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ABSTRACT

Long-tailed distributions are prevalent in real-world semi-supervised learning
(SSL), where pseudo-labels tend to favor majority classes, leading to degraded
generalization. Although numerous long-tailed SSL (LTSSL) methods have been
proposed, the underlying mechanisms of class bias remain underexplored. In this
work, we investigate LTSSL through the lens of learning dynamics and introduce
the notion of baseline images to characterize accumulated bias during training.
We provide a step-wise decomposition showing that baseline predictions are de-
termined solely by shallow bias terms, making them reliable indicators of class
priors. Building on this insight, we propose a novel framework, DyTrim, which
leverages baseline images to guide data pruning. Specifically, we perform class-
aware pruning on labeled data to balance class distribution and label-agnostic soft
pruning with confidence filtering on unlabeled data to mitigate error accumulation.
Theoretically, we show that our method implicitly realizes risk reweighting, effec-
tively suppressing class bias. Extensive experiments on public benchmarks show
that DyTrim consistently enhances the performance of existing LTSSL methods
by improving representation quality and prediction accuracy.

1 INTRODUCTION

Semi-supervised learning (SSL), exemplified by FixMatch (Sohn et al., 2020), has been proven
to demonstrate significant generalization advantages over supervised learning, particularly in deep
neural networks (Li et al., 2025). However, many existing SSL variants (e.g., FlexMatch; Zhang
et al., 2021) implicitly assume that both labeled and unlabeled data are drawn from a balanced
class distribution. In practice, datasets commonly exhibit a long-tailed label distribution, leading to
biased pseudo-label toward majority classes. This discrepancy poses significant challenges to the
effectiveness of SSL algorithms on real-world datasets.

Recent studies on long-tailed semi-supervised learning (LTSSL) have emerged to mitigate pseudo-
label bias caused by class imbalance in both labeled and unlabeled data. These methods range from
distribution alignment (Wei et al., 2021; Kim et al., 2020), data rebalancing (Fan et al., 2022; Lee
et al., 2021), logit adjustment variants (Wei & Gan, 2023; Zhou et al., 2024), to foundation model-
based methods (e.g., LADaS; Zheng et al., 2025). In particular, the approach employ baseline image
was introduced as a simple yet efficient tool to quantify classifier bias by CDMAD (Lee & Kim,
2024), which has attracted considerable attention in the community (Xing et al., 2025). However,
the underlying mechanisms of how class bias emerges and why existing approaches can mitigate it
remain largely unexplored and poorly understood. That also prevents us from exploring a principle-
based method to improve performance.

In this paper, we analyze the underlying mechanisms of class debiasing through an innovative lens
of learning dynamics, investigating how an input affects the generation of biased pseudo-labels. We
first point out that in the training processes of LTSSL, the logits of the baseline image serve as an
indicator of the accumulated influence of the network’s bias term. We further propose a framework
that formalizes the learning dynamics of semi-supervised learning by decomposing the change of
the model’s prediction on the baseline image into three terms. Under this framework, many existing
debiasing methods for class imbalance can be unified.

Furthermore, our analysis of bias accumulation dynamics motivates a pruning-based class debiasing
framework. For labeled data, we compute class-wise pruning ratios to rebalance samples. For un-
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labeled data, we apply a label-agnostic criterion that prunes low-confidence, inconsistent samples.
Beyond empirical gains or ad-hoc analysis, DyTrim provide a principle-based theoretical guarantees
that clarify how the proposed method can alleviate class biasing and why pruning enhances gener-
alization. Extensive experiments confirm that DyTrim consistently enhances LTSSL performance
across standard benchmarks.

2 PRELIMINARIES

Notions. We consider a labeled dataset X = {(xn, yn)}Nn=1 with N samples and an unlabeled
dataset U = {um}Mm=1 with M samples, where xn ∈ Rd is the n-th labeled sample with label
yn ∈ [C] = {1, . . . , C}, and um ∈ Rd is the m-th unlabeled sample. Let Nc and Mc denote the
number of labeled and unlabeled samples in class c, such that

∑C
c=1 Nc = N and

∑C
c=1 Mc = M .

If classes are sorted by size, we have N1 ≥ N2 ≥ · · · ≥ NC , and define the imbalance ratios as
γl = N1/Nc ≥ 1 and γu = M1/Mc ≥ 1, respectively. We denote the classifier by fθ : Rd 7→ 1, . . . , C
with parameters θ, and its logits by gθ(x) ∈ RC , where fθ(x) = argmaxc gθ(x)c and (·)c denotes
the c-th component. For each iteration of training, we sample minibatchesMX = {(xn

b , y
n
b ) : b ∈

(1, . . . , B)} ⊂ X and MU = {(um
b ) : b ∈ (1, . . . , µB)} ⊂ U from the training set, where B

denotes the minibatch size and µ denotes the relative size ofMU toMX . For brevity, when clear
from context we drop the superscript on um

b (xm
b ) and simply write ub (xb).

Base SSL algorithms. We use FixMatch (Sohn et al., 2020) as the base SSL algorithm, follow-
ing other LTSSL studies. Specifically, FixMatch first predicts the class probability of a weakly
augmented unlabeled data point α(ub) as qb = πθ(y|α(ub)) and then generates hard pseudo-label
q̂b = argmaxc(qb,c), where πθ(y|·) = Softmax(gθ(·)). For consistency regularization, FixMatch
uses a hard pseudo-label q̂b only when maxc(qb,c) ≥ τ , where τ denotes a predefined confidence
threshold, to improve the quality of the pseudo-labels used for training. We express the training
losses of FixMatch L as:

L(xb, ub, q̂, τ ; θ) = Lsup(α(xb); θ) + Lcon(A(ub), q̂b, τ ; θ) (1)

where xb (ub) denotes the b-th labeled (unlabeled) samples in a minibatch MX (MU). A(ub)
denotes the strongly augmented version of ub. The losses and other base SSL algorithms, i.e. Flex-
Match (Zhang et al., 2021) and FreeMatch (Wang et al., 2023b), are detailed in Appendix B.

Learning dynamics and its per-step decomposition. Inspired by Ren & Sutherland (2024), we
study how a single gradient update changes the model’s confidence on an observation xo. With
πθ(y | x) denoting the predicted class probability distribution, the learning dynamics become,

∆θ ≜ θt+1−θt = −η ·∇L(fθ(xb), yb); ∆ log πt(y|xo) ≜ log πθt+1(y|xo)− log πθt(y|xo). (2)

where the update of θ during step t → t + 1 is given by one gradient update on the sample pair
(xb, yb) with learning rate η. L is the loss function, we use the cross-entropy loss H in our setting.

Definition 1 (Per-step decomposition of learning dynamics). Let π = Softmax(z) with z = gθ(x).
Then the one-step learning dynamics decompose as

∆ log πt
θ(y | xo) = −ηT t(xo)Kt(xo, xb)Gt(xb, yb) +O

(
η2∥∇θz(xb)∥2op

)
, (3)

where T t(xo) = ∇z log πθt(xo) = I − 1π⊤
θt(xo) only depends on the model’s current pre-

dicted probability,Kt(xo, xb) = (∇θz(xo)|θt)(∇θz(xb)|θt)⊤ is the empirical neural tangent kernel
(eNTK, Jacot et al. 2018) of the model, the product of the model’s gradients with respect to xo and
xb. Gt(xb, yb) = ∇zL(xb, yb)|zt is the loss gradient. ∥·∥2op denotes the spectral norm, which bounds
the second-order remainder term.

This decomposition characterizes how each update at (xb, yb) influences predictions at xo, forming
the basis for our SSL analysis under class imbalance.
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3 LEARNING DYNAMICS OF LONG-TAILED SEMI-SUPERVISED DEBIASING

3.1 LEARNING DYNAMICS OF SEMI-SUPERVISED LEARNING

In this section, we characterize the learning dynamics of the semi-supervised version of gradient
descent (GD) for the FixMatch algorithm Eq. (1),

∆θ ≜ θt+1 − θt = −η · (∇Lsup(fθ(α(xb)), yb) +∇Lcon(fθ(α(ub)), fθ(A(ub))) ;

∆f(xo) ≜ fθt+1(xo)− fθt(xo).
(4)

where xo denotes the observation data point, the update of θ during step t → t + 1 is given by one
gradient update on the labeled sample pair (xb, yb) and unlabeled sample (ub) with learning rate
η. Previous work (Ren & Sutherland, 2024) showed how a single gradient update influences model
predictions in supervised learning. We now examine whether such characterization extends to the
semi-supervised setting. Since FixMatch (Sohn et al., 2020) update naturally consists of a supervised
part Lsup and a consistency part Lcon, the gradient update can be decomposed accordingly. For an
unlabeled sample ub with target q̂tb = argmaxc q

t
b,c, where qtb = πθt(· | α(ub)). The per-step

learning dynamics of semi-supervised learning become

∆ log πt(y|xo) ≜ ∆ log πt,sup
θ (y | xo;xb) + ∆ log πt,con

θ (y | xo;ub) (5)

where ∆πt,sup
θ denotes the influence caused by xb and ∆πt,con

θ denotes the influence caused by ub,
respectively. We now state the decomposition of the per-step influence below:
Proposition 1. For an labeled (unlabeled) sample xb (ub) with target yb (q̂tb = argmaxc q

t
b,c),

where qtb = πθt(y|α(ub)). The one-step learning dynamics of SSL decompose as

∆log πt,sup
θ (y | xo;xb) = −ηT t(xo)Kt(xo, α(xb))Gt

sup(α(xb), yb) +O
(
η2∥∇θz(α(xb))∥2op

)
∆log πt,con

θ (y | xo;ub) = −ηT t(xo)Kt(xo,A(ub))Gt
con(A(ub), q̂

t
b) +O

(
η2∥∇θz(A(ub))∥2op

) (6)

where Kt(xo, α(xb)) and Kt(xo,A(ub)) are eNTK evaluations of the logit network z(·) =
gθ(·), with different inputs. Gtsup(α(xb), yb) = ∇zLsup(α(xb), yb)|zt and Gtcon(q̂b,A(ub)) =
∇zLcon(q̂b,A(ub))|zt , respectively.

𝑦 = 𝜋 𝑥! = 4 𝑦 = 𝜋 𝑥! = 4

𝑦 = 𝜋 𝑥! = 4𝑦 = 𝜋 𝑥! = 4

Figure 1: The per-step semi-supervised learning
dynamics and the accumulated influence in an
MNIST experiment.

Accumulated influence and a demonstration
on MNIST. As shown in Proposition 1, each
update of θ in FixMatch decomposes into a su-
pervised part driven by (xb, yb) and a consis-
tency part driven by (ub, q̂

t
b). While this de-

composition captures the per-step influence on
πθ(y | xo), in practice training consists of many
such steps, and the accumulated effect is gov-
erned by the iterative interaction between la-
beled and unlabeled updates.

To demonstrate this, we train a WRN-28-2 on
MNIST and visualize the accumulated influ-
ence in Figure 1. In the top row, when q̂b is cor-
rect, the consistency term reinforces the super-
vised signal, gradually pulling the prediction of
xo toward the correct class, consistent with the
constructive dynamics implied by Eq. (6). In
contrast, when q̂b is incorrect (top right), the
consistency update exerts the opposite effect,
systematically reducing the correct probability
of xo. This illustrates how pseudo-label er-
rors, even if small at each step, can accumulate
across iterations into a negative reinforcement
loop. The bottom row shows that under class imbalance, such accumulated influence can drive the
classifier to consistently predict the majority class (here 0), regardless of the true label. This con-
firms the implication of our dynamics analysis: in SSL, the effect of labeled data is mediated through
pseudo-labels, so local errors can be amplified rather than averaged out, leading to catastrophic bias.
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3.2 LEARNING DYNAMICS ANALYSIS OF ACCUMULATED BIAS UNDER CLASS IMBALANCE

The aforementioned phenomenon, together with the learning dynamics of the semi-supervised
framework, illustrates how class imbalance accumulates into systematic bias. While per-update
dynamics capture the influence of individual samples on predictions, they fall short of reflecting the
global effect of imbalance. This motivates the search for an indicator that bridges class-imbalance
bias with the underlying learning dynamics. We propose to use a baseline image I as such an in-
dicator. To justify this choice, we analyze its theoretical properties in both linear and deep settings,
and then incorporate it into the per-step influence decomposition.

Baseline image and its invariance property. For simplicity, we first consider a two-layer MLP
with no bias in the first layer and a bias vector b ∈ RC in the output layer h(x) = h(2) ◦ h(1)(x),
where h(1)(x) = σ(W1x) and h(2) = W2x + b. This setting allows us to isolate and examine the
predicted class probability πθ(I) of a baseline image. For a baseline image I ∈ Rd, we have

h(I) = W2h
(1)(I) + b. (7)

In modern neural networks, the explicit bias term b is typically absorbed into the normalization
layer, e.g., BatchNorm, LayerNorm, while other layers are usually set without bias. Without loss
of generality, we take BatchNorm as an example for analysis. Since the BatchNorm transformation
can be equivalently viewed as an affine linear layer with learnable parameters, we may replace h(2)

with a BatchNorm(·) layer, i.e.,

h(I) = BatchNorm
(
h(1)(I)

)
=

h(1)(I)− E[h(1)(I)]√
Var[h(1)(I)]

·W2 + b. (8)

This replacement highlights that the baseline image prediction πθ(I) is directly governed by the BN
bias b, thus allowing us to focus on its role in encoding and accumulating class-imbalance bias. We
now state the main results regarding the πθ(I) below:
Proposition 2 (Invariance of baseline image under affine normalization). Let I = k · 1d be a base-
line image, where k ∈ {0, 1, . . . , 255} and 1d ∈ Rd is an all-one vector. Suppose the output of the
first hidden transformation is normalized by a normalization layer (e.g., BatchNorm, LayerNorm,
InstanceNorm, or GroupNorm) with affine parameters (W2, b). Then the logits h(I) are indepen-
dent of k and reduce to

h(I) = b, πθ(I) = Softmax(b). (9)

One can immediately notice that πθ(I) in Eq. (9) does not contain any term related to the pixel
value k of I. This observation implies that the representation πθ(I) of a baseline image is entirely
determined by the BatchNorm bias term b, and is invariant to the actual pixel value k.

Building upon this invariance, we now establish a connection between the baseline image and the
underlying class distribution. Specifically, for the classifier formulation in Eq. (8), we show that the
logits of the baseline image encode the class-imbalance ratio of the training data, thereby providing
a direct bridge between πθ(I) and the long-tailed class prior.
Theorem 1 (Bias as the conditional distribution prior). Assume the model h(x) which characterized
in Eq. (8), is trained by cross-entropy,

L = E(x,y)

[
− y⊤ log Softmax(h(x))

]
. (10)

At a population risk minimizer (W ⋆
2 , b

⋆) we have

p̂⋆(x) = P (y | x), p̂⋆(I) = Softmax
(
b⋆
)
= P

(
y
∣∣ h(1)(I)−E[h(1)(I)]√

Var[h(1)(I)]+ϵ
= 0

)
. (11)

In particular, for solid-color I satisfying Proposition 2, the baseline prediction equals the condi-
tional class distribution at the “normalized-zero” feature state, thereby encoding the class prior
induced during training.

Therefore, πθ(I) can naturally serve as a proxy for the accumulated bias of the model, providing a
bridge between class imbalance and learning dynamics.

Per-step influence decomposition of the baseline image. Let the estimate of the underlying class
prior Pθ(y|·) be denoted by π. Then we can track the change in the model’s confidence by observing
log πθ(y|·). Then learning dynamics become,

∆ log πt(y|I) ≜ log πθt+1(y|I)− log πθt(y|I). (12)
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Proposition 3. Let π = Softmax(z) and z = gθ(x). The one-step dynamics decompose as

∆ log πt(y | I) = −ηT t(I)Kt(I, x)Gt(x, y) +O(η2∥∇θz(x)∥2op), (13)

where T t(I) = ∇z log π
t(I) = I − 1πT

θt(I), Kt(I, x) =
(
∇θz(I)

∣∣
θt

) (
∇θz(x)

∣∣
θt

)T
is the em-

pirical Neural Tangent Kernel (NTK) of the logit network z, and Gt(x, y) = ∇zL(x, y)
∣∣
zt (see

Appendix F for details).

3.3 EFFECT OF THE BASELINE IMAGE FOR GUIDING DATA PRUNING

The training objective can be interpreted as the minimization of the empirical risk L. Assuming
that all labeled samples xn

b from X and unlabeled samples um
b from U are drawn from continuous

distributions ρl(xn
b ) and ρu(um

b ), respectively, the training objective can be formulated as:

argmin
θ∈Θ

E
xn
b ∈X ,um

b ∈U
[L(xn

b , u
m
b ; θ)] =

∫
xn
b

Lsup(x
n
b , θ)ρ

l(xn
b )dx

n
b +

∫
um
b

Lcon(u
m
b , θ)ρl(um

b )dum
b .

(14)
After applying a data pruning policy, we sample xn

b and um
b to obtain the labeled pruned subset Slt

and the unlabeled pruned subset Sut , according to the labeled pruning probabilities P l
t(x

n
b ) and un-

labeled pruning probabilities Pu
t (u

m
b ), respectively. For the labeled samples, we directly optimize

over the pruned subset Slt without reweighting the loss terms. Notably, the class-aware pruning
probability rc = πθ(I)c inherently adjusts Slt toward an asymptotically balanced class distribution.
By retaining more samples from minority classes (lower rc) and pruning more samples from major-
ity classes (higher rc), the pruned subset Slt naturally mitigates class imbalance. As a result, even
without explicit rescaling, the empirical risk over Slt approximates:

argmin
θ∈Θ

E
xn
b ∈Sl

t

[Lsup(x
n
b , θ)] ∝

1− P l
t(x

n
b )

clt

∫
z

Lsup(x
n
b , θ)ρl(x

n
b )dx

n
b , (15)

where clt = Exn
b ∼ρl

[1−P l
t(x

n
b )]. The term 1−Pl

t(z)

clt
acts as an implicit reweighting due to the class-

aware pruning policy. For unlabeled samples, pruning with uniform probability r and rescaling
losses by γt(u) =

1
1−Pu

t (u) yields

argmin
θ∈Θ

E
um
b ∈Su

t

[γt(u
m
b )Lcon(u

m
b , θ)] ∝ 1

cut

∫
z

Lcon(u
m
b , θ)ρl(um

b )dum
b , (16)

where cut = Eum
b ∼ρu [1 − Pu

t (u
m
b )]. Crucially, even with uniform pruning rates, the interplay of

consistency regularization and confidence thresholding ensures Sut to be implicitly balanced, thus
training on Sut with rescaled factor γt(um

b ) could achieve a better result as training on the U .

4 DYTRIM: A BASELINE IMAGE GUIDED DATA PRUNING FRAMEWORK FOR
CISSL

The theoretical results in Section 3 suggest that the distribution of the baseline image’s logits is
affected by imbalanced data and directly acts on the bias term in the shallow layers. This imbalance
directly causes the model to produce bias. Fortunately, we indicated that this bias can be effectively
reduced if the data is pruned to be more balanced. Based on these insights, we propose the algorithm
DyTrim, which extends the data pruning by incorporating guidance from the baseline image’s logits
to select a balanced subset for the training of CISSL, as illustrated in Figure. 2.

Dynamic data pruning for CISSL. We use X = {(xn, yn)}Nn=1 to denote the labeled set and
U = {um}Mm=1 for unlabeled set. Critically, the distribution mismatch between X and U neces-
sitates separate scoring mechanisms for labeled and unlabeled samples—unlike conventional su-
pervised dynamic pruning methods that assume identical data distributions. To this end, we define
step-dependent scoring functions Hl

t for labeled samples and Hu
t for unlabeled samples, which dy-

namically quantify sample utility at training step t. For the dynamic pruning process, samples are
discarded by the step-dependent pruning probabilities P l

t and Pu
t :

P l
t(x;Hl

t) = 1(Hl
t(x),≺rcHl

c,t); and Pu
t (u;Hu

t ) = 1(Hu
t (u), H̄u

t ), (17)
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Figure 2: Illustration of the proposed DyTrim framework. DyTrim mainly consists of two opera-
tions, named labeled pruning and unlabeled pruning. ≺rcHl

c,t and H̄u
t denote the adaptive thresholds

of scores of labeled samples and unlabeled samples, with slight abuse of symbols. Su≺τ denote the
low confidence unlabeled sample which p∗(um

b ) ≥ τ . Labeled pruning provides a class-aware prun-
ing policy for each sample from class c. Unlabeled pruning provides a random pruning policy from
the original data U1 and uses a gradient rescaling strategy (×1/(1− r) for which sample from su1 is
selected to prune) to keep the approximately same gradient expectation.

where ≺rcHl
c,t and H̄u

t are adaptive thresholds, 1(·, ·) is the indicator function. Thus, two dynami-
cally pruned datasets Slt and Sut are formed for labeled and unlabeled datasets, respectively.

Dynamic pruning for labeled data. Since the labeled data follow a long-tailed class distribution,
we design a class-aware pruning policy P l

t guided by πθ(I). Critically, the classifier’s pseudo-
labels are primarily influenced by the labeled samples, which introduce bias toward majority classes.
Since Proposition 2 shows that the baseline image has invariance to solid-color intensity, from first
principles, we leverage the logits from a black image I to calibrate pruning probabilities. Given
the labeled dataset X in the t-th epoch, a class-aware pruning probability is assigned to each sample
based on its score, which is formulated as:

P l
t(x

n
b ) =

{
1 Hl

t(x
n
b ) ∈ ≺rcHl

c,t,
0 Hl

t(x
n
b ) /∈ ≺rcHl

c,t,
(18)

where ≺rcHl
c,t denotes the rc×Nc smallest scoring values of the class c and rc = πθ(I)c is the class-

aware pruning probability. The labeled scoring function Hl
c,t(x

n
b ) is defined using the supervised

loss Lsup(x
n
b , y

n
b ) to quantify sample utility. Specifically, we exploit the pruning policy to prune

samples based on their scores. Then, for the pruned labeled samples, their scores remain unmodified
as previously. For the remaining samples, their scores are updated by the losses in the current epoch.
To ensure dynamic adaptation:

Hl
c,t+1(x

n
b ) =

{
Hl

c,t(x
n
b ) xn

b ∈ XnSl,
Lsup(x

n
b ) xn

b ∈ Sl.
(19)

Dynamic pruning for unlabeled data. While the distribution of the label of the unlabeled data
and its imbalance ratio γu are unknown. To address the uncertainty and bias of pseudo-labels, we
design a label-insensitive soft pruning policy Pu

t inspired by (Qin et al., 2024), which introduces
randomness and gradient scaling into the pruning process. Specifically, for an unlabeled dataset
U at the t-th epoch, a pruning probability is assigned to each sample based on its score, which is
formulated as:

Pu
t (u

m
b ) =

{
r Hu

t (u
m
b ) < H̄m

t and p∗(um
b ) ≥ τ,

0 Hu
t (u

m
b ) ≥ H̄u

t or p∗(um
b ) < τ,

(20)

where H̄u
t is the adaptive threshold and r is a randomized pruning rate, τ is the confidence threshold

τ and p∗(um
b ) = max(softmax(g∗θ(α(u

m
b )))) denote the debiased pseudo-label confidence. For

6
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Table 1: Comparison of bACC/GM on CIFAR-10-LT.

Algorithm CIFAR-10-LT (γ = γl = γu, γu is assumed to be known)

γ = 50 γ = 100 γ = 150

Vanilla 65.2±0.05 / 61.1±0.09 58.8±0.13 / 58.2±0.11 55.6±0.43 / 44.0±0.98

Re-sampling 64.3±0.48 / 60.6±0.67 55.8±0.47 / 45.1±0.30 52.2±0.05 / 38.2±1.49
LDAM-DRW 68.9±0.07 / 67.0±0.08 62.8±0.17 / 58.9±0.60 57.9±0.20 / 50.4±0.30
cRT 67.8±0.13 / 66.3±0.15 63.2±0.45 / 59.9±0.40 59.3±0.10 / 54.6±0.72

FixMatch 79.2±0.33 / 77.8±0.36 71.5±0.72 / 66.8±1.51 68.4±0.15 / 59.9±0.43
w/+DARP+cRT 85.8±0.43 / 85.6±0.56 82.4±0.26 / 81.8±0.17 79.6±0.42 / 78.9±0.35
w/+CReST+LA 85.6±0.36 / 81.9±0.45 81.2±0.70 / 74.5±0.99 71.9±2.24 / 64.4±1.75
w/+ABC 85.6±0.26 / 85.2±0.29 81.1±1.14 / 80.3±1.29 77.3±1.25 / 75.6±1.65
w/+CoSSL 86.8±0.30 / 86.6±0.25 83.2±0.49 / 82.7±0.60 80.3±0.55 / 79.6±0.57
w/+SAW+LA 86.2±0.15 / 83.9±0.35 80.7±0.15 / 77.5±0.21 73.7±0.06 / 71.2±0.17
w/+Adsh 83.4±0.06 / 82.9±0.13 76.5±0.35/ 74.8±0.34 71.5±0.30 / 68.8±0.35
w/+DebiasPL 85.6±0.20 / 85.2±0.23 80.6±0.50 / 79.9±0.57 76.6±0.12 / 75.8±0.71
w/+UDAL 86.5±0.29 / 86.2±0.26 81.4±0.39 / 80.6±0.38 77.9±0.33 / 75.8±0.71
w/+L2AC 86.6±0.31 / 86.7±0.30 82.1±0.57 / 81.5±0.64 77.6±0.53 / 75.8±0.71
w/+CDMAD 87.3±0.12 / 87.0±0.15 83.6±0.46 / 83.1±0.57 80.8±0.86 / 79.9±1.07
w/+DYTRIM 88.0±0.31 / 87.8±0.32 84.8±0.48 / 84.4±0.51 82.0±0.09 / 81.3±0.03

FlexMatch 72.6±0.72 / 70.2±0.88 67.7±0.73 / 63.6±1.27 62.6±0.63 / 56.1±1.13
w/+CDMAD 74.4±0.82 / 73.0±1.12 68.4±0.46 / 66.8±0.53 67.0±0.52 / 63.2±0.44
w/+DYTRIM 77.2±0.42 / 76.2±0.44 70.7±0.49 / 67.8±0.70 68.6±0.22 / 66.3±0.07

FreeMatch 71.9±0.24 / 69.4±0.61 65.7±0.18 / 60.9±0.69 62.5±0.12 / 57.3±0.53
w/+CDMAD 74.7±0.64 / 73.6±1.23 69.9±0.65 / 68.2±0.74 66.2±0.27 / 63.2±0.44
w/+DYTRIM 76.9±0.45 / 75.9±0.52 72.3±0.12 / 71.4±0.57 69.4±0.35 / 67.5±0.63

a remaining sample with score Hu
t (u

m
b ) < H̄m

t , whose corresponding pruning probability is r, its
gradient is scaled to 1/(1− r) times of the original, otherwise the gradient remains unchanged. The
scoreHu

t+1(u
m
b ) is derived from the consistency regularization loss valuesLcon(α(u

m
b ),A(um

b )) for
unlabeled data points. To enhance pseudo-label reliability, we further apply a confidence threshold
τ , where only samples with p∗(um

b ) > τ contribute to Lcon, where Lcon = 1
B

∑B
b=1 I(p∗(um

b ) >
τ)H(Pθ(y|A(um

b ), q̂b). Thus, we formulate the update ofHu
t+1(u

m
b ) as:

Hu
t+1(u

m
b ) =

{
Hu

t (u
m
b ) um

b ∈ UnSu,
Lcon(u

m
b ) um

b ∈ Su.
(21)

Initialization: at t = 0, scoresHu
t andHl

t are all set to {1}, as no prior loss is available.

5 EXPERIMENT

In this section, we conducted comprehensive experiments to verify the effectiveness of the pro-
posed DyTrim on CIFAR10-LT, CIFAR100-LT (Cui et al., 2019), STL10-LT (Kim et al., 2020), and
ImageNet-127 (Deng et al., 2009; Huh et al., 2016) datasets. Due to limited space, we defer the
detailed experimental settings to the Appendix D.

5.1 BASELINES

The classification performance of the DyTrim was compared with those of the following algo-
rithms: 1. vanilla algorithm - Deep CNN trained with cross-entropy loss, 2. CIL algorithms -
Resampling (JAPKOWICZ, 2000), LDAM-DRW (Cao et al., 2019), and cRT (Kang et al., 2020),
3. SSL algorithms - FixMatch (Sohn et al., 2020), and 4. CISSL algorithms - DARP, DARP+LA,
DARP+cRT (Kim et al., 2020), CReST, CReST+LA (Wei & Gan, 2023), ABC (Lee et al., 2021),
CoSSL (Fan et al., 2022), DASO (Oh et al., 2022), SAW, SAW+LA and SAW+cRT (Lai et al., 2022)
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Figure 3: (a) and (b) present the πθ(I) using the CDMAD and DyTrim. (c) and (d) present the
confusion matrices of the class predictions on test samples on CIFAR-10-LT (γl = γu = 100).
combined with FixMatch. Adsh(Guo & Li, 2022), DebiasPL (Wang et al., 2022), UDAL(Lazarow
et al., 2023) and L2AC (Wang et al., 2023a) combined with FixMatch. We report the performance
of the baseline algorithms reported in Tables of Lai et al. (2022) and Fan et al. (Fan et al., 2022)
when it is reproducible; the performance measured using the uploaded code was reported otherwise.

5.2 RESULTS ON CIFAR10/100-LT AND STL-LT

Table 2: Comparison of bACC on CIFAR-
100-LT.

Algorithm CIFAR-100-LT (γ = γl = γu, γu is assumed to be known)

γ = 20 γ = 50 γ = 100
FixMatch 49.6±0.78 42.1±0.33 37.6±0.48
w/+DARP 50.8±0.77 43.1±0.54 38.3±0.47
w/+DARP+cRT 51.4±0.68 44.9±0.54 40.4±0.78
w/+CReST 51.8±0.12 44.9±0.50 40.1±0.65
w/+CReST+LA 52.9±0.07 47.3±0.17 42.7±0.70
w/+ABC 53.3±0.79 46.7±0.26 41.2±0.06
w/+CoSSL 53.9±0.78 47.6±0.26 43.0±0.61
w/+UDAL 54.1±0.23 48.0±0.56 43.7±0.41
w/+CPE 52.4±0.17 45.6±0.68 39.9±0.40
w/+CDMAD 54.3±0.44 48.8±0.75 44.1±0.29
w/+DYTRIM 55.5±0.53 50.8±0.80 44.8±0.27

FlexMatch 36.5±0.51 29.6±0.35 25.8±0.79
w/+CDMAD 39.2±0.47 31.9±0.46 27.0±0.66
w/+DYTRIM 40.9±0.09 33.5±0.21 29.8±0.67

FreeMatch 35.9±0.69 31.3±0.65 24.5±0.66
w/+CDMAD 36.9±0.96 32.8±0.93 28.0±0.68
w/+DYTRIM 39.0±0.61 33.4±0.70 29.8±0.09

Under the consistent condition where γu is known and
matched to γl, the results in Table 1 show that CISSL
algorithms consistently outperform their vanilla SSL
counterparts by mitigating class imbalance while ef-
fectively exploiting unlabeled data. Among them,
the proposed DyTrim achieves the best performance
across all imbalance ratios. Compared with the state-
of-the-art CDMAD, DyTrim improves bACC by 1.2%
and GM by 1.4% on average, without incurring ad-
ditional computational overhead. Furthermore, when
integrated into FlexMatch and FreeMatch, DyTrim
yields substantial improvements, boosting bACC/GM
by 2–3% on average.

Table 2 further evaluates the methods on CIFAR-100-
LT, which involves more classes and stronger imbal-
ance. The results demonstrate that DyTrim consistently outperforms all competing approaches un-
der this more challenging setting. In particular, DyTrim delivers clear gains over CDMAD across all
imbalance levels, confirming its scalability to large-scale, fine-grained datasets. Similar to the obser-
vations on CIFAR-10-LT, the integration of DyTrim continues to provide consistent improvements
across different SSL frameworks.

Under the inconsistent condition where γu was unknown and mismatched to γl, the results in Table 3
show that DyTrim remains the most effective method overall. When the labeled and unlabeled data
distributions deviate, DyTrim consistently outperforms CDMAD on both CIFAR-10-LT and STL-
10-LT. The benefits are particularly notable when combined with FlexMatch and FreeMatch: on
STL-10-LT, FlexMatch + DyTrim improves bACC by more than 2%, while FreeMatch + DyTrim
achieves nearly 2% gains.

In addition, Table 4 highlights the performance of various algorithms under both consistent and in-
consistent imbalance settings with ViT backbones. On CIFAR-10-LT, DyTrim yields the best results,
improving bACC 0.6% over CDMAD and nearly 4% over FixMatch when γl = γu = 100. Under
the inconsistent condition, DyTrim maintains a clear margin, surpassing CDMAD almost 2%. On
CIFAR-100-LT, although the absolute accuracies are lower due to the increased difficulty, DyTrim
still matches or slightly improves upon CDMAD, while consistently outperforming FixMatch. Ad-
ditional experimental results are provided in Appendix E.

5.3 SCALABILITY EVALUATION OF DYTRIM

DyTrim exhibited robust extensibility as a universal plug-in component, consistently boosting per-
formance across diverse SSL frameworks (CDMAD/CCL), datasets (CIFAR/STL10-LT), and im-
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Table 3: Comparison of bACC/GM on CIFAR-10-LT and STL-10-LT (γl ̸= γu, γu is assumed to be
unknown).

Algorithm CIFAR-10-LT (γl = 100, γu = Unknown) STL-10-LT (γu =Unknown)

γu = 50 γu = 150 γl = 10 γl = 20
FixMatch 73.9±0.25 / 70.5±0.52 69.6±0.60 / 62.6±1.11 72.9±0.09 / 69.6±0.01 63.4±0.21 / 52.6±0.09
w/+DARP 77.3±0.17 / 75.5±0.21 72.9±0.24 / 69.5±0.18 77.8±0.33 / 76.5±0.40 69.9±1.77 / 65.4±3.07
w/+DARP+LA 82.3±0.32 / 81.5±0.29 78.9±0.23 / 77.7±0.06 78.6±0.30 / 77.4±0.40 71.9±0.49 / 68.7±0.51
w/+DARP+cRT 82.7±0.21 / 82.3±0.25 80.7±0.44 / 80.2±0.61 79.3±0.23 / 78.7±0.21 74.1±0.61 / 73.1±1.21
w/+ABC 82.7±0.64 / 82.0±0.76 78.4±0.87 / 77.2±1.07 79.1±0.46 / 78.1±0.57 73.8±0.15 / 72.1±0.15
w/+SAW 79.8±0.25 / 79.1±0.32 74.5±0.97 / 72.5±1.37 78.3±0.25 / 77.0±0.19 71.9±0.81 / 69.0±0.81
w/+SAW+LA 82.9±0.38 / 82.6±0.38 79.1±0.81 / 78.6±0.91 79.4±0.26 / 78.4±0.17 73.9±0.91 / 71.8±0.99
w/+SAW+cRT 81.6±0.38 / 81.3±0.32 77.6±0.40 / 77.1±0.41 78.9±0.22 / 77.8±0.14 72.3±0.86 / 69.5±0.83
w/+CPE 86.2±0.26 / 85.9±0.33 82.4±0.49 / 82.1±0.53 79.0±0.05 / 78.7±0.54 77.0±0.73 / 76.1±0.68
w/+CDMAD 85.7±0.36 / 85.3±0.38 82.3±0.23 / 81.8±0.29 79.9±0.23 / 78.9±0.38 75.2±0.40 / 73.5±0.31
w/+DyTrim 86.4±0.43 / 86.0±0.43 83.8±0.34 / 83.4±0.33 80.7±0.64 / 79.8±0.70 77.9±1.04 / 76.7±1.26

FlexMatch 67.7±0.67 / 62.8±0.65 63.0±0.77 / 56.3±1.70 62.1±0.29 / 60.8±0.43 56.9±0.90 / 51.4±0.81
w/+CDMAD 69.2±0.22 / 67.0±0.11 67.0±1.69 / 63.4±0.91 65.5±1.05 / 63.7±1.02 62.4±1.05 / 60.5±0.99
w/+DyTrim 72.5±0.39 / 70.7±0.45 70.3±1.01 / 67.4±0.21 68.0±0.94 / 66.4±0.85 63.9±0.16 / 61.7±0.28

FreeMatch 69.3±0.99 / 65.4±1.45 63.5±0.76 / 55.7±0.77 63.9±0.77 / 62.0±0.90 59.0±1.43 / 57.6±0.67
w/+CDMAD 71.0±0.98 / 69.0±1.05 67.1±0.96 / 64.3±0.99 66.1±0.32 / 63.8±0.97 61.5±0.47 / 59.5±0.63
w/+DyTrim 72.3±0.69 / 71.1±1.23 69.9±0.15 / 67.4±0.37 68.0±0.64 / 66.5±1.20 64.6±0.77 / 62.7±1.16

Table 4: Comparison of bACC/GM on CIFAR-10-LT and CIFAR-100-LT with ViT.

Algorithm CIFAR-10-LT CIFAR-100-LT

γl = γu = 100 γl = 100, γu = 150 γl = γu = 100
FixMatch 45.5±0.14 / 30.0±0.41 45.3±0.12 / 28.9±0.96 23.2±0.13 / 5.7±0.33
w/+CDMAD 48.7±0.49 / 40.5±0.26 45.4±0.13 / 39.9±0.10 24.0±0.15 / 9.0±0.77
w/+DyTrim 49.3±0.47 / 40.3±0.36 47.3±0.12 / 39.7±0.57 24.1±0.22 / 8.9±0.15

Table 5: Comparison of bACC with two state-of-the-art CISSL algorithms with and without DyTrim
on CIFAR-10, CIFAR-100, and STL-10.

Dataset FixMatch+ FixMatch+

CDMAD CDMAD+DyTrim Gain CCL CCL+DyTrim Gain

CIFAR10-LT

γl = γu = 100 83.6±0.46 84.8±0.48 ↑1.2 86.2±0.35 86.7±0.39 ↑0.5
γl = γu = 150 80.8±0.86 82.0±0.09 ↑1.2 84.0±0.21 84.0±0.26 ↑0.0
γl = 100, γu = 1 87.5±0.46 88.9±0.88 ↑1.4 93.9±0.12 94.1±0.17 ↑0.2

CIFAR100-LT γl = γu = 20 54.3±0.44 55.5±0.53 ↑1.2 57.5±0.16 58.1±0.49 ↑0.6

STL10-LT γl = 10 79.9±0.23 80.7±0.64 ↑0.8 84.8±0.15 85.1±0.33 ↑0.3
γl = 20 75.2±0.40 77.9±1.04 ↑2.7 83.1±0.18 83.3±0.40 ↑0.2

balance ratios (γ = 1 ∼ 150). Notably, it achieved up to +1.4% (CDMAD on CIFAR10-LT) and
+2.7% (STL10-LT, γl=20) gains without architecture-specific tuning, validating its versatility in
semi-supervised long-tailed scenarios.

6 CONCLUSION

In this work, we introduce DyTrim, a simple yet effective method to address long-tailed semi-
supervised learning (LTSSL) by leveraging baseline image-guided dynamic data pruning for de-
biasing. We provide a theoretical framework that explains the role of baseline images in reducing
classifier bias under class imbalance, showing how the class imbalance datasets influence the model
prediction of the baseline image. Our method, DyTrim, offers an elegant solution to the problem
of class imbalance in semi-supervised learning without requiring complex network branches or de-
biasing mechanisms. Through extensive experiments, we demonstrate that DyTrim significantly
improves the performance of LTSSL models on public benchmarks. We believe that our approach
can serve as a powerful tool for improving LTSSL in real-world datasets where class imbalance
remains a major challenge.
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APPENDIX

A RELATED WORK

A.1 MECHANISMS OF LONG-TAILED DEBIASING

This paper considers learning dynamics to study the debiasing mechanisms of SSL algorithms. We
briefly introduce differences between the settings considered here and those in previous works. For
debiasing on long-tailed learning, Menon et al. (2021) considered a unified framework for debiasing
from the perspective of logits adjustment, which requires statistical label frequency. CCL (Zhou
et al., 2024) considered debiasing from an information-theoretical lens. LCGC (Xing et al., 2025)
used gradient flow to analyze the debiasing process. However, these methods only elucidate the
model’s behavior from an ad hoc perspective. We aim to develop a more comprehensive framework
that enables a principle-based lens of the bias generation mechanisms inherent in long-tailed semi-
supervised learning.

A.2 SEMI-SUPERVISED LEARNING

Modern SSL methods typically integrate diverse strategies for exploiting unlabeled data, such as
entropy minimization (Zhou et al., 2024), consistency regularization (Sohn et al., 2020), and con-
trastive learning (Zhou et al., 2024; Lee et al., 2022). Among them, most SSL approaches rely
on selecting reliable pseudo-labels during training. FixMatch (Sohn et al., 2020) adopts a fixed
confidence threshold of 0.95, whereas FlexMatch (Zhang et al., 2021) adapts thresholds per class
based on learning difficulty and training progress. FreeMatch (Wang et al., 2023b) integrates global
and local adjustments with a class-fairness regularizer to promote prediction diversity, while Soft-
Match (Chen et al., 2023) employs a soft thresholding scheme that reweights samples to balance
quantity and quality. In contrast, our method bypasses threshold tuning altogether and directly en-
forces class-balanced pseudo-labeling through dynamic pruning.

A.3 LONG-TAILED SEMI-SUPERVISED DEBIASING

Existing debiasing methods for LTSSL dominantly rely on consistent distribution assumptions (Guo
& Li, 2022; Lee et al., 2021) and logit adjustment strategies (Wei & Gan, 2023). Notable ap-
proaches include CReST (Wei et al., 2021), which focuses on minority classes through selective
self-training, and CoSSL (Cai et al., 2021), which balances representations using tail-class feature
augmentation. Recent advances, like BaCon (Feng et al., 2024), utilize contrastive learning for bal-
anced features, while SMCLP (Du et al., 2024) exploits collaborative label-instance correlations,
and CPE (Ma et al., 2024) employs multiple expert classifiers. Innovative methods such as InPL (Yu
et al., 2023) and DebiasMatch (Wang et al., 2022) move beyond traditional pseudo-labeling; InPL
uses energy scores to detect reliable inliers, whereas DebiasMatch applies adaptive debiasing with
a marginal loss to reduce long-tailed pseudo-label bias. Despite these advances, LTSSL techniques
often demand intricate mechanisms or additional modules (Lee et al., 2021), posing challenges in
minimizing bias while maintaining simplicity.

A.4 DYNAMIC DATASET PRUNING

To reduce training cost on datasets, dynamic dataset pruning methods (Chen et al., 2024; Killamsetty
et al., 2021; Sagawa et al., 2019; Schaul et al., 2015; Zhang et al., 2024) aim to reduce the number
of training iterations while maintaining performance. Existing methods employ a variety of crite-
ria to guide pruning, among which loss-based (Attendu & Corbeil, 2023; Kawaguchi & Lu, 2020;
Thao Nguyen et al., 2023) method is the most popular. UCB (Raju et al., 2021) applies the cross-
entropy loss with exponential moving average (EMA) smoothing to mitigate noise. Infobatch (Qin
et al., 2024) randomly prunes low-loss samples and amplifies the gradients of retained ones to pre-
serve the expected gradient. SCAN (Guo & Kankanhalli, 2024) categorizes samples as redundant
or ill-matched based on their loss and gradually increases the pruning ratio using cosine annealing.
While thsese methods effectively accelerate training and can yield nearly unbiased results, none
have explored their potential to mitigate class imbalance in SSL by pruning.
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B MORE BASE SSL ALGORITHMS

B.1 MORE ABOUT TRAINING LOSSES OF FIXMATCH

Training losses of FixMatch on a minibatch for the labeled setMX and a minibatch for the unla-
beled setMU can be expressed as follows:

Lsup(xb; θ) =
1

B

∑
xb∈MX

H (πθ(y|α(xb)) , pb) (22)

with

Lcon(ub, q̂, τ ; θ) =
1

µB

B∑
b=1

1(max(q̂b) ≥ τ)H(Pθ(y|A(ub), q̂b), (23)

where q̂ denote the concatenations of q̂b. Lsup denotes the supervised loss for weakly augmented la-
beled data points ub. Lcon denotes the consistency regularization loss with the confidence threshold
τ .

B.2 MORE ABOUT FLEXMATCH

To overcome the limitation of FixMatch using a fixed threshold τ across all classes, Flex-
Match (Zhang et al., 2021) introduces the Curriculum Pseudo Labeling (CPL) strategy. The key
idea is to dynamically adjust the confidence threshold according to the learning status of each class.
Specifically, FlexMatch first predicts the class probability for a weakly augmented unlabeled sam-
ple ub as qb = πθ(y|α(ub)), and then estimates the learning effect of each class c by σt(c), i.e., the
number of samples predicted as class c that exceed the fixed threshold τ . After normalization, a ratio
coefficient βt(c) is obtained, which defines the class-adaptive threshold:

Tt(c) = βt(c) · τ. (24)
In this way, hard-to-learn classes receive a lower threshold to include more samples in training,
while easy-to-learn classes gradually increase their thresholds to ensure pseudo-label quality. The
unsupervised loss is defined as:

Lcon(ub, q̂, Tt; θ) =
1

µB

µB∑
b=1

1(max(qb) > Tt(argmax(qb))) H(q̂b, πθ(y|A(ub))) , (25)

where q̂b = argmaxc qb,c denotes the hard pseudo-label, and A(·) is the strong augmentation func-
tion. The overall training objective is

Lt = Lsup + λLcon. (26)
where λ is weighting hyperparameter.

B.3 MORE ABOUT FREEMATCH

Unlike FixMatch and FlexMatch, which rely on fixed or indirectly adjusted thresholds,
FreeMatch (Wang et al., 2023b) proposes Self-Adaptive Thresholding (SAT) that dynamically deter-
mines thresholds based on the model’s prediction confidence. Specifically, FreeMatch first estimates
a global threshold τt using an exponential moving average (EMA) of model confidence:

τt = ρτt−1 + (1− ρ)
1

µB

µB∑
b=1

max(qb), (27)

and further refines it with class-specific local statistics p̃t(c):

τt(c) =
p̃t(c)

maxc′ p̃t(c′)
· τt. (28)

At the early stage of training, thresholds are low to encourage more unlabeled data utilization and
faster convergence. As the model becomes more confident, thresholds increase to suppress incorrect
pseudo-labels and reduce confirmation bias. The unsupervised loss at iteration t is thus:

Lcon(ub, q̂, τt; θ) =
1

µB

µB∑
b=1

1(max(qb) > τt(argmax(qb))) H(q̂b, πθ(y|A(ub))) . (29)
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In addition, FreeMatch introduces Self-Adaptive Fairness (SAF) regularization Lf , which dynami-
cally calibrates the prediction distribution to encourage diverse predictions and prevent class collapse
during early training. Concretely, let ht ∈ RC denotes the normalized class histogram of model pre-
dictions at iteration t, and let h∗ ∈ RC denotes the target distribution (e.g., a uniform distribution).
The SAF regularization is defined as

Lf = DKL(ht ∥h∗) , (30)

where DKL(·∥·) is the Kullback–Leibler divergence. The final training objective is:

L = Lsup + wuLcon + wfLf , (31)

where wu and wf are weighting hyperparameters.

C PSEUDO CODE OF THE PROPOSED ALGORITHM

The pseudo-code that describes the DyTrim is presented in Algorithm 1 and Algorithm 2.

Algorithm 1 DyTrim for Labeled Data Selection
Input: Labeled set of N samples X = {(xn, yn)}Nn=1, score set of the samples V l, number of
classes nc, biased degree b
Output: Labeled pruned set Sl (Sl ⊆ X , |Sl| <= |X |)

1: Sl ← ∅ ▷ Initialize the labeled pruned set
2: for c = 0 to nc − 1 do
3: Ic ← {i | yi = c}
4: V l

c ←
{
V l
i | i ∈ Ic

}
▷ Select scores of class c samples

5: kc ← ⌊(1− bc) · |Xc|⌋ ▷ Compute target pruned set size of class c based on biased degree
6: I top

c ← TopK(Ic,V l
c, kc) ▷ Select indices of top-kc scored samples

7: Sl ← Sl ∪ I top
c

8: end for
9: return Sl

Algorithm 2 DyTrim for Unlabeled Data Selection
Input: Unlabeled set of M samples U = {(um)}Mm=1, score set of the samples Vu, pruning ratio r,
weight of samples w
Output: Unlabeled pruned set Sl (Sl ⊆ U , |Su| <= |U|)

1: Su ← ∅ ▷ Initialize the unlabeled pruned set
2: I0 ← {i | Vu

i = 0} ▷ Select low confidence samples
3: I ̸=0 ← {i | Vu

i ̸= 0} ▷ Select high confidence samples
4: Su ← Su ∪ I0
5: µ← Mean({Vu

i | i ∈ I̸=0})
6: Iwell ← {i ∈ I̸=0 | Vu

i < µ} ▷ Select well-learned samples
7: Ipoor ← I̸=0 \ Iwell ▷ Select poorly-learned samples
8: Su ← Su ∪ Ipoor
9: Iselect ← Randomly select ⌊(1− r) · |Iwell|⌋ samples from Iwell

10: Su ← Su ∪ Iselect
11: wi ← 1, ∀i ∈ {1, . . . ,M} ▷ Reset weights
12: wi ← 1

1−r , ∀i ∈ Iselect ▷ Rescaling
13: return Su

D EXPERIMENTAL SETTINGS

D.1 MODELS

Unless otherwise specified, we adopt Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) as the
default backbone following common practice in semi-supervised learning. Additionally, we also
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evaluate Tiny Vision Transformers (TinyViT) (Wu et al., 2022) on CIFAR-10-LT and CIFAR-100-
LT. For ImageNet-127, we employ ResNet-50 (He et al., 2016) as the backbone to ensure scalability
on large-scale datasets.

D.2 BASELINES

The classification performance of the DyTrim was compared with those of the following algo-
rithms: 1. vanilla algorithm - Deep CNN trained with cross-entropy loss, 2. CIL algorithms -
Resampling (JAPKOWICZ, 2000), LDAM-DRW (Cao et al., 2019), and cRT (Kang et al., 2020),
3. SSL algorithms - FixMatch (Sohn et al., 2020), and 4. CISSL algorithms - DARP, DARP+LA,
DARP+cRT (Kim et al., 2020), CReST, CReST+LA (Wei & Gan, 2023), ABC (Lee et al., 2021),
CoSSL (Fan et al., 2022), DASO (Oh et al., 2022), SAW, SAW+LA and SAW+cRT (Lai et al., 2022)
combined with FixMatch. Adsh(Guo & Li, 2022), DebiasPL (Wang et al., 2022), UDAL(Lazarow
et al., 2023) and L2AC (Wang et al., 2023a) combined with FixMatch. We report the performance
of the baseline algorithms reported in Tables of Lai et al. (2022) and Fan et al. (Fan et al., 2022)
when it is reproducible; the performance measured using the uploaded code was reported otherwise.

D.3 IMPLEMENTATION DETAILS

All experiments are trained for 500 epochs with 500 steps per epoch, resulting in a total of 250,000
iterations. We use Stochastic Gradient Descent (SGD) (Bottou, 2012) with a fixed learning rate of
η = 0.0015 and a batch size of 32. The pruning ratio of the unlabeled dataset is set to 0.7, and the pa-
rameter δ is aligned with InfoBatch (Qin et al., 2024), fixed at 0.875. For CIFAR-10-LT, the largest
labeled class contains 1,500 samples, while the largest unlabeled class contains 3,000 samples. For
CIFAR-100-LT, the largest labeled and unlabeled classes contain 150 and 300 samples, respectively.
For STL-10-LT, the largest labeled class contains 450 samples. To assess classification performance,
we adopt balanced accuracy (bACC) (Huang et al., 2016) and geometric mean (GM) (Kubat, 1997)
for CIFAR-10-LT and STL-10-LT. For CIFAR-100-LT and ImageNet-127, evaluation is conducted
solely using bACC. Each experiment is repeated three times on RTX 4090 GPUs to ensure repro-
ducibility, and we report both the mean and the standard error.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL RESULTS ON CIFAR-10-LT

Following prior works (Xing et al., 2025; Lee & Kim, 2024; Guo et al., 2024), we evaluate under a
more challenging scenario where the unlabeled set is imbalanced in the reverse direction of the la-
beled set (Table 6). Across all settings, DyTrim delivers consistent gains by applying balanced prun-
ing on the labeled data. Notably, when combined with FixMatch, DyTrim surpasses CDMAD by
more than 1% in both bACC and GM. Similar benefits are observed for FlexMatch and FreeMatch:
DyTrim improves FlexMatch by approximately 1.1–1.3% and FreeMatch by around 0.9–1.5%.

Table 6: Comparison of bACC/GM on CIFAR-10-LT(γl = 100, γu = 100(reversed)).

Algorithm CIFAR-10-LT, γl = 100, γu = 100(reversed)

ABC SAW SAW+LA SAW+cRT CDMAD DyTrim
FixMatch+ 69.5/66.8 72.3/68.7 74.1/72.0 75.5/73.9 77.1/75.4 78.2 / 76.7
FlexMatch+ −/− −/− −/− −/− 67.2/65.1 68.3 / 66.4
FreeMatch+ −/− −/− −/− −/− 68.5/66.4 69.4 / 67.9

We also compared the classification performance of CDMAD with ACR (Xiang et al., 2020) and
BaCon, two recent CISSL algorithms. From Table. 7, we can observe that CDMAD outperforms
both ACR and BaCon.

E.2 RESULTS ON SMALL-IMAGENET-127
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Table 7: Comparison of bACC/GM on CIFAR-10-LT

Algorithm/CIFAR-10-LT γl = γu = 100 γl = γu = 1

FixMatch+ACR 81.8 / 81.4 85.6 / 85.3
FixMatch+BaCon 84.4 / 84.0 82.0 / 81.5
FixMatch+CDMAD 83.6 / 83.1 87.5 / 87.1
FixMatch+DyTrim 84.8 / 84.4 87.9 / 87.5

Table 8: Comparison of bACC on
Small-ImageNet-127.

Algorithm Small-ImageNet-127

32× 32 64× 64
FixMatch 29.7 42.3
w/+DARP 30.5 42.5
w/+DARP+cRT 39.7 51.0
w/+CReST 32.5 44.7
w/+CReST+LA 40.9 55.9
w/+ABC 46.9 56.1
w/+CoSSL 43.7 53.8
w/+CPE 47.8 58.2
w/+CDMAD 48.4 59.3
w/+DyTrim 50.6 60.0

ImageNet-127 is a naturally long-tailed dataset, widely
used to evaluate class-imbalanced semi-supervised learning
(CISSL) algorithms at scale. Following standard protocol, we
downsample images to resolutions of 32×32 and 64×64 us-
ing the box interpolation method from the Pillow library, and
randomly select 10% of the training samples as labeled data.
Under such limited supervision and class imbalance, learn-
ing discriminative representations and a balanced classifier
is particularly challenging. As reported in Table. 8, DyTrim
achieves the highest balanced accuracy (bACC) at both res-
olutions, outperforming the strongest baseline CDMAD by
3.0% at 32 × 32 and 1.2% at 64 × 64. These improvements
demonstrate the robustness of our method, especially under
low-resolution and low-resource conditions. The performance gain at lower resolutions suggests
that DyTrim effectively handles the compounded difficulty of reduced visual fidelity and severe la-
bel scarcity. This makes it a promising solution for real-world applications where high-resolution
data and abundant labels are often unavailable.

E.3 RESULTS ON DYNAMIC DATA PRUNING EXPERIMENT

Recently, Infobatch (Qin et al., 2024) provides a no-bias dynamic data pruning method. In this
section, we compare it with DyTrim in the framework of CISSL. The experiment is conducted on
the CIFAR-10-LT dataset, comparing the settings of γl = γu and γl ̸= γu. Specifically, we directly
apply the pruning policy of InfoBatch to labeled samples and unlabeled samples without distinction,
and the results are shown in the Table. 9 and Table. 10. It can be seen that compared with the
proposed method, the pruning policy directly combined with InfoBatch is not consistently effective
in all settings. In particular, when γl ̸= γu, it will cause a decrease in accuracy, which is caused by
the mismatch in the distribution of labeled samples and unlabeled samples.

Table 9: Comparison of bACC/GM on CIFAR-10-LT.

Method
CIFAR-10-LT (γ = γl = γu, γu is assumed to be known)

γl = 50, γu = 50 γl = 100, γu = 100 γl = 150, γu = 150

FixMatch 79.2±0.33 / 77.8±0.36 71.5±0.72 / 66.8±1.51 68.4±0.15 / 59.9±0.43
w/+CDMAD 87.3±0.12 / 87.0±0.15 83.6±0.46 / 83.1±0.57 80.8±0.86 / 79.9±1.07
w/+InfoBatch 87.2±0.18 / 86.9±0.19 84.1±0.61 / 83.7±0.69 81.6±0.45 / 80.9±0.59
w/+DyTrim 88.0±0.31 / 87.8±0.32 84.8±0.48 / 84.4±0.51 82.0±0.09 / 81.3±0.03

Table 10: Comparison of bACC/GM on CIFAR-10-LT (γl ̸= γu, γu is assumed to be unknown).

Method
CIFAR-10-LT (γl = 100, γu = Unknown)

γu = 1 γu = 50 γu = 150

FixMatch 68.9±1.95 / 42.8±8.11 73.9±0.25 / 70.5±0.52 69.6±0.60 / 62.6±1.11
w/+CDMAD 87.5±0.46 / 87.1±0.50 85.7±0.36 / 85.3±0.38 82.3±0.23 / 81.8±0.29
w/+InfoBatch 86.4±0.63 / 85.9±0.73 85.5±0.33 / 85.1±0.37 83.3±0.08 / 82.8±0.11
w/+DyTrim 88.9±0.88 / 88.6±1.03 86.4±0.43 / 86.0±0.43 83.8±0.34 / 83.4±0.33
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Table 11: Ablation study for the proposed algorithm on CIFAR-10-LT.

Labeled Unlabeled Rescaling γl = γu = 50 γl = γu = 100 γl = γu = 150

Pruning Pruning bACC GM bACC GM bACC GM

87.3 87.0 83.6 83.1 80.8 79.9
✓ 87.5 87.2 84.4 84.0 81.3 80.6

✓ ✓ 87.7 87.4 84.0 83.6 81.4 80.6
✓ ✓ 87.2 86.9 83.6 83.1 79.9 79.0
✓ ✓ ✓ 88.0 87.8 84.8 84.4 82.0 81.3

Table 12: Comparison of bACC/GM on CIFAR-10-LT under different baseline images.

FixMatch+DyTrim CIFAR-10-LT

Input γl = γu = 100 γl = 100, γu = 150

Noise images 77.7 / 76.8 76.7 / 75.8
Dataset means 78.0 / 76.1 76.7 / 74.2

Red 83.5 / 83.2 82.2 / 81.7
Green 83.7 / 83.3 81.5 / 81.0
Blue 84.5 / 84.2 83.1 / 82.6
Gray 84.1 / 83.7 82.3 / 81.9
Black 84.2 / 83.8 82.4 / 82.0
White 84.8 / 84.4 83.8 / 83.4

E.4 ABLATION STUDY

Effectiveness of each component. We conducted ablation studies on CIFAR-10-LT to assess the
contribution of each component in DyTrim, varying the hyperparameter γ = γl = γu across 50,
100, and 150. As shown in Table. 11, the best performance was achieved when both labeled and
unlabeled pruning were combined with rescaling. Removing rescaling led to a bACC drop of 0.8–2.1
points across γ values. Excluding either pruning component also reduced performance (e.g., -0.5
and -0.3 at γ = 50 without unlabeled or labeled pruning, respectively). Removing both pruning
strategies resulted in the most significant degradation. These results highlighted the complementary
benefits of pruning and rescaling.

Sensitivity of different baseline images I. We further examined the sensitivity of DyTrim to
the choice of baseline image by conducting ablation studies on CIFAR-10-LT with different types of
inputs, including noise, dataset means, and solid colors. Table 12 shows that solid-color images con-
sistently outperform noise or mean-based baselines. Among them, white and black images deliver
the strongest results.

E.5 QUALITATIVE ANALYSES

Since the baseline image could implicitly reflect the bias of the classifier, we argued that by cus-
tomizing dynamic data pruning methods for labeled and unlabeled data, DyTrim significantly re-
duced classifier bias while improving performance. To verify this claim, in Figure. 3 (a) and (b), we
analyzed the class probabilities predicted on the baseline image using FixMatch+DyTrim, trained
on CIFAR-10-LT under various settings. We observed that classifiers trained with DyTrim consis-
tently produced more balanced predictions than CDMAD across all settings, with improved accuracy
on tail classes. To further validate the balanced classification effect of DyTrim, we visualized the
dynamics of baseline image logits during training as shown in Figure. 4 (a), (b) and (c). The re-
sults clearly showed that BiGDP significantly reduced classifier bias induced by class imbalance.
We defined r as the probability of pruning an unlabeled sample um

b when Hu
t (u

m
b ) < H̄m

t and
max(Pθ(y|α(um

b ))) ≥ τ . In Figure. 5, we evaluated different pruning ratios for unlabeled samples
on CIFAR-10-LT. Results showed that setting r ≥ 0.1 yields higher performance across both archi-
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(a) FixMatch (b) CDMAD (c) BIGDP (d) Metric

Figure 4: (a), (b) and (c) present the change of πθ(I) for the baseline image on CIFAR-10-LT with
γl = γu = 100 across different methods. (d) present the bACC and GM on those methods.
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Figure 5: Evaluation curves of hyper-parameter r on CIFAR-10-LT under bACC and GM.

tectures, indicating that DyTrim was relatively robust with respect to the hyperparameter r, with the
best performance achieved when r = 0.3.

F PROOF FOR SECTION 3

In this section, we present the technical details of Section 3. In particular, Section F.1 first discuss
the relationship between classifier fθ, dataset {X ;U} and the baseline image I. Then, Section ??
proves Theorem ?? for revealing the baseline image’s intrinsic debiasing effect, and Section F.2
presents the details of the bias term and running statistics.

F.1 PROOF OF PROPOSITION 3

Proposition 1. Let π = Softmax(z) and z = gθ(x). The one-step dynamics decompose as

∆ log πt(y | I) = −ηT t(I)Kt(I, x)Gt(x, y) +O(η2∥∇θz(x)∥2op), (32)

where T t(I) = ∇z logπt(I) = I−1πT
θt(I),Kt(I, x) = (∇θz(I)|θt)(∇θz(x)|θt)T is the empirical

neural tangent kernel of the logit network z, and Gt(x, y) = ∇zL(x, y) |zt .
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Proof. Inspired by the analysis of the learning dynamic of (Ren et al., 2022; Ren & Sutherland,
2024). In this work, we want to observe the classifier’s prediction on the baseline image I. Starting
from Eq (12), we first approximate log πt+1(y | I) using first-order Talyor expansion, with slightly
abused symbols, we use πt to represent πθt+1 , x to represent labeled sample xn

b and u to represent
unlabeled sample um

b :

log πt+1(y|I) = log πt(y|I)+ < ∇ log πt(y|I), θt+1 − θt > +O(∥θt+1 − θt∥2)

Then, assuming the model updates its parameters using SGD calculated by an ”updating labeled
example” (x, y) or an ”updating unlabeled example” u, we can rearrange the terms in the above
equation to get the following expression:

∆ log πt(y|I) = log πt+1(y|I)−log πt+1(y|I) = ∇θ log π
t(y|I)|θt(θt+1−θt)+O(∥θt+1−θt∥2),

To evaluate the leading term, we first take a labeled sample as an example plug in the definition of
SGD, and repeatedly use the chain rule:
∇θ log π

t(y|I)|θt(θt+1 − θt) = (∇z log π
t(y|I)|zt)(−η∇θL(x)|θt)T

= (∇z log π
t(y|I)|zt)(−η∇θL(x)|zt −∇θz

t(x)|θt)T

= −η∇z log π
t(I)|zt [∇θz(I)|θt(∇θz(x)|θt)T ](∇zL(x)|zt)T

= −ηT t(I)Kt(I, x)Gt(x, y)

(33)

For the higher-order term, using as above that
θt+1 − θt = −η∇θz

t(x)|TθtG
t(x, ŷ)

and noting that, since the residual term Gt is usually bouned, we have that
O(∥θt+1 − θt∥2) = O(η2∥(∇θz

t(x)|θt)T ∥2op∥Gt(x, ŷ)∥2op) = O(η2∥∇θz(x)∥2op)

In the decomposition, we can write our T (t) as T t(I) = ∇z logπt(I) = I − 1πT
θt(I), this

term is only related to the input I, and reflects the model’s correspondence to the baseline im-
age, we will further analysis logπt(I). The second term in this decomposition, Kt(I, x) is the
product of gradients at I and x or u. As shown in (Ren & Sutherland, 2024), if their gradients
have similar directions, the Frobenius norm of this matrix is large, and vice versa. This matrix
is known as the empirical neural tangent kernel, and it can change through the course of train-
ing as the network’s notion of ”similarity” evolves. The third term in this decomposition, Gt is
determined by the loss function L, which provides the energy and direction for the model’s adap-
tation. We have L = Lsup(x

n
b , y

n
b ) for each labeled sample and L = Lcon(α(u

m
b ),A(um

b )) for
each unlabeled sample. According to the analysis of Xing et al. (2025), Gt using the baseline im-
age enhances the balance of the base SSL model implicitly utilizing the integrated gradient flow
∇θLCon =

∑
b

(∑d
i=1 IntegratedGradsi(u

m
b )

)
∇gb +

∑
b qA,b

∂qA,b

∂θ .

Proof. For the baseline image I is a solid-balck image, i.e., the k = 0, with h(I) = β

g∗θ(xb) = h(xb)− h(I) = ⟨w, xb⟩ − E[⟨w, xb⟩]√
Var[⟨w, xb⟩]

∗ γ + β − β =
⟨w, xb⟩ − E[⟨w, xb⟩]√

Var[⟨w, xb⟩]
∗ γ

F.2 DETAIL OF THE BIAS TERM AND RUNNING STATISTICS

Effects of bias term. When the bias term β of the BN layer is frozen and equal to 0, h(I) becomes
γ ∗ (⟨w, k⟩ − E[⟨w, k⟩])/

√
Var[⟨w, k⟩] which is the same as the Eq.(7) except for a bias term.

Ignoring the running statistics strategy, the form of h(I) only depends on the β. As a result, h(I)
becomes h(I) → 0 during training and h(I) → −γ ∗ Emom[⟨w, xb⟩]/

√
Varmom[⟨w, xb⟩] during

testing. This shows that the g∗θ operation has no effect in the training phase and only eliminates the
impact of the unbalanced running means in the testing phase. This will affect the ability to benefit h
from g∗θ , as shown in Table. 13.
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Figure 6: Comparison of the change of logits’s probability distribution πθ(I) for the baseline image
on CIFAR-10-LT with γl = γu = 100 across different CISSL methods.

Effects of running statistics. When we do not keep running estimates, batch statistics are instead
used during evaluation time as well. The form of h(I) becomes h(I) → β both training and
testing. We can rewrite g∗θ(xt) = γ ∗ (⟨w, xt⟩ − E[⟨w, xt⟩])/

√
Var[⟨w, xt⟩]. On the other hand, as

h(I)→ 0, the benefit of g∗θ is also vanishes, also shown in Table. 13.

We then extend our results to a non-linear neural network, thus we have the following corollary:

Table 13: Comparison of bACC/GM on CIFAR-10-LT.

Metric With original g∗θ g∗θ without β g∗θ without xmom g∗θ without β & xmom

bACC 83.6 ± 0.46 80.92 ± 0.02↓2.68 71.63 ± 0.35↓11.97 64.01 ± 0.14↓19.59
GM 83.1 ± 0.57 80.37 ± 0.23↓2.73 67.85 ± 0.51↓15.25 54.48 ± 0.36↓28.62

G VISUALIZATION

G.1 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

In this section, we conduct some visualization experiments to demonstrate the advantages of the
DyTrim in debiasing and improving classifier performance. We first analyze the change of logits’s
probability distribution Softmax(gθ(I)) for the baseline image on CIFAR-10-LT with γl = γu =
100 for fixmatch, CDMAD, and the DyTrim as shown in Figure. 6. It can be seen intuitively that in
the first epoch, the classifier has bias due to the imbalance of categories in the data. This situation
increases significantly with the number of network training times, as shown in the second column
of the figure. However, we can see that DyTrim can effectively slow down the increase of this bias.
Furthermore, after the model is fully trained for 500 epochs, it can be seen that after the 100th
epoch, CDMAD starts to use the baseline image for post-hoc debiasing, which significantly reduces
the representation of the model. However, by dynamically pruning the data set, DyTrim obtains a
more distinct debias effect as shown in Figure. 7.
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Figure 7: Class probabilities predicted on a baseline image using (a) FixMatch, (b) Fix-
Match+InfoBatch, (c) FixMatch+CDMAD, (d) FixMatch+DyTrim.
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Figure 8: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) FixMatch,
(b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-
LT under γl = 100 and γu = 100.

T
ru

e
 L

a
b

e
l

Predicted Label

T
ru

e
 L

a
b
e

l

Predicted Label

(c) FixMatch+CDMAD (d) FixMatch+BIGDP

T
ru

e
 L

a
b

e
l

T
ru

e
 L

a
b

e
l

Predicted LabelPredicted Label

(a) FixMatch (b) FixMatch+InfoBatch

Figure 9: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) FixMatch,
(b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-
LT under γl = 100 and γu = 1.

G.2 DETAILS OF THE CHANGE OF LOGITS’S PROBABILITY DISTRIBUTION

Figure. 8 and Figure. 9 compare the confusion matrices of the class predictions on the test set
of CIFAR-10 using (a) FixMatch, (b) FixMatch+Infobatch, (c) FixMatch+CDMAD, and (d) Fix-
Match+DyTrim trained on CIFAR-10-LT under γl = 100, γu = 1, 100. FixMatch+DyTrim made
more balanced predictions across classes. Furthermore, we also conducted experiments under a bal-
anced setting (γ = γ1 = γu = 1), as shown in Figure. 10. The results show that even under a
balanced data distribution, BigDP can still achieve better results on the pruned dataset than methods
such as CDMAD trained on the full dataset.

Similar to confusion matrices, we also compare t-distributed stochastic neighbor embedding (t-SNE)
of representations obtained for the test set of CIFAR-10 using FixMatch, FixMatch+CDMAD,
FixMatch+InfoBatch, and FixMatch+DyTrim trained on CIFAR-10 with γl = 100 and γu =
1, 100(unknown γu), where different colors indicate different classes in CIFAR-10 Figure. 11, Fig-
ure. 12. We can observe that the representations obtained using FixMatch+DyTrim are separated
into classes with clearer boundaries compared the those from FixMatch and CDMAD. This is prob-
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Figure 10: Confusion matrices of the class predictions on the test set of CIFAR-10 using (a) Fix-
Match, (b) FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on
CIFAR-10-LT under γl = 1 and γu = 1.

ably because CDMAD appropriately refined the biased pseudo-labels and used them for training,
whereas FixMatch failed to learn the representations properly because they used the biased pseudo-
labels for training. These results demonstrate that the quality of representations can be improved by
using well-refined pseudo-labels for training.
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(c) FixMatch+CDMAD (d) FixMatch+BIGDP(a) FixMatch (b) FixMatch+InfoBatch

Figure 11: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under γl = 100 and γu = 100.

(c) FixMatch+CDMAD (d) FixMatch+BIGDP(a) FixMatch (b) FixMatch+InfoBatch

Figure 12: t-SNE of representations obtained for the test set of CIFAR-10 using (a) FixMatch, (b)
FixMatch+InfoBatch, (c) FixMatch+CDMAD, and (d) FixMatch+DyTrim trained on CIFAR-10-LT
under γl = 100 and γu = 1.

H USE OF LLMS

This work did not involve the use of large language models (LLMs) at any stage. The design of ex-
periments, data analysis, and manuscript preparation were conducted entirely by the authors through
conventional computational methods and human expertise, without reliance on automated text gen-
eration or model-driven reasoning.
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