Due to limited space, we defer the
detailed experimental settings to the Appendix D.

5.1 BASELINES

The classification performance of the DyTrim was compared with those of the following algo-
rithms: 1. vanilla algorithm - Deep CNN trained with cross-entropy loss, 2. CIL algorithms -
Resampling (JAPKOWICZ, 2000), LDAM-DRW (Cao et al., 2019), and cRT (Kang et al., 2020),
3. SSL algorithms - FixMatch (Sohn et al., 2020), and 4. CISSL algorithms - DARP, DARP+LA,
DARP+cRT (Kim et al., 2020), CReST, CReST+LA (Wei & Gan, 2023), ABC (Lee et al., 2021),
CoSSL (Fan et al., 2022), DASO (Oh et al., 2022), SAW, SAW+LA and SAW+cRT (Lai et al., 2022)
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Figure 3: (a) and (b) present the my(Z) using the CDMAD and DyTrim. (c) and (d) present the
confusion matrices of the class predictions on test samples on CIFAR-10-LT (v; = ~, = 100).

combined with FixMatch. Adsh(Guo & Li, 2022), DebiasPL (Wang et al., 2022), UDAL(Lazarow
et al., 2023) and L2AC (Wang et al., 2023a) combined with FixMatch. We report the performance
of the baseline algorithms reported in Tables of Lai et al. (2022) and Fan et al. (Fan et al., 2022)
when it is reproducible; the performance measured using the uploaded code was reported otherwise.

5.2 RESULTS ON CIFAR10/100-LT AND STL-LT

Under the consistent condition where ,, is known and  Table 2: Comparison of bACC on CIFAR-
matched to ;, the results in Table 1 show that CISSL  100-LT.
algorithms consistently outperform their vanilla SSL

counterparts by mitigating class imbalance while ef- CIFAR-100-LT (7 = 71 = Y. 7 i assumed to be known)
1 11 7=20 v =50 v =100
feCthCly eXplOltlng unlabeled data' Among them’ FixMatch 49’.6 +0.78 42.1i(;.33 37.6+£0.48
1 3 /+DARP 50.8+0.77 43.140.54 38.3+0.47
the proposed DyTrlm aChleves the beSt perfomlance z/+DARP+CRT 51.4+0.68 44.9+0.54 40.4£0.78
1 1 1 - w/+CReST 51.840.12  44.940.50 40.1£0.65
across all imbalance ratios. Compared with the state WHCReST | USvl2 4492030 40.1 2065
of-the-art CDMAD, DyTrim improves bACC by 1.2%  w-asc 5332079 46.74026 412:£0.06
N . : w/+CoSSL 53.9+0.78  47.6+0.26 43.0£0.61
and GM by 1.4% on average, without incurring ad-  w+uDAL 5414023 480056 4372041
. R w/+CPE 5244017 45.64068 39.9+0.40
ditional computational overhead. Furthermore, when — w«CDMAD 543044 4882075 4412029
. . . w/+DYTRIM 55.5+0.53 50.8-£0.80 44.8 +0.27
integrated into FlexMatch and FreeMatch, DyTrim —ome 65105 26105 35851070
yields substantial improvements, boosting bACC/GM ~ WiCOMAD - 3032047 3 larost Saaose
by 2-3% on aver age. FreeMatch 3594069 3134065 24.540.66
w/+CDMAD 36.9+0.96 32.840.93 28.0+0.68
w/+DYTRIM 39.0+0.61 33.440.70 29.8 +£0.09

Table 2 further evaluates the methods on CIFAR-100-
LT, which involves more classes and stronger imbal-
ance. The results demonstrate that DyTrim consistently outperforms all competing approaches un-
der this more challenging setting. In particular, DyTrim delivers clear gains over CDMAD across all
imbalance levels, confirming its scalability to large-scale, fine-grained datasets. Similar to the obser-
vations on CIFAR-10-LT, the integration of DyTrim continues to provide consistent improvements
across different SSL frameworks.

Under the inconsistent condition where ,, was unknown and mismatched to ~y;, the results in Table 3
show that DyTrim remains the most effective method overall. When the labeled and unlabeled data
distributions deviate, DyTrim consistently outperforms CDMAD on both CIFAR-10-LT and STL-
10-LT. The benefits are particularly notable when combined with FlexMatch and FreeMatch: on
STL-10-LT, FlexMatch + DyTrim improves bACC by more than 2%, while FreeMatch + DyTrim
achieves nearly 2% gains.

In addition, Table 4 highlights the performance of various algorithms under both consistent and in-
consistent imbalance settings with ViT backbones. On CIFAR-10-LT, DyTrim yields the best results,
improving bACC 0.6% over CDMAD and nearly 4% over FixMatch when v; = v,, = 100. Under
the inconsistent condition, DyTrim maintains a clear margin, surpassing CDMAD almost 2%. On
CIFAR-100-LT, although the absolute accuracies are lower due to the increased difficulty, DyTrim
still matches or slightly improves upon CDMAD, while consistently outperforming FixMatch. Ad-
ditional experimental results are provided in Appendix E.

5.3 SCALABILITY EVALUATION OF DYTRIM

DyTrim exhibited robust extensibility as a universal plug-in component, consistently boosting per-
formance across diverse SSL frameworks (CDMAD/CCL), datasets (CIFAR/STL10-LT), and im-
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Table 3: Comparison of bACC/GM on CIFAR-10-LT and STL-10-LT (y; # 7Yu, Y 1S assumed to be

unknown).
Algorithm CIFAR-10-LT (y; = 100, ~y,, = Unknown) STL-10-LT (v, =Unknown)
Yu = 50 Yu = 150 v =10 v =20

FixMatch 73.94025/70.54+0.52 69.64+0.60/62.6+1.11 72.940.09/69.6£0.01 63.440.21/52.6+0.09
w/+DARP 77.340.17 /7554021 72.94024/69.5+0.18 77.840.33/76.5+£040 69.941.77/65.4+£3.07
w/+DARP+LA 82.340.32/81.5+0.29 78.940.23/77.74+0.06 78.6+0.30/77.44040 71.9+0.49/68.7+0.51
w/+DARP+cRT  82.740.21/82.3+0.25 80.7 £0.44/80.2+0.61 79.3+0.23/78.7+021 74.1+0.61/73.1+1.21
w/+ABC 82.740.64/82.0+0.76 78.4+0.87/77.2+1.07 79.1+0.46/78.140.57 73.8+0.15/72.140.15
w/+SAW 79.84+025/79.14+032 74.54097/72.5+1.37 78340.25/77.0£0.19 71.9+0.81/69.0+0.81
w/+SAW+LA 82.940.38/82.6+£0.38  79.1+0.81/78.6+£0.91 79.4+0.26/78.44+0.17 73.9+0.91/71.8 4£0.99
w/+SAW+cRT 81.64+0.38/81.3+£0.32 77.6+£0.40/77.1+£0.41 78.9+0.22/77.84+0.14 72.340.86/69.540.83
w/+CPE 86.24+0.26 / 85.9+0.33  82.4+0.49/82.1+0.53 79.0+0.05/78.7+0.54 77.0+0.73/76.1 +0.68
w/+CDMAD 85.740.36/85.3+£0.38 82.3+0.23/81.840.29 79.9+0.23/78.940.38 75.2+0.40/73.540.31
w/+DyTrim 86.4 +0.43/86.0 0.43 83.8+0.34/83.4+0.33 80.7 +£0.64 /79.8 +£0.70 77.9+1.04/76.7 +1.26
FlexMatch 67.740.67/62.8+0.65 63.040.77/56.3+1.70 62.14+0.29/60.8£0.43 56.940.90/51.4 +0.81
w/+CDMAD 69.24022/67.04£0.11 67.0£1.69/63.44+091 65.541.05/63.7£1.02 62.4+£1.05/60.5+0.99
w/+DyTrim 72.5+0.39/70.7 +0.45 70.3+1.01/67.4+021 68.0+0.94 /66.4+0.85 63.9+0.16/61.7 +-0.28
FreeMatch 69.34+0.99/65.4+1.45 63.540.76/55.7+0.77 63.9+0.77/62.0+£0.90 59.0+1.43/57.6 +0.67
w/+CDMAD 71.040.98/69.0+£1.05 67.14+0.96/64.3+0.99 66.14+0.32/63.8+0.97 61.540.47/59.5+0.63
w/+DyTrim 72.34+0.69/71.1£1.23 69.9+£0.15/67.4+0.37 68.0£0.64/66.5+120 64.6+0.77/62.7+1.16

Table 4: Comparison of bACC/GM on CIFAR-10-LT and CIFAR-100-LT with ViT.

. CIFAR-10-LT CIFAR-100-LT
Algorithm
Y = Yo = 100 v, = 100, vy, = 150 Y = Yy = 100
FixMatch 45.5+0.14/30.04+0.41 45.340.12/28.94+096 23.24+0.13/5.740.33

w/+CDMAD  48.74+0.49/40.54+0.26 45.4+0.13/39.9+0.10 24.0+0.15/9.0+0.77

w/+DyTrim

49.3 +0.47 / 40.3 +0.36

47.3 £0.12/39.7 £0.57

24.14+0.22 /8.9 +£0.15

Table 5: Comparison of bACC with two state-of-the-art CISSL algorithms with and without DyTrim
on CIFAR-10, CIFAR-100, and STL-10.

Dataset FixMatch+ FixMatch+
CDMAD CDMAD+DyTrim Gain CCL CCL+DyTrim  Gain
Y = Yo = 100 83.6 +0.46 84.8 +0.48 112  86.2+0.35 86.7 +0.39 10.5
CIFAR10-LT Y = Yu = 150 80.8 +0.86 82.0 4-0.09 1712 84.0+0.21 84.0 +0.26 170.0
v =100,v, =1 87.5+0.46 88.9 +-0.88 1.4  93.940.12 94.1 4+0.17 10.2
CIFARIO00-LT v =, =20 54.3 +£0.44 55.540.53 112  57.5+0.16 58.1+0.49 10.6
STLI10-LT v =10 79.9 +0.23 80.7 -0.64 170.8  84.8+£0.15 85.140.33 10.3
v =20 75.2 £0.40 77.9 +1.04 12.7  83.1+0.18 83.3 +0.40 10.2

balance ratios (y = 1 ~ 150). Notably, it achieved up to +1.4% (CDMAD on CIFAR10-LT) and
+2.7% (STL10-LT, ;=20) gains without architecture-specific tuning, validating its versatility in
semi-supervised long-tailed scenarios.

6 CONCLUSION

In this work, we introduce DyTrim, a simple yet effective method to address long-tailed semi-
supervised learning (LTSSL) by leveraging baseline image-guided dynamic data pruning for de-
biasing. We provide a theoretical framework that explains the role of baseline images in reducing
classifier bias under class imbalance, showing how the class imbalance datasets influence the model
prediction of the baseline image. Our method, DyTrim, offers an elegant solution to the problem
of class imbalance in semi-supervised learning without requiring complex network branches or de-
biasing mechanisms. Through extensive experiments, we demonstrate that DyTrim significantly
improves the performance of LTSSL models on public benchmarks. We believe that our approach
can serve as a powerful tool for improving LTSSL in real-world datasets where class imbalance
remains a major challenge.
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APPENDIX

A  RELATED WORK

A.1 MECHANISMS OF LONG-TAILED DEBIASING

This paper considers learning dynamics to study the debiasing mechanisms of SSL algorithms. We
briefly introduce differences between the settings considered here and those in previous works. For
debiasing on long-tailed learning, Menon et al. (2021) considered a unified framework for debiasing
from the perspective of logits adjustment, which requires statistical label frequency. CCL (Zhou
et al., 2024) considered debiasing from an information-theoretical lens. LCGC (Xing et al., 2025)
used gradient flow to analyze the debiasing process. However, these methods only elucidate the
model’s behavior from an ad hoc perspective. We aim to develop a more comprehensive framework
that enables a principle-based lens of the bias generation mechanisms inherent in long-tailed semi-
supervised learning.

A.2 SEMI-SUPERVISED LEARNING

Modern SSL methods typically integrate diverse strategies for exploiting unlabeled data, such as
entropy minimization (Zhou et al., 2024), consistency regularization (Sohn et al., 2020), and con-
trastive learning (Zhou et al., 2024; Lee et al., 2022). Among them, most SSL approaches rely
on selecting reliable pseudo-labels during training. FixMatch (Sohn et al., 2020) adopts a fixed
confidence threshold of 0.95, whereas FlexMatch (Zhang et al., 2021) adapts thresholds per class
based on learning difficulty and training progress. FreeMatch (Wang et al., 2023b) integrates global
and local adjustments with a class-fairness regularizer to promote prediction diversity, while Soft-
Match (Chen et al., 2023) employs a soft thresholding scheme that reweights samples to balance
quantity and quality. In contrast, our method bypasses threshold tuning altogether and directly en-
forces class-balanced pseudo-labeling through dynamic pruning.

A.3 LONG-TAILED SEMI-SUPERVISED DEBIASING

Existing debiasing methods for LTSSL dominantly rely on consistent distribution assumptions (Guo
& Li, 2022; Lee et al., 2021) and logit adjustment strategies (Wei & Gan, 2023). Notable ap-
proaches include CReST (Wei et al., 2021), which focuses on minority classes through selective
self-training, and CoSSL (Cai et al., 2021), which balances representations using tail-class feature
augmentation. Recent advances, like BaCon (Feng et al., 2024), utilize contrastive learning for bal-
anced features, while SMCLP (Du et al., 2024) exploits collaborative label-instance correlations,
and CPE (Ma et al., 2024) employs multiple expert classifiers. Innovative methods such as InPL (Yu
et al., 2023) and DebiasMatch (Wang et al., 2022) move beyond traditional pseudo-labeling; InPL
uses energy scores to detect reliable inliers, whereas DebiasMatch applies adaptive debiasing with
a marginal loss to reduce long-tailed pseudo-label bias. Despite these advances, LTSSL techniques
often demand intricate mechanisms or additional modules (Lee et al., 2021), posing challenges in
minimizing bias while maintaining simplicity.

A.4 DYNAMIC DATASET PRUNING

To reduce training cost on datasets, dynamic dataset pruning methods (Chen et al., 2024; Killamsetty
et al., 2021; Sagawa et al., 2019; Schaul et al., 2015; Zhang et al., 2024) aim to reduce the number
of training iterations while maintaining performance. Existing methods employ a variety of crite-
ria to guide pruning, among which loss-based (Attendu & Corbeil, 2023; Kawaguchi & Lu, 2020;
Thao Nguyen et al., 2023) method is the most popular. UCB (Raju et al., 2021) applies the cross-
entropy loss with exponential moving average (EMA) smoothing to mitigate noise. Infobatch (Qin
et al., 2024) randomly prunes low-loss samples and amplifies the gradients of retained ones to pre-
serve the expected gradient. SCAN (Guo & Kankanhalli, 2024) categorizes samples as redundant
or ill-matched based on their loss and gradually increases the pruning ratio using cosine annealing.
While thsese methods effectively accelerate training and can yield nearly unbiased results, none
have explored their potential to mitigate class imbalance in SSL by pruning.
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B MORE BASE SSL ALGORITHMS

B.1 MORE ABOUT TRAINING LOSSES OF FIXMATCH

Training losses of FixMatch on a minibatch for the labeled set MAX and a minibatch for the unla-
beled set MU can be expressed as follows:

1
Lup(@p; 0) = B Z H (7o (y|o(zs)) ; po) (22)
rpEMX
with
B
1 .
Leon(u,4730) = 5 > " L(max(gy) > 7)H(Py(y|A(ws), Gb), (23)
b=1

where ¢ denote the concatenations of gp. L., denotes the supervised loss for weakly augmented la-
beled data points up. L., denotes the consistency regularization loss with the confidence threshold
T.

B.2 MORE ABOUT FLEXMATCH

To overcome the limitation of FixMatch using a fixed threshold 7 across all classes, Flex-
Match (Zhang et al., 2021) introduces the Curriculum Pseudo Labeling (CPL) strategy. The key
idea is to dynamically adjust the confidence threshold according to the learning status of each class.
Specifically, FlexMatch first predicts the class probability for a weakly augmented unlabeled sam-
ple up as g, = mo(y|a(up)), and then estimates the learning effect of each class ¢ by o(c), i.e., the
number of samples predicted as class c that exceed the fixed threshold 7. After normalization, a ratio
coefficient 3;(c) is obtained, which defines the class-adaptive threshold:

Ti(c) = Be(c) - . (24)
In this way, hard-to-learn classes receive a lower threshold to include more samples in training,
while easy-to-learn classes gradually increase their thresholds to ensure pseudo-label quality. The
unsupervised loss is defined as:
1 &
Loon(up: 4. Ti:6) = - > L(max(g) > Ty(arg max(qs))) (G, mo(y[A(us))), (25
b=1
where ¢, = arg max,. ¢ . denotes the hard pseudo-label, and A(-) is the strong augmentation func-
tion. The overall training objective is
['t = £sup + )\‘CCWV (26)
where )\ is weighting hyperparameter.

B.3 MORE ABOUT FREEMATCH

Unlike FixMatch and FlexMatch, which rely on fixed or indirectly adjusted thresholds,
FreeMatch (Wang et al., 2023b) proposes Self-Adaptive Thresholding (SAT) that dynamically deter-
mines thresholds based on the model’s prediction confidence. Specifically, FreeMatch first estimates
a global threshold 7 using an exponential moving average (EMA) of model confidence:

7= pr—1+ (1 — Zmax (@), 27

and further refines it with class-specific local statistics pt( )
pe(c)
Ti(c) =
(€) maxy pPr(c’)
At the early stage of training, thresholds are low to encourage more unlabeled data utilization and

faster convergence. As the model becomes more confident, thresholds increase to suppress incorrect
pseudo-labels and reduce confirmation bias. The unsupervised loss at iteration ¢ is thus:

uB
5 > Umax(as) > margmax(as))) Hidn mo(ylAw). @9
b=1

s Tt (28)

ﬁcon (ubv qA» Tt 9)
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In addition, FreeMatch introduces Self-Adaptive Fairness (SAF) regularization Ly, which dynami-
cally calibrates the prediction distribution to encourage diverse predictions and prevent class collapse
during early training. Concretely, let h; € R® denotes the normalized class histogram of model pre-
dictions at iteration ¢, and let h* € R denotes the target distribution (e.g., a uniform distribution).
The SAF regularization is defined as

Ly = Dxr(he || R"), (30)
where Dxy (+]|+) is the Kullback-Leibler divergence. The final training objective is:
Ezﬁsup+wu£con+wf»cf» (3D

where w,, and wy are weighting hyperparameters.

C PSEUDO CODE OF THE PROPOSED ALGORITHM

The pseudo-code that describes the DyTrim is presented in Algorithm 1 and Algorithm 2.

Algorithm 1 DyTrim for Labeled Data Selection

Input: Labeled set of N samples X = {(z",y")}2_,, score set of the samples V!, number of
classes n., biased degree b
Output: Labeled pruned set S' (S! C X, |S!| <= |X])

1: St 0 > Initialize the labeled pruned set
2: forc=0ton.—1do

4 Vi {Viel} > Select scores of class ¢ samples
5: ke + [(1 —b.) - |X.:|]] > Compute target pruned set size of class ¢ based on biased degree
6 T2 < TopK(Z., V!, k) > Select indices of top-k, scored samples
7. Sl Sluz®

8: end for

9: return S'

Algorithm 2 DyTrim for Unlabeled Data Selection

Input: Unlabeled set of M samples U = {(u™)}*_,, score set of the samples V*, pruning ratio 7,
weight of samples w
Output: Unlabeled pruned set S! (S C U, |S*| <= |U])

1: S¥ <0 > Initialize the unlabeled pruned set
2 Iy« {i| V¥ =0} > Select low confidence samples
3t Tyo + {i | V! # 0} > Select high confidence samples
4: S¥ + S*UTy

5: p<— Mean({V}" | i € Tx0})

6: Lyen < {1 € Lz | Vi' < u} > Select well-learned samples
7: Ipoor < Lo \ Zyen > Select poorly-learned samples
8: S 4 8 U Tpoor

9: Zselect < Randomly select [ (1 — 7) - |Zyen|] samples from Zyey

10: SY + 8% U Zgeleet

1: w; < 1, Vie{l,...,M} > Reset weights
120 w; + 1=, Vi € Lgteat > Rescaling
13: return S“

D EXPERIMENTAL SETTINGS

D.1 MODELS

Unless otherwise specified, we adopt Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) as the
default backbone following common practice in semi-supervised learning. Additionally, we also
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evaluate Tiny Vision Transformers (TinyViT) (Wu et al., 2022) on CIFAR-10-LT and CIFAR-100-
LT. For ImageNet-127, we employ ResNet-50 (He et al., 2016) as the backbone to ensure scalability
on large-scale datasets.

D.2 BASELINES

The classification performance of the DyTrim was compared with those of the following algo-
rithms: 1. vanilla algorithm - Deep CNN trained with cross-entropy loss, 2. CIL algorithms -
Resampling (JAPKOWICZ, 2000), LDAM-DRW (Cao et al., 2019), and cRT (Kang et al., 2020),
3. SSL algorithms - FixMatch (Sohn et al., 2020), and 4. CISSL algorithms - DARP, DARP+LA,
DARP+cRT (Kim et al., 2020), CReST, CReST+LA (Wei & Gan, 2023), ABC (Lee et al., 2021),
CoSSL (Fan et al., 2022), DASO (Oh et al., 2022), SAW, SAW+LA and SAW+cRT (Lai et al., 2022)
combined with FixMatch. Adsh(Guo & Li, 2022), DebiasPL (Wang et al., 2022), UDAL(Lazarow
et al., 2023) and L2AC (Wang et al., 2023a) combined with FixMatch. We report the performance
of the baseline algorithms reported in Tables of Lai et al. (2022) and Fan et al. (Fan et al., 2022)
when it is reproducible; the performance measured using the uploaded code was reported otherwise.

D.3 IMPLEMENTATION DETAILS

All experiments are trained for 500 epochs with 500 steps per epoch, resulting in a total of 250,000
iterations. We use Stochastic Gradient Descent (SGD) (Bottou, 2012) with a fixed learning rate of
1 = 0.0015 and a batch size of 32. The pruning ratio of the unlabeled dataset is set to 0.7, and the pa-
rameter ¢ is aligned with InfoBatch (Qin et al., 2024), fixed at 0.875. For CIFAR-10-LT, the largest
labeled class contains 1,500 samples, while the largest unlabeled class contains 3,000 samples. For
CIFAR-100-LT, the largest labeled and unlabeled classes contain 150 and 300 samples, respectively.
For STL-10-LT, the largest labeled class contains 450 samples. To assess classification performance,
we adopt balanced accuracy (bACC) (Huang et al., 2016) and geometric mean (GM) (Kubat, 1997)
for CIFAR-10-LT and STL-10-LT. For CIFAR-100-LT and ImageNet-127, evaluation is conducted
solely using bACC. Each experiment is repeated three times on RTX 4090 GPUs to ensure repro-
ducibility, and we report both the mean and the standard error.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL RESULTS ON CIFAR-10-LT

Following prior works (Xing et al., 2025; Lee & Kim, 2024; Guo et al., 2024), we evaluate under a
more challenging scenario where the unlabeled set is imbalanced in the reverse direction of the la-
beled set (Table 6). Across all settings, DyTrim delivers consistent gains by applying balanced prun-
ing on the labeled data. Notably, when combined with FixMatch, DyTrim surpasses CDMAD by
more than 1% in both bACC and GM. Similar benefits are observed for FlexMatch and FreeMatch:
DyTrim improves FlexMatch by approximately 1.1-1.3% and FreeMatch by around 0.9-1.5%.

Table 6: Comparison of bACC/GM on CIFAR-10-LT(y; = 100, 7,, = 100(reversed)).

CIFAR-10-LT, ~; = 100, v, = 100(reversed)

Algorithm

ABC SAW SAW+LA SAW+cRT CDMAD DyTrim
FixMatch+ 69.5/66.8 72.3/68.7 T74.1/72.0 75.5/73.9 77.1/75.4 78.2/76.7
FlexMatch+ ~ —/— /- e /= 67.2/65.1 68.3/66.4
FreeMatch+ -/ -/ -/ -/ 68.5/66.4 69.4/67.9

We also compared the classification performance of CDMAD with ACR (Xiang et al., 2020) and
BaCon, two recent CISSL algorithms. From Table. 7, we can observe that CDMAD outperforms
both ACR and BaCon.

E.2 RESULTS ON SMALL-IMAGENET-127
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Table 7: Comparison of bACC/GM on CIFAR-10-LT

Algorithm/CIFAR-10-LT v =7, =100 v =7.=1
FixMatch+ACR 81.8/81.4 85.6/85.3
FixMatch+BaCon 84.4/84.0 82.0/81.5
FixMatch+CDMAD 83.6/83.1 87.5/87.1
FixMatch+DyTrim 84.8/84.4 87.9/817.5

Table 8: Comparison of bACC on
ImageNet-127 is a naturally long-tailed dataset, widely Small-ImageNet-127.
used to evaluate class-imbalanced semi-supervised learning

(CISSL) algorithms at scale. Following standard protocol, we

Small-ImageNet-127

downsample images to resolutions of 32 x 32 and 64 x 64 us- Algorithm 32%32 64 x 64
ing the box interpolation method from the Pillow library, and  ~FixMatch 20.7 123
randomly select 10% of the training samples as labeled data. w/+DARP 30.5 42.5
Under such limited supervision and class imbalance, learn- ~ W/*+DARP+cRT  39.7 51.0
ing discriminative representations and a balanced classifier WiCReST 52 i
Ing discrimina pr ; ! w/+CReST+LA ~ 40.9 55.9
is particularly challenging. As reported in Table. 8, DyTrim w/+ABC 46.9 56.1
achieves the highest balanced accuracy (bACC) at both res- w/+CoSSL 43.7 53.8
olutions, outperforming the strongest baseline CDMAD by wi+CPE 47.8 98.2
3.0% at 32 x 32 and 1.2% at 64 x 64. These i ts  WACDMAD - s4 Bod
0% a and 1.2% a . These improvements w/+DyTrim 50.6 60.0

demonstrate the robustness of our method, especially under
low-resolution and low-resource conditions. The performance gain at lower resolutions suggests
that DyTrim effectively handles the compounded difficulty of reduced visual fidelity and severe la-
bel scarcity. This makes it a promising solution for real-world applications where high-resolution
data and abundant labels are often unavailable.

E.3 RESULTS ON DYNAMIC DATA PRUNING EXPERIMENT

Recently, Infobatch (Qin et al., 2024) provides a no-bias dynamic data pruning method. In this
section, we compare it with DyTrim in the framework of CISSL. The experiment is conducted on
the CIFAR-10-LT dataset, comparing the settings of ; = -y, and ~y; # ~,,. Specifically, we directly
apply the pruning policy of InfoBatch to labeled samples and unlabeled samples without distinction,
and the results are shown in the Table. 9 and Table. 10. It can be seen that compared with the
proposed method, the pruning policy directly combined with InfoBatch is not consistently effective
in all settings. In particular, when ~; # 7, it will cause a decrease in accuracy, which is caused by
the mismatch in the distribution of labeled samples and unlabeled samples.

Table 9: Comparison of bACC/GM on CIFAR-10-LT.

CIFAR-10-LT (v = 1 = 7u, Yu is assumed to be known)

Method

Y = 50,7, =50 v = 100, v, = 100 v = 150, v, = 150
FixMatch 79.2+0.33/77.8 +0.36 71.5+0.72 / 66.8 £1.51 68.4+£0.15/59.9 +0.43
w/+CDMAD 87.34+0.12/87.0£0.15 83.64+0.46 / 83.1 £0.57 80.8+0.86/79.9 £1.07
w/+InfoBatch 87.2+£0.18 /86.9 +0.19 84.14+0.61/83.7 £0.69 81.64+0.45/80.9 £0.59
w/+DyTrim 88.0 +0.31 / 87.8 +-0.32 84.8 +-0.48 / 84.4 +0.51 82.0 +0.09 / 81.3 +0.03

Table 10: Comparison of bACC/GM on CIFAR-10-LT (7; # vu, Y+, is assumed to be unknown).

Method

CIFAR-10-LT (y; = 100, ,, = Unknown)

Yu =1 Yo = 50 Yo = 150
FixMatch 68.9+£1.95/42.8+8.11 73.940.25/70.5 +0.52 69.6+0.60 / 62.6 +1.11
w/+CDMAD  87.5+0.46 / 87.1 +£0.50 85.7+0.36 / 85.3 +£0.38 82.3+0.23 / 81.8+0.29
w/+InfoBatch ~ 86.4+0.63 / 85.9 +£0.73 85.54+0.33 /85.1 £0.37 83.34+0.08 / 82.8 £0.11
w/+DyTrim 88.9 +-0.88 / 88.6 +-1.03 86.4 +0.43 / 86.0 +-0.43 83.8 +0.34 / 83.4 +0.33
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Table 11: Ablation study for the proposed algorithm on CIFAR-10-LT.

Labeled Unlabeled Rescaling | =7 =50 | v =7 =100 | v, = v, = 150
Pruning  Pruning | PACC GM | bACC GM | bACC GM
873 870 | 83.6 83.1 80.8 79.9

v 875 872 | 844 84.0 81.3 80.6

v v 877 874 | 84.0 83.6 81.4 80.6

v v 87.2 869 83.6 83.1 79.9 79.0

v v v 88.0 87.8 | 84.8 84.4 82.0 81.3

Table 12: Comparison of bACC/GM on CIFAR-10-LT under different baseline images.

FixMatch+DyTrim CIFAR-10-LT

Input Y = Yu = 100 v = 100, v, = 150

Noise images 77.7176.8 76.7/75.8

Dataset means 78.0/76.1 76.7/174.2

Red 83.5/83.2 82.2/81.7

Green 83.7/83.3 81.5/81.0

Blue 84.5/84.2 83.1/82.6

Gray 84.1/83.7 82.3/81.9

Black 84.2/83.8 82.4/82.0

White 84.8/84.4 83.8/834

E.4 ABLATION STUDY

Effectiveness of each component. We conducted ablation studies on CIFAR-10-LT to assess the
contribution of each component in DyTrim, varying the hyperparameter v = ~; = ~, across 50,
100, and 150. As shown in Table. 11, the best performance was achieved when both labeled and
unlabeled pruning were combined with rescaling. Removing rescaling led to a bACC drop of 0.8-2.1
points across y values. Excluding either pruning component also reduced performance (e.g., -0.5
and -0.3 at v = 50 without unlabeled or labeled pruning, respectively). Removing both pruning
strategies resulted in the most significant degradation. These results highlighted the complementary
benefits of pruning and rescaling.

Sensitivity of different baseline images Z. We further examined the sensitivity of DyTrim to
the choice of baseline image by conducting ablation studies on CIFAR-10-LT with different types of
inputs, including noise, dataset means, and solid colors. Table 12 shows that solid-color images con-
sistently outperform noise or mean-based baselines. Among them, white and black images deliver
the strongest results.

E.5 QUALITATIVE ANALYSES

Since the baseline image could implicitly reflect the bias of the classifier, we argued that by cus-
tomizing dynamic data pruning methods for labeled and unlabeled data, DyTrim significantly re-
duced classifier bias while improving performance. To verify this claim, in Figure. 3 (a) and (b), we
analyzed the class probabilities predicted on the baseline image using FixMatch+DyTrim, trained
on CIFAR-10-LT under various settings. We observed that classifiers trained with DyTrim consis-
tently produced more balanced predictions than CDMAD across all settings, with improved accuracy
on tail classes. To further validate the balanced classification effect of DyTrim, we visualized the
dynamics of baseline image logits during training as shown in Figure. 4 (a), (b) and (c). The re-
sults clearly showed that BiGDP significantly reduced classifier bias induced by class imbalance.
We defined r as the probability of pruning an unlabeled sample u}* when H} (up*) < H* and
max(Py(y|a(ul*))) > 7. In Figure. 5, we evaluated different pruning ratios for unlabeled samples
on CIFAR-10-LT. Results showed that setting > 0.1 yields higher performance across both archi-
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Figure 4: (a), (b) and (c) present the change of 7y(Z) for the baseline image on CIFAR-10-LT with
1 = 7, = 100 across different methods. (d) present the bACC and GM on those methods.
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Figure 5: Evaluation curves of hyper-parameter  on CIFAR-10-LT under bACC and GM.

tectures, indicating that DyTrim was relatively robust with respect to the hyperparameter r, with the
best performance achieved when r» = 0.3.

F PROOF FOR SECTION 3

In this section, we present the technical details of Section 3. In particular, Section F.1 first discuss
the relationship between classifier fy, dataset {X;U/} and the baseline image Z. Then, Section ??
proves Theorem ?? for revealing the baseline image’s intrinsic debiasing effect, and Section F.2
presents the details of the bias term and running statistics.

F.1 PROOF OF PROPOSITION 3

Proposition 1. Let 7 = Softmax(z) and z = gg(x). The one-step dynamics decompose as
Alogm'(y | T) = —nT'(T)K'(Z, 2)G" (z,y) + O*|[Voz(2)lI3,), (32)

where TH(I) =V, log.(Z) = I-1n}.(T), K{Z,z) = (Voz(L)|e:)(Voz(z)|p: )T is the empirical

neural tangent kernel of the logit network z, and G'(z,y) = V. L(x,y) |.¢.
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Proof. Inspired by the analysis of the learning dynamic of (Ren et al., 2022; Ren & Sutherland,
2024). In this work, we want to observe the classifier’s prediction on the baseline image Z. Starting
from Eq (12), we first approximate log 71 (y | Z) using first-order Talyor expansion, with slightly
abused symbols, we use 7 to represent mge+1, 2 to represent labeled sample x}" and u to represent
unlabeled sample u;*:

log 71 (y|T) = log 7' (y|T)+ < Vlog'(y|T), 0" — 6" > +O(||6"+" — 60"||*)

Then, assuming the model updates its parameters using SGD calculated by an “updating labeled
example” (z,y) or an “updating unlabeled example” u, we can rearrange the terms in the above
equation to get the following expression:

Alog 7' (y|T) = log n' ' (y|Z) ~log 7' (y|T) = Vo log m* (y[Z)]e: (0" —0") +O(|0" T —0"|]*),

To evaluate the leading term, we first take a labeled sample as an example plug in the definition of
SGD, and repeatedly use the chain rule:

Velogm (y|T)lor (07" — 0") = (V:log ' (yIT)|:0) (=0 VoL (x)]or)"

= (V:log m' (y|T)].0) (=1 Ve L(x)|ot — Vo' (z)|or) "
= =1V log 7' (T)|:,[Voz(T)le: (Voz(2)lot) (Vo L(w)]-1)
= =T (DKL, 2)G" (x,y)

For the higher-order term, using as above that
gt — gt = —7]V92t(x)|glgt(x,gj)

and noting that, since the residual term G is usually bouned, we have that

O[0! = 0'11%) = O [[(Voz" (2)0) T 15,16 (2, 9)IIZ,) = O [IVez(2)]3,)

- (33)

O

In the decomposition, we can write our 7(t) as T4(Z) = V,log«(Z) = I — 1n}(Z), this
term is only related to the input Z, and reflects the model’s correspondence to the baseline im-
age, we will further analysis log.:(Z). The second term in this decomposition, K!(Z,x) is the
product of gradients at Z and = or u. As shown in (Ren & Sutherland, 2024), if their gradients
have similar directions, the Frobenius norm of this matrix is large, and vice versa. This matrix
is known as the empirical neural tangent kernel, and it can change through the course of train-
ing as the network’s notion of “similarity” evolves. The third term in this decomposition, G* is
determined by the loss function £, which provides the energy and direction for the model’s adap-
tation. We have £ = L, (z}, yj) for each labeled sample and £ = L.opn((u]?), A(uy®)) for
each unlabeled sample. According to the analysis of Xing et al. (2025), G* using the baseline im-
age enhances the balance of the base SSL model implicitly utilizing the integrated gradient flow

VoLeon =D, (Z?:l IntegratedGradsAuZ")) YD QA,b%.

Proof. For the baseline image 7 is a solid-balck image, i.e., the k = 0, with h(Z) = 3

o) = o = WD) = Sl = B e

F.2 DETAIL OF THE BIAS TERM AND RUNNING STATISTICS

Effects of bias term. When the bias term (5 of the BN layer is frozen and equal to 0, A(Z) becomes
v * ((w, k) — E[(w, k)])/+/Var[(w, k)] which is the same as the Eq.(7) except for a bias term.
Ignoring the running statistics strategy, the form of h(Z) only depends on the 3. As a result, h(Z)
becomes h(Z) — 0 during training and h(Z) — —v * Epom [(W, )]/ v/ Varmoem [(W, 2p)] during
testing. This shows that the g; operation has no effect in the training phase and only eliminates the
impact of the unbalanced running means in the testing phase. This will affect the ability to benefit
from g, as shown in Table. 13.
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Figure 6: Comparison of the change of logits’s probability distribution 7y(Z) for the baseline image
on CIFAR-10-LT with ~; = =, = 100 across different CISSL methods.

Effects of running statistics. When we do not keep running estimates, batch statistics are instead
used during evaluation time as well. The form of h(Z) becomes h(Z) — [ both training and

testing. We can rewrite g (x;) = v * ((w, z4) — E[(w, 2¢)])/+/ Var[(w, z;)]. On the other hand, as
h(Z) — 0, the benefit of g; is also vanishes, also shown in Table. 13.

We then extend our results to a non-linear neural network, thus we have the following corollary:

Table 13: Comparison of bACC/GM on CIFAR-10-LT.

Metric ~ With original g; gp without 3 gp without X,,0r,  gp Without 8 & Xpom

bACC 83.6 £0.46 80.92 +0.02]2.68 71.63 +0.35/11.97 64.01 £0.14/19.59
GM 83.1 £0.57 80.37 +£0.23]2.73  67.85 £0.51]15.25 54.48 £ 0.36/28.62

G VISUALIZATION

G.1 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

In this section, we conduct some visualization experiments to demonstrate the advantages of the
DyTrim in debiasing and improving classifier performance. We first analyze the change of logits’s
probability distribution Softmax(gg(Z)) for the baseline image on CIFAR-10-LT with v, = v, =
100 for fixmatch, CDMAD, and the DyTrim as shown in Figure. 6. It can be seen intuitively that in
the first epoch, the classifier has bias due to the imbalance of categories in the data. This situation
increases significantly with the number of network training times, as shown in the second column
of the figure. However, we can see that DyTrim can effectively slow down the increase of this bias.
Furthermore, after the model is fully trained for 500 epochs, it can be seen that after the 100th
epoch, CDMAD starts to use the baseline image for post-hoc debiasing, which significantly reduces
the representation of the model. However, by dynamically pruning the data set, DyTrim obtains a

more distinct debias effect as shown in Figure. 7.
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Figure 7: Class probabilities predicted on a baseline image using (a) FixMatch, (b) Fix-
Match+InfoBatch, (c¢) FixMatch+CDMAD, (d) FixMatch+DyTrim.
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Figure 8: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) FixMatch,
(b) FixMatch-+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-
LT under v; = 100 and ~y,, = 100.
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Figure 9: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) FixMatch,
(b) FixMatch+InfoBatch, (c¢) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-
LT under ; = 100 and ~,, = 1.

G.2 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

Figure. 8 and Figure. 9 compare the confusion matrices of the class predictions on the test set
of CIFAR-10 using (a) FixMatch, (b) FixMatch+Infobatch, (c) FixMatch+CDMAD, and (d) Fix-
Match+DyTrim trained on CIFAR-10-LT under v; = 100, v, = 1,100. FixMatch+DyTrim made
more balanced predictions across classes. Furthermore, we also conducted experiments under a bal-
anced setting (v = 1 = 7Y, = 1), as shown in Figure. 10. The results show that even under a
balanced data distribution, BigDP can still achieve better results on the pruned dataset than methods
such as CDMAD trained on the full dataset.

Similar to confusion matrices, we also compare t-distributed stochastic neighbor embedding (t-SNE)
of representations obtained for the test set of CIFAR-10 using FixMatch, FixMatch+CDMAD,
FixMatch+InfoBatch, and FixMatch+DyTrim trained on CIFAR-10 with v, = 100and v, =
1,100(unknown ~,, ), where different colors indicate different classes in CIFAR-10 Figure. 11, Fig-
ure. 12. We can observe that the representations obtained using FixMatch+DyTrim are separated
into classes with clearer boundaries compared the those from FixMatch and CDMAD. This is prob-
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Figure 10: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under v; = 1 and v, = 1.

ably because CDMAD appropriately refined the biased pseudo-labels and used them for training,
whereas FixMatch failed to learn the representations properly because they used the biased pseudo-
labels for training. These results demonstrate that the quality of representations can be improved by
using well-refined pseudo-labels for training.
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(a) FixMatch (b) FixMatch+InfoBatch (c) FixMatch+CDMAD (d) FixMatch+BIGDP

Figure 11: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under v; = 100 and ~,, = 100.

(a) FixMatch (b) FixMatch+InfoBatch (c) FixMatch+CDMAD (d) FixMatch+BIGDP

Figure 12: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under v; = 100 and ~v,, = 1.

H USE OF LLMS

This work did not involve the use of large language models (LLMs) at any stage. The design of ex-
periments, data analysis, and manuscript preparation were conducted entirely by the authors through
conventional computational methods and human expertise, without reliance on automated text gen-
eration or model-driven reasoning.
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