A  GENERAL LENGTH GENERALIZATION

In this section we introduce a general algorithm which we will use to prove length generalization for both Algorithm/[T]
and Algorithm[2]

Algorithm 3 General Spectral Filtering
1: Input: & > 0,L > 0, > 0, functions p;(-), vectors vy.;. Initialize M; = 0 for ¢ € [k].
2: fort=1,2,....,T do
3:  Compute and predict

k
Ut = pe(Ye—1:1) + Z Miug_1:4—1v;.
i=1

4:  Observe y;, denote £;(M?*, L) = ||y — y¢||* and update and project update and project onto the low Frobenius
norm ball )
MUY MY — 0y Vgl (M*)
M1 = Proj (Mt+1) ;

where K, = {M s.t. ||M;]|| < r}.
5: end for

Our workhorse theorem is presented below. We will use this theorem to prove length generalization for our special
cases in the following sections.
Theorem 7. Suppose y1.; evolves as a noiseless (A, B, C, I)-LDS and the input u;_yy. is such that ZZ:OI(T —

t)utut = (2||C||||B||/VT)I. Let k, L, r, {v;}}_,, p:(-), and £,(-) all be as defined in Algorithm|3| Suppose {v; }5_,
is orthonormal with ||v;||1 < logP(T). Suppose that p:(-) is such that there exists some function h(-), constant £ > 0,
and some M"™¢ € IC,. such that

t— Zl
Y — De(Ye—1:1) ZM"MUt 1:0V5 = ZtheUt i+ Z CAz A)Buy_p, s,

where .
> M™ w1l < (|CIIIB|/T,
i=k+1
and )
max {h(a)at =0T (1 =TT (1 —a) Y < oy

Then if M* are the iterates of Algorithm[3land T > (4klog”(T)/||C| | BI)*

T T
ST (ML)~ min S 6(MT) < (12k3/2r210g”(T)+8HC||2||BH2) VT.
t=1

M*ek,
t=1

The proof of this theorem requires several technical lemmas which we present and prove in the subsequent subsec-
tions. In Lemma [§] we essentially prove the standard result showing that Online Gradient Descent implemented in

Algorithm 3 I achieves O(v/T)) regret. In Lemma@ we prove the more nuanced result which shows that the optimal M
which minimizes the loss on the full T-length context achieves length generalization in the sense that it achieves small
loss even when only allowed to use context length L. Combining these two lemmas gives the proof of Theorem [7}

Proof of Theorem[7] Let

C
= min E L(M*,T
M*ek,
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and observe that
T

T
min Y 6(M*,L) < > 4(Mj, L).

M*ek
iz t=1

Combining this with Lemma|[8|and Lemma[9] we conclude

T T
. * 3/2 2
> (M, L) < M@g’%r;ztw , L) + 12k3/272 og? (T)VT

T
Zﬁt(M;, L) + 12k%/ %2 log? (T)VT

IA

IN

th Mz, T) + (12k*2r% log?(T) + 8||C||*| BII*)V'T

— mm ng (M, T) + (12k%/%72 10g?(T') + 8||C||?|| B||*)VT.

A.1 OGD REGRET FOR GENERALIZED SPECTRAL FILTERING

(®)

OGD Regret Lemmalg]

Eq.[§

Length Generalization LemmalD)]

Definition of M7,

O

Lemma 8. Suppose the input uy.; satisfies ||utlla < 1. Suppose the true output y; evolves such that for some

polynomial p;(y;_1.1) there exists some M"™¢ € IC,.

T
Yr = Dt (Ye—1:1) + Z M uy_1.00;,

i=1
and for
o &
Epr =4 Z M[™u_1.0v;,
i=k+1
we have ||E,, r|| < 1. Further suppose v, . .., vy satisfy ||v;|]|1 < ¢;logP(T). Let

def
6(M,L) 2 ||y — pe(ye—11) ZMUt Li—rvil]?,

Then if Mt are the iterates of Algorithm

T
Zﬁt(Mt,L) mm Z&g M* L) < 12k3%/272 1ogP (T)VT.

Proof of Lemmal(8] This proof is a near copy of the proof in [Hazan et al. (2017b), the difference is that we derive

several equations that we will use later and we handle the varying context length.

Let G = maxye|7) ||Varle(My, L)|| and let D = maxys, ar,ex, ||M1 — Ma||. By Theorem A.1 from Hazan & Singh

(2022),

T T
3
t . *
;_1@(1\4 (L) = min ?—1 ((M* L) < 5GD\/T.

Therefore it remains to bound G and D.
First we bound D. By definition of /C,., we have that for any M € IC,.,
M| < .
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Therefore, we also have that
1M < Vkr.

Therefore

DY max [|M — M'|| < 2kr.
M,M'e

Next we bound the gradient norm G. Using the deﬁmtlon of IC,;.,

max max || M;|| <

MeK, ie[k]
We bound the gradient norm as follows,
k k
Vs, €:(M, L) = ||2 <Z M uy_1.0v; + B — ZMiUt—lzt—Lvi> (Ut—lzt—LUj)T |
i=1 i=1
k k
<2 (Z 1M o lloo lvilly + | Emerll + IMiIIIUt—lzt—LoolviHl) l[wet—rlloollvlln
i=1 =1
k
<201+ | Emrl) Z;]&nea,gr MG - ol - lluill?
i—
< 4krlogP(T).

Putting everything together we have

T T
. . 3 )
;Et(Mt,L) —Mqlé%r;@(M L) < 3 (4krlog(T)) (2\/Er) VT

= 12k%/%r2 1og? (T)V'T.

A.2 LENGTH GENERALIZATION ON THE BEST OPTIMIZER IN HINDSIGHT

Lemma 9. Let input ug_1).o, {vi}e_, pe(+), and £,(M, L) all be as defined in Algorithml Suppose the input u(;_1y:o

is such that Zzﬂ:_ol( ugu, = 2||C|||BI|/VT)I, {v;}r_, is orthonormal with ||v;||; < log?(T), and that there
exists some M"™¢ such that

T 61 t*[lfl
ye = pe(ye-11) = > M up_1.0vi = > M{™uy_;+ Y CAh(A)Buy_g, i,

i=1 i=1 i=1

where
T
> M™ w1l < (|CIIIBI|/T,
i=k+1
and )
ob—t-1 T—L+1 -1

Let

Mr = arg min » 4(M,T).
oS0
Then for T > (4klog?(T)/||C||||B|)%, the loss with context L well approximates the loss with context T on M},

T
| > 4(M7, L) = e(M7,T)| < 8|C|?|BI*VT.
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The proof of Lemma [9] requires two key helper lemmas which we develop in the following subsections. The first
is Lemma @l which establishes that when y;.; evolves as a noiseless LDS and if the input uq.; is sufficiently well-
conditioned, then the minimizer for 23;1 £,(M,T) approximately recovers a collection of matrices (we denote as
M'™¢) which is generated by the true linear dynamical system. The second key helper Lemma is Lemma |1 1| which
establishes that an algorithm which uses the collection of matrices that are generated by the true linear dynamical
system, i.e. M'™¢, is able to achieve small loss even when restricted to a small context-length . << T. The proof
of Lemma |§| combines these two insights to establish that this implies that the minimizer for Zthl £,(M,T) also
achieves small loss even when restricted to small context-length L.

Proof of Lemma[9) First we show that M™¢ is a (||C||2|| B||2/T)-approximate minimizer to °,_, ¢,(M, T). Indeed,

T T k
th(theaT) = Z lye = pe(ye—1:1) — ZMEr“"uH:oviHQ
t=1 t=1 i=1
T T
=0 D MM uprouil®
t=1 i=k+1
< [[CI|IBIP*/T.

By assumption Y"1 (T — t)ugul = (2||C||||B||/vT)I. Therefore, by Lemmal[10|with € = [|C|||| B||/v/T we have

Mg € Bycypyvr (M) -
Since we assumed T > (4klog?(T)/||C||||B||)* we have

ICIIBI/NT < |ICI7|IB?/(4kT"/* log? (T)).
Therefore by Lemma [TT] we have
T
D 4(M;, L) < 4|C|°||BIPVT,
t=1
Moreover note that

0 < (M7, T) < b(M™,T) < ||C|I?||B|*/T*.
Combining these we conclude,

T T
1> e(MF L) =Y L(M7,T)| < 4|CIP|BIPVT + |CIPIBIP/T < 8|ICI°|BI*VT.
t=1 t=1

A.2.1 MINIMIZATION IS RECOVERY

Lemma 10. Suppose ZtT:Bl (T — t)yugu] = 2¢l and {v;}¥_, is orthonormal. Then there is a unique point M* which
minimizes the function Zle L, (M, T) from Algorithm|3| Moreover, suppose some k satisfies

T
> L(MT) < €.
t=1

Then there is a matrix Eyp such that ||Ey|| < € and
M* = M + E.

Proof. For convenience, let X; be the kd;,-dimensional vector which stacks the filters,

Ut—1:t—TV1 Ut—1:0V1

Ut—1:t—TV2 Ut—1:0V2
Xt = . = )

Ut—1:t—TVEk Ut—1:0Vk
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where the second inequality holds since we only consider ¢ < 7. Assume k is written as M
[Mi My ... M) € Routxkdin and let Y; = y; — pe(ys—1.1). Let Y = [Yi Yo ... Yr]and X =
[X1 X2 ... Xr]. Then we can express the loss as

T
FOO)EN " 6(M,T) = |ly — MX]|2.

t=1
Note that this function is twice differentiable and
Vi f(M)=XX".

Therefore, if Apin (X X T) > we have that f(M) is p-strongly convex. Then if M* is the optimum of f(M) we
have

FOM) = FO0) + 5101 = 7P, or equivalenty, [ = M| < = (F(M) = F(M")).
Now suppose k is such that f(M) < 2. Then since f(-) > 0 we have
IM = M| < 262/
Therefore we can write
M* = M + Ey- where || Ep-|| < 2€%/p. )

Next we must understand the eigenvalues of X X T and how they relate to the input u7.;. For notational convenience,
let U = up.; and let D, denote the block-diagonal T' x T' matrix

D, dg |:OT—t><T—t IJ )

Finally, let

U1
Vo
V = . c RTle
U,
Then we have X; = (I, ® UD;) V and we observe
T
ZXtXJ = > (e @UDYV) (@ UD)V)"
t=1

T
=Y (IhoUDU)
t=1

T
=IL,oU <2Dt> U'.

t=1

Observe that .
Z c=diag ([l 2 ... TJ).

Using this we can further refine

T-1

(Z Dt> U' = Z( — tuguy .

t=0

By assumption, this matrix has minimum eigenvalue bounded below by 2¢. Therefore A\yin (XX ') > 2e. Plugging
this value in for 4 in Eq.[9]concludes the proof.

O
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A.2.2 UNIFORM LENGTH GENERALIZATION AROUND LDS GENERATED SOLUTIONS

The following lemma shows that any % in an (appropriately defined) e-ball around M'™¢ obtains length generalization
in the sense that it achieves O(v/T') L-context-length-limited loss Z?Zl L+, L).

Lemma 11. Suppose y; evolves as a noiseless (A, B, C, I)-LDS with input us. Suppose p:(-) and M""¢ is such that

T o t—t—1
Ye — pe(Ye—1:1) = ZMZ'rmeutflzo'Ui = Z M[™up_; + Z CA*h(A)Buy_g, ;-
i=1 i=1 i=1
Suppose for a given k > 0,
T
rue C B
I Z M1 g < W
i=k+1
Suppose
1
al—a-1 T—L+1 1
gl&)){{h Tl-a J1—a)™'} < Ti/A
If
1 lClPlBlP
= Am TY*log?(T)’
then we have for any M € Bs(M™¢)
T
D GL(M, L) < 4|CIIBIPVT.
t=1
Proof of Lemmal(l1] Let M = M"™¢ + E);, where | Ey|| < 4. By definition,
k
C(M™ + Epr, L) = |lye — pe(ye—11) Z (M'™ + Er) s Ut—1:t— Lvil)?
i=1
k k
= llor = pe(ye-1:1) = Y M™up 1y rvi — Y Engue 14 p0il>
i=1 i=1
k
< lye = pr(ye-1a) = > M™uy 1. poi)?
i=1

+2lye — pe(ye—11) ZM[meut Lit— va||||ZEA{ Up—1:¢— LV

i=1 =1
k
+ || ZEMiutflzthviHQ-
i=1
Observe that
k k
||ZEMiUt—1:t—LUi|| < < kélog”(T).
i=1 i=1

For the remainder of the proof we work towards bounding ||y — pi(yi—1.1) — Zle M™eu; 1.4 pu|. We re-
. T k . T
place y; — pi(ye—1:1) with 305, Mi™u;q.0v; and we replace ) ;" | M{™us 1.4 pv; with Y00 Mi™uy y pv; —
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T t
D i1 Mi™Mus 1.4 pv; to get

k T T T
lye — pe(ye—1:1) — ZMEWCUFLFLUHF = (Z Mitmeutlzovi> - (Z Mitmeutflit*L”i - Z Mgme“tlthvi> H2
i=1

=1 i=1 i=k+1

T
< | Z Mitrue(utfho - utflzth)'Uin
i=1

T T
+ 2|| Z M;“‘e(ut_lzo - 'U't—l:t—L)'Ui” || Z Mz‘trueut—lzt—LviH
i=1 i=k+1

T
DD M™ueya i,
i=k+1

Next we note that || Z?:kﬂ M{™uy_1.4—1,v;]| is assumed to be at most ||C'|||| B||/T and so we now focus on bounding

the norm:
T

[ Z MM (w10 — wp—1:4—1)vi]|- (10)

i=1

Towards bounding Eq. assume L > ¢; so that

T t—t1—1
. .
E M™ (ug—1:0 — Ug—1:0—1)V; = E CA'h(A)Buy—p, -
i1 i=L— 141
t—f01—1 da

= Y D aih(a)CiB] gy i

i=L—0141 j=1

Then
t—01—1 . 4 t—0—1
| CABABu il < max athag) D ICB u sl
i=L—f1+1 j€ldal i=L—01+1
t—01—1 )
<mac Y a'h(a)|C]]B].
AA)

Next we have

( t—{1—1 T—L
max Z o/ﬁ(a)) < h(a)al=H-1 Zo/
R i=0
1 — oT-L+1

=h L—¢y—1
(@)a ———a

< TV

where the last inequality holds by assumption. Therefore Eq.|10]is at most

T
1Y MM (ue—1:0 — ur—re—r)vill < ||C[|IBIIT~*.
i=1
Then we have

k
lye = pe(ye-1:1) = > M™up1q_poi|* <

i=1

I8

=4 2 e o 5
T1/2 .

T3/4 T2 - T1/2

+
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Finally we conclude

IN

2 B 2 2 B 2
™ + 1) < 2ICPIBIE (2C|| 1]

T1/2 Ti/2 ) (k6 log?(T)) + (kélog? (T))?

JerIBl?
T1/2 ’

where the last inequality holds since we assumed

IN

1 iezs)?
= 4m TY4*log?(T)’

B LENGTH GENERALIZATION FOR VANILLA SPECTRAL FILTERING

The proof of Theorem [5] ultimately comes from Theorem [7] and its proof in Appendix [A. Theorem [7] abstracts the
necessary assumptions needed to obtain a length generalization guarantee. In Lemma |[12| we prove that Algorithm
satisfies these assumptions.

Proof of Theorem[5] By Lemma [I2] and the assumptions made in the statement of Theorem 5] we may apply Theo-
rem[7|to Algorithm[I]to get that

T T
Soetn— min ST a0 T) < (1262)CI)BI* og(T) + 8|CIP | BI?) VT
Icnsi ,—
O
Lemma 12 (Length Generalization for Vanilla Spectral Filtering). Recall that in Algorithm|l|we define
o d:ef(oz— D1 o ... aT_l]T e RT-!
and Hr_1 = fae[o 1] uaugda and we let ¢1, ..., pr_1 be the orthonormal eigenvectors of Hp_1 with eigenvalues

Olyeeey,0T—1. Algorithm is equivalent to Algorithmwith the following:

(a) pt(yt—lzl) = Yt—1
(b) vi = ey

(c) v; = (0, j/iqﬁl ) fori=2,...,T

Define M"¢ as follows:

def

M{™ = CB,

and fori > 2

M S 6T o, (CuB])

n=1

Then the following properties hold

1. Forh(A)=A—Tandt, =1

t—41

Yt — Pe(Ye—1:1) ZM'meut i+ Z CA'h(A)Bus_g, ;.

2.y — pe(Ye—11) = Z?:l Mz‘tmeut—mvi-
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3. For k = Q(log(TdAl|C|||| B]|/€)),
T
I Z M{™u—ravil| < €/T.
i=k+1

4. Foranyi € [T]
M| < [ICl| Bl

5. Foranyi € [T, ||villx < log(T) and {v;};c[r) are orthonormal.

6. Finally if the spectrum of A lies in the interval

o]

then .
L—t;—1 T—L+1 —1
maxc{ ()~ (1= T E) (1) ) €

Proof. Points (a) — (c) are evident by definition of Algorithm[I] Now suppose y; evolves as an LDS. By definition,
there exist matrices (A, B, C, D) such that

t
ye =Y CA™'Bu,_,
i=1
where we assume D = [ and A is diagonal without loss of generality. Let 1, . .., a4, denote the eigenvalues of A.
and let us.o be the d;,, x T (padded) matrix us.o = [uy  ug—1 ... ug 0]. Then we have
t t—1
Yt — Yt—1 = ZCAi_lButﬂ‘ - Z CA™'Buy_1_;
i=1 i=1
t—1
= CBUt_l + Z C (A’L - Alil) But_l_i.
i=1
We pause here to note this proves (1). We continue rearranging the equation to finish the derivation of (2).
t—1
Yo = yr-1 = CBuy_1+ Y _C (A" = A7") Buy_1_,

i=1
da t—1
T ' i—1
=CBu;_1 + E Cene, B E (of —ab w1y
n=1 =1

da
=CBu;—1 + Z(CnBJ)U(t—m;oﬂaj-

n=1

Observe that
T-1
S 6l =1
i=1

Using this we have,
da

Yt —Yr—1 = CBug—1 + Z(CnBl)U(t—z):ouan

n=1

da T
=CBu;_1+ Y _(CoB,] ug—2)0 <Z $iti ) fhar,

n=1 i=1
T da

= CBu;_1 + Z Z b, pha, (CnB;{)u(t72):O¢i~

=1 n=1

23



Recalling the definition of M and v; = ail 1 Zi ¢;—1 we therefore have established (2):

T-1

Yr — Yr—1 = M ug_1y.0e1 + Z M un_1y.0v;.
=2

Next we aim to prove (3). We consider
T
| Z Mitrueu(t—Q):Ovi”~
i=k+1
By Lemma 13.4 in/Hazan & Singh (2022) there is some universal constant ¢’ such that,

max |¢, pto| < ¢T?exp(—i/log(T)).

a€l0,1]
So,
da
I ayovill = 1D 07 67 st (CaB Juge-2y0 (01 1651 |
n=1
da
= || Z b it (CnBI)u(t72):0¢i—l I
n=1
< da(dT? exp(—(i — 1)/ 1og(T))|Cn B, |ll|di-1]l1
< ddaT?? exp(—(i — 1)/1og(T)))||C|l|| B].
Therefore,

T
1D M™ug 1yl < daT exp(—k/log(T)|IC|I|B]
i=k+1

Therefore as long as

€

T5/2 'd B
2 logtop (T LI

then

T

rue €
| Z M ug_qy.00i] < T
=kt 1

Next we note that the proof of (4) that ||M{™¢|| < ||C||||B]| is proven in Lemma D.1 of Hazan et al. (2017b).
Similarly, the proof of (5) that ||v;||; < log(T) is proven by Lemma|[I3|from Hazan et al. (2017b). Finally we prove

(6). Since h(a) = a — 1 and ¢; = 1, we have

111(2114))({|h(a)04L_£1_1(1 _ aT—L+1)(1 _ a)_1|} _ In(i}){OAL_Q(l _ OzT_L+1).

To bound Eq.|11] consider the case where « is bounded away from 1. Suppose o = 1 — 6, then

_ 1 1 plog(T)
1-0)F2 < — 1 > :
1=0)"" s 7 = og(l—é) = L2

Observe that for § € [0, 1], log(1/(1 — §)) > 4/2. Therefore, if
5> 2plog(T)7
- L-2

(1)

we are guaranteed that «“~2 < 1/TP. Next consider when « is very close to 1; suppose & > 1 — ﬁ forp < 1/2.

Then using that (1 — z)? > 1 — 2qx for x € [0, 1] we have

T—L+1
I T Y 1=

- TrT = T = TrT

24
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Plugging in p = 1/4 we conclude that

_ _ _ log(T) 1
L—-2(1 _ T—L+1 1/4 _ _
a (1-« ) < T foranyae[(),l 72([1_2) Ul 5 5/4,1 .

The following lemma comes from |Hazan et al. (2017Db).

Lemma 13 (Hazan, Singh, Zhang). Let (0}, ¢;) be the j-th largest eigenvalue-eigenvector pair of the T' x T Hankel
matrix. Then,
log(T)
¢l < 0( |
/
9

C LENGTH GENERALIZATION FOR SPECTRAL FILTERING USING TWO AUTOREGRESSIVE
COMPONENTS

The proof of Theorem [f] ultimately comes from Theorem [7] and its proof in Appendix [A. Theorem [7] abstracts the
necessary assumptions needed to obtain a length generalization guarantee. In Lemma [T4] we prove that Algorithm 2]
satisfies these assumptions.

Proof of Theorem[6] By Lemma[I4]and the assumptions made in the statement of Theorem [6] we may apply Theo-
rem[7|to Algorithm 2]to get that

T T
DML~ in D (M) < (126*2)|C 1211 BI* 10g(T) + S| C |12 BII?) VT.
O
Lemma 14 (Length Generalization Using Two Autoregressive Components). Recall that in Algorithm 2| we define
for Z@=121 a ... of] er”
and and Nt = faE[O 1 Lo, T [, Tda and we let ¢1, el ngT o be the orthonormal eigenvectors of Np_o with eigen-
values 61, ...,07—9. Algorlthm@ is equivalent to Algortthmlwzth the following:

(@) pe(yi—1:1) = 2yi—1 — Ye—2
(b) v1 =e1, va = egand fori > 3, v; = (0,0, 01/4¢Z 2)
Define M"¢ as follows:

My ¥ CB,

def

M € C(A - 2I)B,

and fori > 3,
M’”‘e defz( —1/4 )(C BT)

Then the following properties hold

1. Forh(A)=(A—-1)*and t; =2

t—~1

Yt — pe(Ye—1:1) Zthut i+ Z CA'h(A)Bus_g, ;.
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2. Y = pe(Ye—11) = ZiT:1 Mz‘tmeut—mvi-
3. For k = Q(log(Td 4||C]||Bl|/€)),
T
[ Z M us_1avi]| < €/T.
i=k+1
4. Foranyi € [T
M| < ICHIBI-
5. Foranyi € [T}, ||vill1 < log(T) and {v;}c (| are orthonormal.
6. Finally if the spectrum of A lies in the interval
log(T") 1
1- B -
[0’ 2 —2|° | 2

then

mase {h(0)a =711 a” ) (1~ )

Proof. Suppose y: evolves as an LDS. By definition, there exist matrices (A, B,

t
Y = Z CA™'Bu;_,

i=1

where we assume D = [ and A is diagonal without loss of generality. Let oy, . . .,
0]. Then we have (1):

and let us.q be the di,, x T (padded) matrix us.g = [ty Up—1 Uug

t—3

Yr —2ys—1 +yr_2 = CBuy_1 + C(A —2I)Buy_o + Z C A (A?

.

1
T1/4°

} <

C, D) such that

aq, denote the eigenvalues of A.

—2A + I)But_g_l'.

eneIBut_g_i

D2uy—3—;

i=0
Let oy, ..., aq, denote the eigenvalues of A. We observe the following equality:
t—3 t—3  da
> CAYA? 24+ D)Buy_3_;=» CY al(ay—1)°
i=0 i=0 n=1
da t—3
= Z (Cene, B) Za;(an —
n=1 =0
da
= Z (CnB,)) wt—3)0fian-
n=1
Observe that
T—2
Y bl =1
i=1
Using this we have,
da

—2A + I)But_g_l'

t—3
> canaA?
1=0

NS o 3
M= i
M»—t =

(Z &/ fia, (C

true
M,

MHHM

U(t—1):0V¢-

~
[
w

[\
(@)}

(CnB,) U(t—3):0 ke,

(CoByy ) ue— 3)0(Z¢¢ )u

)) U(t—3):0€£i



Therefore we have established (2). Next we aim to prove (3). We consider
T
| Z Mfrueu(tq):oviﬂ-

i=kt1
Combining Lemma|15|and Lemma|[16] gives us that there is some constant ¢’ such that,

max |@; fia| < ¢ exp(—i/4log(T)).

a€l0,1]
So,
da
u —1/475T -~ 1/4 1
1M ug—1y.0vi]l = || Z 0; O] i, (CouB) Yu—1y:0 (%11@—1) I
n=1
da )
= Z i il (Cr By Yu—2).00i 1|
n=1
< daexp(—(i — 1) /41og(T))[|Cr. B, |l di-1]11
< ddaVT exp(—(i — 1)/41log(T))||C||||B].
Therefore,

T
Y M™ug_yovill < ¢/daT®? exp(—i/41og(T))||C|l[|B].
i=k+1

Therefore as long as

€

T3/2¢'d,||C|||| B
‘> atog(r) o (22BN
then
d €
Mme ol € =.
| Z i U(t—l).ovzH =7
i=k+1
To prove (4) we note that the statement is obvious for ¢ < 2. Fori > 3 the proof from Lemma D.1 of [Hazan
ct al. (2017b) directly applies due to Lemma|[T5] Next, Lemma|[I7]proves (5). Finally we prove (6). Next, Lemmal[l7]
proves (5). Finally we prove (6). Since we have h(a) = (v — 1) and £ = 2,

nl&)){{\h(a)aL73(1 —a" Y1 )M} = In(i)){ {@—a)a" 31 —a" "}, (12)

To bound Eq. |12} consider the case where « is bounded away from 1. Suppose a = 1 — 4§, then

_ 1 1 plog(T)
1-6)E3 < — 1 > :
=07 s 7 = Og(lé) = L3

Observe that for 6 € [0, 1], log(1/(1 —d)) > §/2. Therefore, if
5> 2plog(T)7
- L-3

we are guaranteed that o= < 1/TP. Next consider when « is very close to 1. To ensure that Eq. ?? is bounded by
1/TP we only require

1
Plugging in p = 1/4, we conclude that Eq. ?? is bounded by 7~ /4 if
log(T) 1
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C.1 PROPERTIES OF THE HANKEL MATRIX FOR TWO AUTOREGRESSIVE TERMS

In Algorithm 2] we define
o, déf(oz—l)2 1 o ... aT]T eR”

Np = / fiafly da.
a€l0,1]

In what follows we present and prove several lemmas needed for the proof of Theorem 6]
Lemma 15 (Properties of Np). Forany a € [0,1]and1 < i < T,

and

< 64 1/4
Jmax |6 fial

Proof. We have

/ (67 i) dav = 67 / fafilda | 6,
a€l0,1] a€l0,1]

= ¢/ Nri = 0.
Next we observe that for f, (o) & (wTﬂa)Q, where w is any unit-norm vector, we have that f,, is 6-Lipschitz on
[0, 1]. Indeed,
T

2
E wiazl)

fulo) = Cfamm‘*(
T
(a-1)

2(1—14<Zwm¢ )(iz—lwz >+4<§:wiai1>2(a—l)3

e () () () o
o () (I ) 2

= 2(1 —aT) (1 —Ta™ ' 4 (T - 1)aT) +4(1 —aT)Q(a— 1)

Consider any non-negative L-Lipschitz function f that reaches some maximum value gy.x over [0, 1]. The function f

which satisfies L-Lipschitzness, attains gm.x (f) and also has minimum possible area A(f) = &f N €0,1] fla)dais

f*(Oé) _ LO(, for o € [07 OZ*}
= max{gmax _L(a—a*)’0}7 forae [a*71]
Lo, for a € [0, a*]
L gmo— Lla—0a%), fora € [a*,a" + 9],
0, for a € [a* + e 1]

Indeed, any oscillation away from this piecewise linear function would either increase the total area or violate the
Lipschitz constraint. For this to be a valid construction we must have La* = gna.x and therefore the minimum
corresponding area is

*\ * _} * * 1 _ Ymax
A= [ e = 5@ Ea) ¢ /D =
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And therefore for any function f we have gmax(f) < +/LA(f). Using this for fg, () we have

max [y, () = max (6] fia)? \/ j/ (67 do= 7,
ae

a€l0,1] a€l0,1]
We conclude by noting
2 < 61/40'.1/4,

— TS
R 6] fia| = arg[%ﬁ](@ fia)

O

Lemma 16 (Adapted from Lemma E.2 from Hazan et al.|(2017b)). Let 0 be the j-th top singular value of Nt. Then
forallT > 10 we have

o; < min (2,K . cj/log(T)) ,
where ¢ = ™ /4 ~ 11.79 and K < 108 is an absolute constant.

Proof. The proof provided in |[Hazan et al. (2017b) applies directly to N7 with only one necessary modification to
bound the trace. Observe that we have

V)= [ (a-1'at 2
ael0,1]

= / Q' = 2T 4 @2
a€l0,1]

24
(4+7i—DE+NE+i+1)0E+5+2)(@+5+3)
Therefore,
T T T

24 24 3 1 3

i < tr(Np) < Z — <z

o < tr(Nr) ;22—1 )(2i + 1)(2i + 2)(2i + 3) ; (2i)5 4;¢5<2
The remainder of the proof is an exact copy of the proof of Lemma E.2 with 3/4 replaced by 3/2. O

Lemma 17 (Controlling the ¢; norm of the filters). Let (0, ¢;) be the j-th largest eigenvalue-eigenvector pair of N

Then forT > 4,
logT
il < O( 1/4>.
T

Proof. This proof is a copy from the proof of Lemma E.5 in|Hazan et al.| (2017b)) with only one noted modification.
We note that E as defined in their proof is entrywise bounded (for 7' > 4) by 24/7° < 2/T3 (which is the stated
bound they use for their matrix of interest). We also must show the base case is true for 7y = 4 instead of T, = 2. We
have

4 1/4
IN oo = sup NG el < XH(M/LJ<2

x|zl <1 ij=1

We note that a tighter result is actually true for N in that ||¢;|l1 < O (loﬁ/f) . However, we omit this statement and
(o
J

proof because we don’t leverage it for a tighter result overall.

O
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In Algorithm 2] we define

and
Np = / [l fl,
T — /’I’a/“’LOéda'
a€l0,1]

We have
V)= [ (a-1'at 2
a€l0,1]

= / Q' = 2T 4 @I
a€gl0,1]

B 24

((+j—-DE+NE+i+D0E+5+2)G+5+3)
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