Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL DETAILS

We used the PyTorch library [*| to develop and test the models. All experiments were performed on
a single-node machine with an Intel(R) Xeon(R) Gold 5118 (2.30GHz, 12 cores) CPU and 64GB of
RAM, with a single NVIDIA A100 GPU (80GB of VRAM) or a single NVIDIA H100 GPU (80GB
of VRAM). We used PyTorch’s CUDA acceleration for model training and inference. We used the
Adam optimizer with variable learning rates (Kingma & Ba, [2015). We monitored the training of
the models using the Weights & Biases package All experiments use the same train/validation/test
splits as the original IntelliGraphs benchmark (Thanapalasingam et al.,|2023) to ensure fair compar-
ison.

Use of Large Language Models We used LLMs as assistive tools for writing refinement (e.g.
grammar correction, sentence clarity), coding support (e.g.debugging PyTorch implementations,
implementing standard metrics, and plotting graphs), and Al-enhanced search engines for litera-
ture discovery. These were verified for factual accuracy. All scientific contributions, from research
ideation to experimental design and results interpretation, present original work by the authors.

Hyperparameter Optimization For ARK and SAIL, the hyperparameters were automatically
tuned using grid search {learning rate, batch size, number of epochs, latent dimension size , num-
ber of neurons and number of layersﬂ } to get the best performance for the validation split. For
reproducibility, we provide an extension description of the hyperparameters as YAML files under

the configs directory on https://anonymous. 4open.science/r/ARK-232F|

A.2 DATASET DETAILS

The IntelliGraphs benchmark datasets test different aspects of semantic validity and structural com-
plexity:

1. syn-paths: A synthetic dataset containing path graphs with simple semantics that can be
algorithmically verified in linear time. These are acyclic graphs where edge directions
follow the path structure.

2. syn-types: A synthetic dataset featuring typed entities and relations where type constraints
on entities depend on the relation type, enforcing semantic consistency through type check-
ing.

3. syn-tipr: A synthetic dataset containing subgraphs based on the Time-indexed Person Role
(tipr) ontology patternﬁ The semantics are defined by the tipr graph pattern, requiring
temporal reasoning to generate valid time intervals.

4. wd-movies: Small knowledge graphs describing movies, extracted from Wikidata Each
graph contains one existential node representing the movie, with entity nodes for direc-
tor(s) connected via has_director, cast members connected via has_actor, and gen-
res connected via has_genre relations.

5. wd-articles: Small knowledge graphs that describe research articles, extracted from
Wikidata. Each graph contains one existential node representing the article, with en-
tity nodes for author(s) connected via has_author, publication venues connected via
published_in, and topics connected via has_topic relations.

Zhttps://pytorch.org/

*https://wandb.ai

*for SAIL only

Both encoder’s and decoder’s neurons and number of layers. For models without encoder the tuning for
the number of layers and neurons was done the decoder part

Shttp://ontologydesignpatterns.org/wiki/Submissions: Time_indexed_person_role

"https://www.wikidata.org

13

https://anonymous.4open.science/r/ARK-232F
https://pytorch.org/
https://wandb.ai

Under review as a conference paper at ICLR 2026

Datasets Dataset Size Unique Relation Triples per
(Train/Val/Test) Entities Types Graph
syn-paths 60,000/20,000/20,000 49 3 3
syn-types 60,000/20,000/20,000 30 3 3
syn-tipr 50,000/10,000/10,000 130 5 5
wd-movies 38,267/15,698/15,796 24,093 3 2-23
wd-articles 54,163/22,922/22.915 60,932 6 4-212

Table 2: Dataset characteristics for the IntelliGraphs benchmark. Synthetic datasets (syn-*) have
fixed graph structures while Wikidata-derived datasets (wd-*) exhibit variable sizes. Entity counts
represent unique entities across all graphs; edge counts indicate the number of triples per individual
graph.

A.3 METHODS

Here, we provide more details about the methods we used for the empirical analyses of ARK and
SAIL.

A.3.1 GATED RECURRENT UNITS (GRUS)

The ARK model employs a standard GRU decoder with hidden state h; € R? that evolves as:

r, =0(W,x; +U,h;_1 +b,) 3)
ze =0(W.x;, +U;h, ;1 +b.) 4
h; = tanh(W,x; + Up(r; © hy_1) + by,) (5)
hy=(1-2)0h_1+2z06h (6)

where r; and z; are reset and update gates respectively, x; is the embedding of the current input
token, and ® denotes element-wise multiplication. At each timestep, the hidden state is projected to
vocabulary logits: p(z41]|z<¢) = softmax(W,h; + b,).

A.3.2 COMPRESSION LENGTH

For both ARK and SAIL, we compute the compression length to generate graphs as sequences.
Since ARK is a decoder-only autoregressive model, we compute:

T
Compression Length of G = —log, (pe(G)) = — Z logs (po(zt|T<t)) (7

t=1

where x; represents the ¢-th token in the linearized graph sequence [BOS, hy,71,11, ..., EOS] and
T is the sequence length. Each term represents the bits needed to encode the next token given the
previous context.

For SAIL, the variational framework adds a latent variable z, resulting in an upper bound on com-
pression length through the ELBO:

Compression Length of G < —log,(p(G|z)) + Dxr(q(z | G) || p(2)) (8)
T
== log,(pe(@ilr<t, 2)) + Do ©)
t=1
The KL divergence term is computed as follows:
1
Dxi(a(2 | G) || p(2) = 5 D (iF +0F =1~ log(07)) - logs(e) (10)

i=1

14

Under review as a conference paper at ICLR 2026

where d is the latent dimensionality and the factor log,(e) converts from nats to bits. The autore-
gressive formulation naturally handles variable-length graphs through the sequential factorization,
eliminating the need for separate structure and entity terms.

This provides an upper bound on the true compression length; the VAE’s ELBO is a lower bound
on log-likelihood, which, when negated, becomes an upper bound on compression. The bound is
particularly relevant as the autoregressive decoder must account for uncertainty in token ordering
during generation.

A.3.3 SAMPLING FROM LATENT VARIABLE, 2

We conduct two types of generation experiments:

1. Unconditional Generation: We sample 10,000 random latent codes from the standard nor-
mal prior distribution p(z) = N(0, I) and decode them into complete graphs using beam
search with beam width £ = 3. Each decoded graph is analyzed for: (1) semantic validity
according to dataset-specific constraints, (2) novelty by checking against the training and
validation sets, and (3) non-emptiness to ensure the model generates meaningful structures
rather than null graphs.

2. Conditional Generation: We evaluate the model’s ability to complete partial graphs by
providing incomplete sequences as prompts. For each test graph, we provide the first n
tokens (e.g., [BOS, hy,r1,t1]) and generate the remaining sequence autoregressively. We
vary the conditioning length and measure: (1) the semantic validity of the completed graph
and (2) the diversity of completions when sampling with different random seeds.

A.3.4 INTERPOLATION IN LATENT SPACE

We conduct both quantitative and qualitative analyses of the latent space structure:

1. Quantitative Analysis: We measure latent space smoothness through four metrics: (1) Lo-
cal Smoothness — average Jaccard similarity between consecutive decoded graphs along
random walks in latent space with step size e = 0.1, measuring whether small movements
produce similar graphs; (2) Global Consistency — Jaccard similarity between each step and
the anchor point, measuring drift from the starting graph; (3) Flip Rate — fraction of steps
that produce different decoded graphs, with lower rates indicating larger basins of attraction
in latent space; and (4) Average Basin Length — mean number of consecutive interpolation
steps that decode to identical graphs, quantifying the granularity of the learned represen-
tation. For each metric, we sample multiple anchor points and random directions, taking
10-30 steps along each trajectory.

2. Qualitative Analysis: We visualize the latent space structure using two approaches: (1) 2D
Projection — we encode all test graphs and project their latent representations to 2D using
t-SNE, coloring points by semantic attributes (genre for wd-movies) to observe clustering
patterns; and (2) Linear Interpolation — we select pairs of semantically distinct graphs,
encode them to obtain z; and z», then decode intermediate points z, = (1 — a)z; + a2z
for a € [0, 1] at regular intervals to examine the semantic coherence of interpolated graphs.

A.4 QUALITATIVE ANALYSIS OF CONDITIONAL SAMPLING

Qualitative Results We test whether SAIL has learned meaningful latent representations that
capture director-specific collaborative patterns and genre preferences, despite never being explicitly
trained on individual directorial styles. Figure [A.T] shows representative examples of conditional
generation for director-specific movie graphs. When conditioned on “Tim Burton” as the direc-
tor, the model successfully generates graphs featuring his frequent collaborators (Helena Bonham
Carter, Christopher Lee) and characteristic genres (Comedy Film, Musical Film). SAIL captures
Burton’s tendency to work repeatedly with the same ensemble cast, demonstrating learned patterns
of directorial collaboration. In contrast, the Wes Anderson generation fails to capture his distinctive
style. This disparity in generation quality likely reflects differences in dataset representation; Bur-
ton’s more frequent appearances and consistent casting patterns in the training data enabled better
pattern learning, while Anderson’s style may have been underrepresented. Despite these variations

15

Under review as a conference paper at ICLR 2026

Wes Anderson Tim Burton

@ Fantasy Film Comedy Film

ohn Le Mesurier X
: Felix Aylmer © Chasles Gray Helena Blz‘:lllzsn(l)};l‘zjtzo:b © Hical Him
@ Marisa Mell i ! @ Liz Smith
CHll Robertson @ Michel Piccoli Christopher Lec @ & Roger Frost
Jack Hawkins © Tutte Lemkow Missi Pyle .Rogcr Frost

© movie @ directors @ actors © genre

Figure A.1: Graphs generated by ARK conditioned on director entities for Wes Anderson (left)
and (b) Tim Burton (right). Node colors indicate entity types: movie (blue), directors (red), actors
(green), and genres (purple).

in director-specific accuracy, both generated graphs maintain semantic validity as movie KGs, indi-
cating that the SAIL has learned general graph structure.

A.5 ABLATION STUDY

We systematically analyze the contribution of key architectural components through two ablation
experiments on the syn-paths dataset, examining both model capacity and architectural choices.

Method We conduct two complementary ablation studies:

1. Architectural Hyperparameter Analysis: We vary the number of GRU layers njayers €
{1,2,3,4,5} and model dimensions dnoger € {2,4,8,16,32,64,128,256,512} while
keeping other hyperparameters fixed. For each configuration, we train the model until
convergence and evaluate generation by measuring the percentage of semantically valid
and novel graphs. We also test the relative importance of network depth versus hidden
dimensionality on generation quality.

2. Architecture Ablation: We systematically replace transformer components with simpler
architectures to assess their contribution: (1) MLP Encoder — replaces the transformer
encoder with a multi-layer perceptron while preserving positional encoding; (2) GRU De-
coder — replaces the transformer decoder with a GRU-based sequential decoder; and (3)
MLP Encoder & GRU Decoder — combines both modifications, using an MLP encoder
and GRU decoder. Each variant maintains comparable parameter counts to the transformer
baseline for fair comparison.

Architectural Hyperparameter Analysis Results In Figure|A.2| the model dimension has a sub-
stantially stronger impact on generation quality than network depth. Varying the number of layers
from 1 to 5 produces relatively stable performance around 45% valid & novel rate, though with
high variance across configurations. In contrast, the center panel demonstrates a sharp performance
threshold: models with fewer than 16 hidden units achieve near-zero validity rates, while those with
dmodel > 64 consistently achieve 70-95% validity. The right panel’s scatter plot confirms this pattern
across individual runs, showing clear stratification by model dimension rather than layer count (in-
dicated by color). These findings suggest that for KG generation on syn-paths dataset, a single-layer
GRU with sufficient hidden units (>64) can match or exceed the performance of deeper networks,
supporting our claim that architectural simplicity does not compromise generation quality when
coupled with appropriate capacity.

Architecture Ablation Results To better understand the contribution of architectural choices, we
compare our full transformer-based model ¢-SAIL against simplified variants: SAIL, which re-
places the transformer encoder and decoder with an MLP encoder and a GRU decoder, an MLP
encoder (paired with a transformer decoder), t-ARK, a decoder-only transformer model, and ARK,
a GRU decoder-only model. These ablations allow us to isolate the effect of transformer components
in both the encoder and the decoder, and to assess whether an encoder is required for KG generation
at all. In addition to generation quality and compression efficiency, we also report relative training
time, as computational efficiency is often a limiting factor in scaling generative models. Table

16

Under review as a conference paper at ICLR 2026

o

=] =]
= o
e =
[
o =
=)
come
)
°o®
o0
[~

o
[=2]
I
(=2}
°
°

N

'S
N
'S
[]

R &

Valid & Novel Rate
. I o S S
o =~
Valid & Novel Rate
o
no

o
[V)
Valid & Novel Rate
@
w
Layers

i i I |] i | | i i] o o © i
1 2 3 4 5 16 32 64 128256 512 10 100
Number of Layers Model Dimension Model Dimension

=]
o
=3
o
o
=)

Figure A.2: Effect of architectural hyperparameters on the semantic validity and novelty. (Left)
Valid & Novel rate as a function of the number of GRU layers, showing stable performance across
depths with high variance. (Center) Performance variation with model dimension (hidden units),
demonstrating a sharp improvement threshold around 64 dimensions, followed by consistent high
performance. (Right) Scatter plot of individual experimental runs showing the relationship between
model dimension and generation quality, with color indicating the number of layers.

[3] demonstrates that transformer components, while improving generation quality, are not strictly
necessary for effective knowledge graph modeling. Sequential decoders are consistently the most
efficient: ARK trains at 0.09-0.27, x the baseline time (i.e., 3.7-11x faster) with near baseline valid-
ity across datasets, and its sequential inductive bias is competitive for decoding e.g., syn-tipr (23.48
bits, on par with ¢-ARK ’s 23.34) and wd-movies (98.19 bits, best overall). Meanwhile, SAIL
yields the best compression on wd-articles (199.55 bits), indicating that modest latent structure
plus a GRU decoder can improve efficiency on complex, real-world graphs. Taken together, these
results suggest that, for KG generation, a strong sequential decoder often dominates architectural
choice, and the extra cost of full transformers, especially in the decoder, may be hard to justify when
compute is constrained.

A.6 CONDITIONED GENERATION

Figure[A.3]shows that conditioned generation is also possible for the ARK model, which allows the
model to generate KGs and simultaneously enforces specific constraints. Entities or relations are
fixed in place in the positions of interest, and then we decode the remaing tokens with constrained
sampling (temperature/top-k/top-p). Figure[A.3a shows that the novelty and validity of the generated
structures remain high for all steps of the conditioning process, an indication that the model can
produce triples and, consequently, graphs that are semantically correct. At the same time, as seen in
Figure the diversity of the generated graphs drops dynamically as more entities and relations
are added. This makes sense as the population of probable samples narrows with each additional
constraint and limits the generative freedom of the model.

A.7 ADDITIONAL COMMENTS ABOUT ARK & SAIL

Variable Graph Length It is desirable to learn latent graph structures of varying sizes. In nat-
ural language processing, language models utilize special tokens to indicate the end of a sequence.
Following a similar approach, we model variable length KGs by linearizing graphs into sequence of
tokens and intoducing boundary tokens. We always introduce BOS as the inital token and terminate
generation upon emitting EOS, while using PAD for mini batching. This simple setting allows the
decoder to learn when to stop and how large the generated graphs should be, ensuring that the length
distribution is learned. During inference, beam search halts on EOS, leading to the production of
graphs of different sizes without any post hoc trim. In order to avoid length bias, we randomize
triple order during training. In the probabilistic variant (SAIL), the latent z conditions the entire se-
quence and this yields consistent length control across all samples, while at the same time preserving
variability.

17

Under review as a conference paper at ICLR 2026

<
g
= g
2 &
g El
g =
o =
@D W g
- 2
3 z
zn @ 0
1=
Novel Semantics (%) = Diversity Ratio
8
ﬁ'\ N2 D 1‘» “’.‘ ”@ A ‘% S " ﬁ\ N &) ‘bv) ﬁ“@ :\ 1% \Q
O S S O R IR SR S I O R R R ORI
& & & & & & G & & & & & & & & G & &
(a) Stepwise conditioning for novelty and validity. (b) Effect of conditioning on diversity.

Step-by-Step Conditioning of Graph Generation
Step 1 sterhout ® ® @

®
®

Step 2 Qosterhout ® @

D)
®

Step 3 Oosterhout Bergen op Zoom @

®

Step 4 Oosterhout

@
@

Bergen op Zoom || Bergen op Zoom @

®
®

@
® ®
@
@

Step 5 Oosterhout m Bergen op Zoom | (Bergen op Zoom @ .

®
®

Step 6 Qosterhout train_to @ @

®
®

Step 7 Oosterhout m Bergen op Zoom | (Bergen op Zoom train_to .

®
®

Step 8 Oosterhout m Bergen op Zoom) (Bergen op Zoom train_to

)

IIIIEB@BB

Step 9 Oosterhout cycle_to Bergen op Zoom) (Bergen op Zoom train_to

(c) Example of syn-paths conditioned generation

Figure A.3: Effect of progressive conditioning on Knowledge Graph generation for the syn-paths
dataset. Subfigure (a) quantifies novelty and validity under increasing conditioning, (b) shows the
corresponding reduction in sample diversity, and (c) provides an example of a conditioned genera-
tion where the model completes a partially specified graph.

18

Under review as a conference paper at ICLR 2026

% Valid % Novel Compression Training
Datasets Model Generation T Graphs 1 (bits) | Time |
t-SAIL 99.60 100.00 27.77 1.00
syn-paths SAIL 92.50 100.00 28.74 0.21
MLP Encoder 99.80 100.00 27.35 0.55
t-ARK 97.39 100.00 27.57 0.12
ARK 99.95 100.00 27.65 0.09
t-SAIL 100.00 100.00 26.30 1.00
syn-tipr SAIL 98.45 100.00 27.14 0.17
MLP Encoder 99.48 100.00 26.30 0.20
t-ARK 100.00 100.00 23.34 0.17
ARK 100 100.00 23.48 0.09
t-SAIL 100.00 100.00 59.61 1.00
syn-types SAIL 100.00 100.00 60.58 0.39
MLP Encoder 93.27 100.00 59.33 0.41
t-ARK 87.07 100.00 59.79 0.18
ARK 89.22 100.00 59.63 0.09
t-SAIL 99.83 100.00 124.50 1.00
wd-movies SAIL 99.47 100.00 116.84 0.24
MLP Encoder 99.44 100.00 118.64 0.36
t-ARK 98.33 100.00 114.49 0.23
ARK 99.24 100.00 98.19 0.21
t-SAIL 98.00 96.00 235.24 1.00
wd-articles SAIL 99.13 100.00 199.55 0.42
MLP Encoder 97.7 100.00 206.23 0.48
t-ARK 95.37 100.00 224.25 0.33
ARK 97.24 100.00 205.24 0.27

Table 3: Architectural ablation study comparing ARK against simplified architectures with MLP
encoders and GRU decoders. We evaluate model variants across five datasets using generation
quality metrics (percentage of valid and novel graphs), compression efficiency (bits required for
latent representation), and computational efficiency (training time relative to ¢t-SAIL baseline).

B ADDITIONAL TABLES

19

Under review as a conference paper at ICLR 2026

% Valid % Novel % Novel % Empty

Datasets Model ¢/ ho+ & Validt Graphst Graphs |

uniform 0 0 100.00 0
TransE 0.25 0.25 23.45 76.55
DistMult 0.69 0.69 14.59 85.41
syn-paths ComplEx 0.71 0.71 14.27 85.73
t-SAIL 99.60 99.60 100.00 0
SAIL 92.50 92.50 100.00 0
t-ARK 97.39 97.39 100.00 0
ARK 99.95 99.95 100.00 0
uniform 0 0 100.00 0
TransE 0 0 5.58 94.42
DistMult 0 0 13.34 86.66
syn-tipr ComplEx 0 0 4.95 96.05
t-SAIL 100.00 100.00 100.00 0
SAIL 98.45 98.45 100.00 0
t-ARK 100.00 100.00 100.00 0
ARK 100.00 100.00 100.00 0
uniform 0 0 100.00 0
TransE 0.21 0.21 15.44 84.56
DistMult 0.13 0.13 12.46 87.53
syn-types ComplEx 0.07 0.07 10.25 89.75
t-SAIL 100.00 100.00 100.00 0
SAIL 100.00 100.00 100.00 0
t-ARK 87.07 87.07 100.00 0
ARK 89.22 89.22 100.00 0
uniform 0 0 100.00 0
TransE 0 0 14.61 85.39
DistMult 0 0 12.93 87.07
wd-movies ComplEx 0 0 1.87 98.13
t-SAIL 99.83 99.9 100 0
SAIL 99.47 99.47 100.00 0
t-ARK 98.33 98.33 100.00 0
ARK 99.24 99.24 100.00 0
uniform 0 0 100.00 0
TransE 0 0 4.58 95.42
DistMult 0 0 0 100.00
wd-articles ComplEx 0 0 2.46 97.54
t-SAIL 98.00 98.00 100.00 0
SAIL 99.13 99.13 100.00 0
t-ARK 95.37 95.37 100.00 0
ARK 97.24 97.24 99.99 0

Table 4: Semantic validity of the graphs generated. We sample graphs and check the novelty of
the sampled graphs by comparing them against the training and validation sets. The best perform-
ing models for each dataset are bolded. Baseline results are from the IntelliGraphs paper (Thana-
palasingam et al.,[2023).

C ADDITIONAL FIGURES

C.1 ARCHITECTURAL DETAILS

Figure[C.T shows the architectural details of the -SAIL model. Also Figure[A.T|shows an example
for conditioned generation.

20

Under review as a conference paper at ICLR 2026

Compression Length (bits)

Datasets Models G I B Drcr
uniform 30.49 12.80 17.69 -
TransE 49.89 16.19 33.69 -
ComplEx 54.39 20.71 33.69 -

syn-paths DistMult 48.58 14.90 33.69 -
t-SAIL 27.77 - 14.47 13.30

SAIL 28.74 - 1841 1033
t-ARK 27.57 - - -
ARK 27.65 -

uniform 61.61 29.14 32.47 -
TransE 69.51 28.70 40.81 -
ComplEx 63.96 23.15 40.81 -

syn-tipr DistMult 67.51 26.70 40.81 -
t-SAIL 26.30 - 11.13 15.17
SAIL 27.14 - 9.90 17.24
t-ARK 23.34 - - -
ARK 23.48 -

uniform 36.02 16.84 19.18 -
TransE 48.26 19.05 29.21 -
ComplEx 47.69 18.48 29.21 -
syn-types DistMult 47.46 18.24 29.21 -
t-SAIL 59.61 - 59.46 0.15

SAIL 60.58 - 60.37 0.21
t-ARK 59.79 - - -
ARK 59.63 -

uniform 171.60 53.86 117.74 -
TransE 208.60 51.39 157.21 -
ComplEx 202.68 4546 157.21 -
wd-movies DistMult 208.50 51.29 157.21 -
t-SAIL 124.50 - 92.66 31.84

SAIL 116.84 - 100.10 16.74
t-ARK 114.49 - - -
ARK 98.19 -

uniform 693.80 295.60 398.20 -
TransE 910.65 280.67 629.98 -
ComplEx 887.30 25733 629.98 -
wd-articles DistMult 901.91 271.94 629.98 -
t-SAIL 235.24 - 225.60 9.64

SAIL 199.55 - 186.38 13.17
t-ARK 224.25 - - -
ARK 205.24 - - -

Table 5: We measure the compression quality for compressing graphs G. Dy, is only available
for the VAE because it relies on the variational approximation, which is unique to this model. For
the VAE, we compute an upper bound on the compression length (in bits). Probabilistic baseline
(uniform, TransE, ComplEx, DistMult) results are from [Thanapalasingam et al. (2023)).

21

Under review as a conference paper at ICLR 2026

Local Global Flip Avg Basin

Dataset Model Smoothness T Consistency T Rate| Length 1
svn-paths t-SAIL 0.75 0.36 0.20 4.54
yn-p SAIL 0.74 0.14 0.33 2.87
syn-tipr t-SAIL 0.99 0.98 0.09 8.61
SAIL 0.93 0.69 0.10 8.03
svn-tvpes t-SAIL 0.82 0.60 0.12 6.80
yn-typ SAIL 0.92 0.73 0.20 447
wd-movies t-SAIL 0.87 0.58 0.15 5.70
SAIL 0.84 0.49 0.40 2.93
wd-articles t-SAIL 0.81 0.55 0.14 5.37
SAIL 0.82 0.57 0.17 3.46

Table 6: Latent space smoothness metrics for ¢{-SAIL and SAIL with e = 0.1. Higher local/global
smoothness indicates more continuous transitions. Lower flip rates suggest larger regions mapping
to identical graphs.

(@)

e

Sampled Graph

| EXEITNANA
E%DDDDTDDDDD;\ AT
’ SA DDDDDD D DD)”’: ’ CADDDDDD D DD ‘ Autoregéiizir\;leeit:g:;ayti:se\:x:ﬁ?;fsﬂal Mask
| B] N
’SA DDDD‘IDDDDD)N}:{ ["-.@\@r @ @ " } { Step 3:predicthz [Bgs, oo t]]}
EXIL 0 T o rmace § B0
T 7
[BiS I[1]1 rD] g hDZ g Q E:ES] { Step 1:predictri [B:’)S’ o }

(a) Encoder Architecture (b) Decoder Architecture (c) Conditional Sampling

D Entity Embedding (eemb) D Relation Embedding (remb) Special Token Embedding (BOS, PAD, EOS) @ Memory Representations

Y " Transformer Block with Transformer Block with Linear Projection
>¢ Masked Mean Pooling self-attention unit cross attention unit

Figure C.1: ¢t-SAIL has three main components: (a) an Encoder that processes linearized Knowl-
edge Graph triple sequences [BOS, h1,71,t1, ha, ra, ta, . .., EOS] through self-attention (SA) blocks
to produce latent distribution parameters (i, log o), (b) a Decoder that uses cross-attention (CA) to
condition on the sampled latent code z and autoregressively generates token sequences with causal
masking, and (c) Conditional Sampling that demonstrates the step-by-step autoregressive generation
process, predicting one token at a time until the [EOS] token is produced or the maximum sequence
length is reached. The model uses a unified vocabulary embedding matrix spanning special tokens
([BOS], [PAD], [EOS]),entities (shown in blue), and relations (shown in pink), enabling se-
quential generation of Knowledge Graphs from learned latent representations.

22

	Introduction
	Preliminaries
	Sequential Decoding for Knowledge Graph Generation
	Graph Input Processing
	Autoregressive Knowledge generation (ARK)
	Sequential Autoregressive Knowledge Graph Generation with Latents (SAIL)

	Evaluation
	Compression Code Length
	Sampling from Latent Variable, z
	Interpolation in Latent Space
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Experimental Details
	Dataset Details
	Methods
	Gated Recurrent Units (GRUs)
	Compression Length
	Sampling from Latent Variable, z
	Interpolation in Latent Space

	Qualitative Analysis of Conditional Sampling
	Ablation Study
	Conditioned Generation
	Additional Comments about ARK & SAIL

	Additional Tables
	Additional Figures
	Architectural Details

