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ABSTRACT

Training billion-scale large language models (LLMs) with just a few consumer-
grade graphics cards is key to democratizing LLM access. However, existing
frameworks often depend on manual tuning of memory management settings,
leading to inefficient hardware utilization and suboptimal performance. This paper
introduces ProTrain, a novel training system that automatically tailors memory
management policies to the model architecture and underlying hardware resources,
eliminating the need for manual intervention. ProTrain features (1) automated
memory management that abstracts complex memory management strategies into
a few tunable configuration parameters and searches for optimal parameter settings
using cost models and (2) a runtime profiler that provides precise estimates of
latency, memory usage, and I/O bandwidth to build high-fidelity cost models.
ProTrain does not change the training algorithm and thus does not compromise
accuracy. Experiments show that ProTrain improves training throughput by 1.43×
to 2.71× compared to the state-of-the-art training systems.

1 INTRODUCTION

Large Language Models (LLMs) have recently achieved remarkable success in various fields. Inspired
by the scaling law Kaplan et al. (2020) that the performance (e.g., perplexity) of LLMs often improves
logarithmically with the number of parameters, there has been a trend towards increasing parameter
size. For instance, the parameter size of GPT-like models has surged from 117 million in GPT-
1 Han et al. (2021) to 1,760 billion in GPT-4 Achiam et al. (2023), a 15,000-fold increase over two
years. The significant growth in parameter size leads to a substantial increase in memory demands.
According to existing studies Ren et al. (2021), each unit increase in parameters generally requires
16× more memory to store the model states (e.g., fp16 and fp32 parameters, fp16 gradients, fp32
momentum and variances), not to mention the increased memory demand for activations due to larger
model sizes. Consequently, memory has become the dominant bottleneck in LLM training.

Numerous memory management strategies have been proposed to address memory limitations. They
generally fall into three categories: ZeRO, gradient checkpointing, and swapping. (a) The Zero
Redundancy Optimizer (ZeRO) Rajbhandari et al. (2020); Zhao et al. (2023b) distributes model states
across multiple GPUs, leverageing aggregated memory capacity to accommodate large models in
data parallelism. (b) Gradient checkpointing Chen et al. (2016); Jain et al. (2020); Herrmann et al.
(2019); Zhao et al. (2023a); Korthikanti et al. (2023) reduces memory consumption by discarding
certain activations during the forward pass and recomputing them during the backward pass. (c)
Swapping Rhu et al. (2016); Wang et al. (2018); Le et al. (2018); Huang et al. (2020); Ren et al.
(2021); Rajbhandari et al. (2021); Sun et al. (2022) offloads data to external memory sources such as
CPU memory or NVMe devices. As we consider swapping to CPU memory, we use swapping and
CPU offloading interchangeably.

The three memory management strategies can be implemented within various model training
paradigms, including data parallelism Ren et al. (2021), tensor parallelism Shoeybi et al. (2019),
and pipeline parallelism Huang et al. (2019); Narayanan et al. (2019). This paper focuses on data
parallelism, as it is widely used in distributed environments due to its simplicity and scalability.
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Popular data-parallel frameworks, such as DeepSpeed Rasley et al. (2020), Colossal-AI Li et al.
(2023)1, and FSDP Zhao et al. (2023b), incorporate the aforementioned memory management
strategies. However, these frameworks share a common issue: they demand significant manual
effort to configure memory management settings. For example, in DeepSpeed, users must select the
appropriate ZeRO optimization stage (e.g., ZeRO-1, ZeRO-2, ZeRO-3), configure offloading options
(CPU or NVMe) for both parameters and optimizer states, and set various thresholds for parameter
fetching and collective communications. Similarly, while Colossal-AI dynamically manages memory
by moving data between the CPU and GPU, users must specify the non-model data ratio. The
optimal configuration varies across models and hardware, requiring substantial domain expertise.
Misconfiguration of these settings can lead to reduced efficiency or out-of-memory (OOM) error. For
instance, GPT-10B running on four RTX 3090 GPUs with the default configuration utilizes only 35.6%
of GPU memory and runs 1.18× slower than with optimized settings. Moreover, configurations
optimized for A100 GPUs cannot be directly applied to RTX 3090 GPUs due to high OOM risks.

To address this challenge, we propose ProTrain, an efficient LLM training system that automatically
identifies memory management policies tailored to the specific LLM architecture and available
memory resources. The basic idea of ProTrain is to abstract memory management strategies into a
few tunable configuration parameters. ProTrain then builds runtime and memory usage estimators that
quantify the impacts of these configuration parameters on training performance. These cost models,
informed with accurate profiling information on latency, memory, and I/O bandwidth, allow ProTrain
to search for the optimal memory management strategy that minimizes runtime while ensuring the
peak memory consumption meets the hardware constraints.

Our main contributions are:

• Automatic Memory Management – To manage model states, we propose a dual-chunk system
that treats initial layers of the LLM as persistent chunks in GPU memory and efficiently
prefetches or offloads later layers as non-persistent chunks in CPU memory. For activation
management, we introduce an interleaved organization that alternates between swapping
and gradient checkpointing for each transformer block of the LLM. These strategies are
abstracted into tunable configuration parameters, creating a structured configuration space
that enables precise estimation of runtime and memory usage and facilitating the automatic
search for optimal configurations with cost models.

• Memory-Aware Runtime Profiling – We are the first to apply model-wise runtime profiling
to LLMs, leveraging detailed memory usage characteristics to reduce overall memory
consumption. Building on this, we propose a novel memory-aware profiling method that
effectively captures the memory consumption from temporary tensors often overlooked by
state-of-the-art approaches, providing precise memory usage estimation to guide automated
memory management.

• Implementation of ProTrain – We implement these techniques into a training system
ProTrain that automatically configures memory management strategies, including CPU
offloading, gradient checkpointing, and ZeRO techniques, to optimize training throughput
while adhering to memory constraints.

• Evaluation – We ran ProTrain and other popular training frameworks (e.g., DeepSpeed,
Colossal-AI, FSDP) on various models such as GPT-2, OPT, Mistral, and LLaMA. On RTX
3090 GPUs, ProTrain trained models up to 2.47× larger than DeepSpeed and 1.48× larger
than Colossal-AI. On A100 GPUs, ProTrain trained models up to 7.5× larger than FSDP,
with 1.43× to 2.71× higher throughput than other frameworks. ProTrain also demonstrated
excellent scalability with increasing GPUs or batch sizes. These results highlight ProTrain’s
superior memory management and efficiency across different hardware setups, making it an
excellent choice for LLM training on memory-constrained settings.

2 BACKGROUND AND RELATED WORKS

This section introduces the background on DNN training. The discussion on more related works is in
Appendix E.

1which rewrote PatrickStar Fang et al. (2022), and the two are used interchangeably in this paper
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Figure 1: The architecture overview of ProTrain. Operations A - G are described in the text.

Training deep learning models involves a repetitive three-stage process across multiple iterations
and epochs. The stages include forward propagation (FWD), where a batch of training samples is
passed to the model to compute the loss; backward propagation (BWD), which calculates gradients by
backpropagating the loss through the model; and parameter updating (OPTIM), where the gradients
are used to update model parameters via an optimizer. For the training of large models, it is a common
practice to adopt mixed-precision training Micikevicius et al. (2017), which uses reduced precision
data types for FWD and BWD, while maintaining higher precision for OPTIM to ensure accuracy.

Memory consumption during training primarily comes from two sources: model states and residual
states. Model states include parameters, gradients, and optimizer states (i.e. momentum and variances
used in Adam Kingma & Ba (2014)) while residual states consist of activations and temporary tensors.
The computational complexity of the FWD and BWD stages scales with model size and batch size,
necessitating their execution on GPUs due to the intensive computational demands. In contrast, the
OPTIM stage involves simpler operations and can be efficiently offloaded to the CPU Ren et al.
(2021), which brings significant GPU memory savings by allocating memory-intensive optimizer
states on the CPU.

3 OVERVIEW OF PROTRAIN

Figure 1 illustrates the system architecture of ProTrain, consisting of three core components: (1) an
Automatic Memory Management module (§ 3.1) that automatically identifies the optimal memory
management policy for training the target LLM on the given hardware, (2) a Memory-Aware Runtime
Profiler (§ 3.2) that gathers runtime and memory data to guide memory management decisions, (3) a
High-Performance Training Engine (§ 3.3) that implements the memory management policy. Before
diving into each subsection, we first elaborate an example of memory management policies.

Running Example. The training engine diagram illustrates a memory management policy that
Automatic Memory Management would discover. In the example, the LLM architecture is divided
into three chunks, where each chunk represents a few consecutive transformer blocks. GPU performs
the FWD, BWD, and a portion of OPTIM computations while CPU performs the rest of the OPTM
computations. Since the parameters of Chunk 0 will be used immediately at the start of a training
iteration, they are persistently allocated on the GPU. The parameters for Chunk 1 and Chunk 2 reside
on the CPU and are dynamically uploaded to the GPU or offloaded back to the CPU to ensure the
total memory consumption meets the device memory limit. The flow of communication operations
between the CPU and GPUs is as follows:

(A) Parameter Upload: Before the forward pass, the parameters for Chunk 1 are uploaded from the
CPU to the GPU. Since Chunk 0 already resides on the GPU, only Chunk 1 and Chunk 2 need to be
uploaded sequentially from the CPU, illustrated as blocks 1 and 2 in the row “CPU → GPU”. The
prefetch of the next parameter chunk begins as soon as the GPU starts computing the current chunk.

(B) Parameter Gather: Once the parameter chunks are uploaded, the engine performs an all-gather
operation that collects the parameter shards from all GPUs into a complete parameter chunk for
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upcoming computations. This step is required for all three chunks, illustrated as blocks 0, 1, and 2 in
the top row of “GPU → GPU”.

(C) Gradient Reduce: In the backward pass, the engine reuses the parameter chunk to store the
computed gradient to optimize memory usage. Once all parameters within a chunk are replaced by
their corresponding parameters, a reduce-scatter operation is performed to synchronize gradients
across GPUs, illustrated as blocks 0, 1, and 2 in the bottom row of “GPU → GPU”.

(D) Gradient Offload: Following the gradient reduce, the chunks that were originally on the CPU, are
offloaded back to the CPU to free up GPU memory. Only Chunk 1 and Chunk 2 perform this step.

(E) Parameter Update: Once on the CPU, the gradients for Chunk 1 and Chunk 2 are used for
parameter updates, along with the high-precision parameter chunk already resided on the CPU. This
step runs in parallel with the GPU’s backward execution. In contrast, Chunk 0 performs its parameter
updates directly on the GPU.

(F) Activation Swapping Out: Activation swapping occurs at the transformer block level, which is
more fine-grained than chunks. In the example, only activations from the first transformer block
(denoted as four block 3 in the row “GPU → CPU”) are swapped out after each activation is computed.

(G) Activation Swapping In: When sufficient GPU memory is available to hold a transformer block’s
activations, the swapping in begins. This is done in batches (denoted as two block 3 in the row “CPU
→ GPU”) rather than individually as swapping out shows, grouping multiple activations to improve
bandwidth utilization.

In this example, parameter uploads from the CPU only occur during the forward pass assuming
the GPU has enough buffer capacity to hold all the parameter chunks. However, if the buffers
become full, the least recently used chunk is evicted, triggering another parameter upload and gather
operation during the backward pass. Throughout the process, communication overhead is minimized
by overlapping data transfers with computations. Additionally, idle CPU cycles are used to perform
parameter updates, which run concurrently with the GPU’s backward computations, effectively hiding
slower CPU parameter update operations.

3.1 AUTOMATIC MEMORY MANAGEMENT

The Automatic Memory Management module abstracts the memory management policy into a few
configuration parameters and automatically tunes these parameters to optimize the training efficiency
of a LLM on a target hardware. We next elaborate on the abstractions of the configuration space and
the optimal configuration search algorithm.

3.1.1 THE CONFIGURATION SPACE OF MEMORY MANAGEMENT

Configuration Parameters for Model States. Model states can be offloaded to the CPU to relieve
GPU memory pressure but the offloading implementations in existing LLM training frameworks
suffer from various limitations. Fully offloading all parameters, as seen in FSDP Zhao et al. (2023b),
often leads to inefficient GPU memory usage and high data transfer overhead. DeepSpeed Rasley
et al. (2020) attempts to mitigate this issue by using thresholds, such as maximum live parameters
and prefetch bucket size, to control the offloading ratio. However, its prefetching mechanism operates
in a sliding window manner due to poorly timed execution, resulting in frequent small transfers.
This causes low bandwidth utilization, significantly degrading performance. Colossal-AI Li et al.
(2023) improves bandwidth utilization through fixed-sized chunks but suffers from frequent memory
reallocations caused by dynamic chunk management. Moreover, it uploads high-precision parameter
chunks for GPU parameter updates at runtime, increasing the risk of memory fragmentation and
out-of-memory (OOM) errors.

To address these limitations, ProTrain introduces a dual-chunk system consisting of persistent
and non-persistent chunks. Persistent chunks remain on the GPU, storing both high-precision and
low-precision parameters, which eliminates data transfers and enables direct GPU parameter updates.
In contrast, non-persistent chunks are kept in CPU memory, requiring low-precision parameters
uploads to the GPU for computation, and gradients offloads back to the CPU for parameter updates.
For non-persistent chunks, ProTrain further introduces pre-allocated chunk buffers that are used as
caches. These buffers allow parameters loaded during the forward pass to be reused in the backward
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Figure 2: Block-Wise Activation Management Layout and Memory Usage Trend

pass, preventing frequent memory allocations. In ProTrain, persistent chunks are the first few chunks
of the LLM while the non-persistent chunks are the rest of the chunks.

The concept of dual-chunk system allows ProTrain to tailor offloading policies to chunks of different
characteristics. Dual-chunk system is inspired by two observations: (1) The forward pass computation
can often hide the overhead of CPU offloading for the later layers of a LLM but not that of the first
few layers. (2) The parameter updates for the later layers of a LLM, but not the first few layers, can
be performed concurrently with the backward pass computation. Therefore, the model states of the
first few layers and the later layers should be managed differently.

We use the example in Figure 1 to explain the rationale. As chunk 0 executes first in the forward
pass, if its parameters are offloaded to the CPU, its forward pass computation will be blocked by
the data transfer overhead from CPU-to-GPU parameter uploading and parameter gather. Chunk 0
also gets updated the last with no backward pass computation left to hide the latency from parameter
updates. Therefore, managing Chunk 0 as a persistent chunk eliminates cold start latency and enables
efficient GPU parameter updates. In contrast, the data transfer necessary for Chunk 1 and Chunk 2 to
perform forward pass can be overlapped with the computation of Chunk 0 and Chunk 1 respectively.
If performed on the CPU, the parameter updates of Chunk 1 and Chunk 2 can also be overlapped
with the backward pass computation of Chunk 0 and Chunk 1 respectively. Therefore, managing
Chunk 1 and Chunk 2 as non-persistent chunks relieves GPU memory pressure without incurring
offloading overheads.

We summarize the configuration parameters from managing model states as follows: (1) chunk size
– the size of each chunk for the LLM, (2) the number of persistent chunks, and (3) the size of
pre-allocated chunk buffers. In particular, while more persistent chunks and chunk buffers generally
improve performance, memory constraints and the large size of LLMs necessitate a trade-off between
memory usage and system efficiency.

Configuration Parameters for Activations. Previous studies Peng et al. (2020); Beaumont et al.
(2021) have co-optimized activation swapping and gradient checkpointing at the tensor granularity.
Although tensor-level management offers greater flexibility, it significantly expands the search space,
making it challenging to determine optimal policies for swapping or recomputing individual tensors.
For instance, the LLaMA 34B model has only 48 transformer blocks but has approximately 2,000
activation tensors, resulting in a search space as large as 32000 if each tensor has three options.
Moreover, managing tensors individually introduces implementation complexities and scalability
challenges, making this approach impractical for LLMs. In contrast, popular training frameworks
that utilize gradient checkpointing often recompute all transformer blocks, which is inefficient when
there is sufficient memory to avoid full recomputation.

To address the above limitations, ProTrain takes a different approach by managing activation swapping
and gradient checkpointing operations at the transformer block level. Each block can utilize one
of three techniques in handling activations: swapping, gradient checkpointing, or no optimization
(i.e., neither swapping nor checkpointing is applied). To enhance efficiency, ProTrain introduces
an interleaved organization, in which each swapping block is followed by multiple blocks using
gradient checkpointing. This design offers several benefits. First, placing swapping blocks earlier
increases opportunities for overlapping swapping with computation. Second, interleaving them with
checkpointing blocks prevents activation accumulation, reducing the risk of OOM errors caused by

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

slower swapping. Third, placing unoptimized blocks in the later layers allows their activations to be
consumed sooner, enabling earlier activation prefetching of swapping blocks.

Figure 2 illustrates our approach using a transformer with 8 blocks. Block 1 and 4 use swapping, while
block 2, 3, 5, and 6 use gradient checkpointing. The remaining blocks are left unoptimized, as their
earlier backward computations offer limited opportunities for swapping. This interleaved approach
not only maximizes the overlap between computation and communication, but also minimizes peak
memory usage, as visualized in the upper part of Figure 2.

We summarize the configurable parameters from managing activations as follows: (1) the swapping
interval, which is selected based on the computation time needed to swap out a block, (2) the number
of blocks designated for swapping and gradient checkpointing. Striking a balance between the
number of swapping and checkpointing blocks is crucial: ideally, fewer blocks should use either
technique, as each introduces additional recomputation or transfer overhead. However, when memory
is constrained, swapping is preferred for blocks where communication overhead can be effectively
hidden.

3.1.2 OPTIMAL CONFIGURATION SEARCH WITH COST MODELS

We formulate the optimal configuration search as a constrained optimization problem. The goal is
to minimize the total runtime of the training process. Since training consists of repeated iterations,
minimizing the total training time is equivalent to minimizing the runtime of a single iteration,
denoted as TIteration, which includes the forward pass, backward pass, and parameter updates:

min
configs

TIteration s.t. MPeak < MCapacity, (1)

where MPeak represents the peak memory usage, and MCapacity is the total GPU memory capacity.
The set of tunable configuration parameters, configs, that determines the memory management policy
is configs = {npersist, nbuffer, nswap, ncheckpoint}, where npersist denotes the number of persistent chunks
residing on the GPU, nbuffer refers to the number of chunk buffers for prefetching and memory reuse,
nswap indicates the number of blocks using activation swapping, and ncheckpoint specifies the blocks
applying gradient checkpointing. These configurations are non-negative integers that are bounded
by the total number of chunks (Nchunk) or blocks (Nblock). Chunk size is determined independently
before the optimal configuration search (detailed in Appendix B.1).

To solve the optimization problem, we build two cost models that accurately estimate runtime and
peak memory consumption for each configuration combination. These cost models allow us to
identify the optimal configuration setting leveraging profiling information data alone, getting rid of
the tedious trial-and-errors to set up training processes. The profiler is discussed in § 3.2.

Runtime Estimator. In ProTrain, CPU parameter updates are executed concurrently with the GPU’s
computations, which include both the backward pass and GPU-based parameter updates. However, if
the CPU parameter updates cannot fully overlap with the GPU’s operations, the total iteration time
becomes constrained by the longer CPU update phase. The runtime cost model is formulated as:

TIteration = TFWD +max{TBWD + TGPU OPTIM, TCPU OPTIM}, (2)

where TFWD and TBWD are modeled as a function of the configuration parameters. For parameter
update of the persistent chunks (TGPU OPTIM) and non-persistent chunks (TCPU OPTIM), ProTrain models
runtimes predictably based on parameter size. Due to space limitations, details are in Appendix A.1.

Peak Memory Usage Estimator. Memory usage falls into two categories: static and dynamic
components. Static memory, which includes model states and activations, is fixed and predictable.
They can be easily determined by chunk size, npersist, and nbuffer. However, dynamic memory involves
temporary tensors that are hard to estimate and are often neglected in existing approaches Wang et al.
(2024); Huang et al. (2022). Although transient, these temporary tensors can significantly impact peak
memory usage, accounting for up to 17.2% (3.06 GB) of total memory. To address this, we design
an iterative operator-wise approach to estimate peak memory usage. The basic idea is to track peak
memory during profiling while excluding static memory, then iteratively add back the static memory
during the estimation phase, operator by operator, to accurately capture the contribution of temporary
tensors to the overall peak memory. Details of the algorithm are given in the Appendix A.2.

The configuration space in ProTrain is structured and finite, allowing for an exhaustive search
of all possible configurations. ProTrain employs specific pruning strategies to further reduce the
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search space. For instance, the maximum number of swappable blocks is limited by the swapping
interval to ensure they overlap with forward computations. During the backward phase, the system
monitors bandwidth usage for chunk prefetching to ensure sufficient bandwidth remains for activation
prefetching. Additionally, as configurations are traversed from smallest to largest, any swapping and
checkpointing combination that results in memory overflow is immediately discarded, and subsequent
iterations involving this combination are skipped. For each viable configuration, ProTrain’s runtime
estimator predicts the runtime, selecting the one with the shortest runtime as the final setup.

3.2 MEMORY-AWARE RUNTIME PROFILING

Traditional memory profiling methods, such as static profiling Patil et al. (2022) and layer-wise
runtime profiling Beaumont et al. (2021), are insufficient for capturing the complete memory demands
of LLM training. These approaches often overlook the impact of unhookable operators and temporary
tensors, leading to inaccurate memory management and suboptimal configuration choices. Model-
wise runtime profiling has the potential to overcome these challenges. However, as it requires the
execution of the entire LLM model, it is constrained by limited GPU memory capacity for LLMs.

ProTrain develops an memory-aware runtime profiling system that leverages memory usage character-
istics to enable model-wise profiling with limited memory capacity. Specifically, ProTrain drops static
memory (e.g., parameters, gradients, activations) from the GPU and regenerates it when required.
This is based on the observation that static memory usage is predictable (as detailed in Section 3.1.2),
allowing the profiler to focus on capturing the more complex and transient dynamic memory usage.

To track dynamic memory fluctuations caused by temporary tensors and unhookable operators,
ProTrain registers hooks that monitor current and peak memory changes both before and during
operations. First, the peak memory usage during each operation is monitored to capture the tem-
porary tensor usage specific to that operation. Second, by analyzing the memory changes between
consecutive hookable operations, the profiler infers the memory usage of unhookable operators.
This operator-wise approach considers the life cycle of various tensors, enabling a more precise
understanding of memory usage dynamics and making the profiler memory-aware, which is crucial
for building accurate cost models.

Our profiler also tracks the execution time of each operator. Similar to memory profiling, we estimate
the execution times of unhookable operators by analyzing the intervals between hookable ones.
Additionally, the profiler collects detailed hardware metrics, including memory transfer bandwidth
and collective communication operation durations, under both isolated and overlapping scenarios.
This detailed data collection enables precise performance predictions and facilitates automatic
memory management tailored to specific models and hardware, as discussed in Appendix A.

3.3 HIGH-PERFORMANCE TRAINING ENGINE IMPLEMENTATION

ProTrain is implemented on top of PyTorch, with a total of 7,600 lines of code. It offers simple and
user-friendly APIs, which require less than 5 lines of code modification to integrate with existing
PyTorch training scripts. Unlike existing approaches Rasley et al. (2020); Li et al. (2023), ProTrain
eliminates the need for manual configuration through its automatic memory management system.
ProTrain also includes several memory optimization techniques, detailed in Appendix B.2.

4 EXPERIMENTS

We empirically evaluate the performance of ProTrain against three open-source LLM training
frameworks using four popular LLM architectures.

Workloads. The tested models includes GPT-2 Radford et al. (2019), OPT Zhang et al. (2022),
Mistral Jiang et al. (2023), and LLaMA Touvron et al. (2023). By varying the hidden dimension, the
number of transformer blocks, and the number of attention heads, we generate models with different
parameter sizes, detailed in the Appendix C.1. The sequence length is set to 1024 by default.

Testbed. We evaluate the performance of ProTrain in two different experimental environments: (1) 1
node of 4 NVIDIA GeForce RTX 3090 24GB with 384GB of DRAM; (2) 1 node of 4 NVIDIA A100
SXM4 80GB with NVLink 3.0 with 1TB of DRAM. Details are provided in Appendix C.2.
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Baselines. We compare ProTrain with three representative open-source LLM training solutions:
(1) FSDP Zhao et al. (2023b), the native PyTorch support for the ZeRO-3 technique; (2) Deep-
Speed Rasley et al. (2020), a widely-used distributed training framework that employs ZeRO and
offloading techniques, tested with ZeRO-3 for a fair comparison; and (3) Colossal-AI Li et al. (2023),
which adopts chunk-based memory management compatible with the ZeRO-3 technique. Details on
baseline configurations are provided in Appendix C.3.

4.1 TRAINING PERFORMANCE COMPARISON

Table 1: Maximum Trainable Model Size (Unit: Billion)

Backend RTX 3090*1 RTX 3090*4 A100*1 A100*4

ProTrain 34B 37B 75B 87B
DeepSpeed 15B 15B 34B 37B
Colossal-AI 25B 25B 53B 53B
FSDP 1B 15B 10B 55B

Maximum Trainable Model Size.
Table 1 reports the maximum train-
able model sizes for different frame-
works, using the GPT-2 model as
the benchmark. ProTrain demon-
strates superior performance, sup-
porting models up to 34 billion pa-
rameters on a single RTX 3090 GPU
and scaling to 37 billion with four
GPUs. On the more powerful A100
GPU, ProTrain trains models as large as 75 billion on a single GPU and 87 billion with four GPUs,
outperforming Colossal-AI and DeepSpeed by 1.64× and 2.35×, respectively, in the four-GPU
setup. In contrast, FSDP significantly underperforms in the single GPU setting, managing only much
smaller models compared to ProTrain. Some frameworks fail to scale model sizes with more GPUs,
primarily due to inefficiencies in handling model initialization across devices. These results highlight
ProTrain’s effective utilization of heterogeneous memory resources, democratizing the LLM training.

Figure 3: Maximum Training Throughput on four RTX 3090 GPUs (upper) and A100 GPUs
(bottom). The notation “×” indicates failure to train due to out of memory.

Training Throughput. Figure 3 presents the maximum training throughput for various models on
four RTX 3090 and A100 GPUs, measured in tokens per second. The throughput is obtained by
testing each model at different batch sizes to find the highest achievable throughput. The results
show that ProTrain consistently outperforms other frameworks across diverse hardware and models.
On RTX 3090 GPUs, ProTrain achieves an average throughput of 2089.50 tokens per second, 1.77
to 2.71× higher than other frameworks. On A100 GPUs, ProTrain improves the throughput of
DeepSpeed, Colossal-AI, and FSDP by 1.85×, 1.43×, and 2.22×, respectively.
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(a) (b)
Figure 4: Scalability of performance on RTX 3090 GPUs (a) Maximum throughput across different

numbers of GPUs (b) Step time breakdown for different batch sizes

As model sizes increase, the demand for memory resources grows, resulting in decreased training
performance. However, ProTrain consistently maintains robust performance compared to other
frameworks. Notably, ProTrain delivers substantial speedups, achieving 5.05× the training speed of
15B GPT-2 on RTX 3090 and 2.78× of 34B LLaMA on A100, compared to FSDP. In such cases,
other frameworks either fail to train larger models with feasible batch sizes or resort to inefficient
data offloading. Overall, ProTrain delivers substantial performance improvements, achieving up to
2.71× the throughput of other frameworks on average, significantly enhancing the efficiency of LLM
training.

Performance Scalability. Figure 4(a) shows the maximum throughput of 10B GPT-2 across varying
GPU counts. ProTrain demonstrates impressive scalability, reaching 2493 token/s with four GPUs, a
3.5× increase from a single GPU setup. In contrast, while DeepSpeed and Colossal-AI also increase
throughput with more GPUs, their performance gains do not match those of ProTrain.

Performance Breakdown. Figure 4(b) provides a detailed breakdown of iteration time into forward,
backward, and parameter update phases when training a 10B GPT-2 model at varying batch sizes on
four RTX 3090 GPUs. At smaller batch sizes, where GPU memory pressure is lower, ProTrain signif-
icantly outperforms other frameworks for two reasons. First, ProTrain optimizes both computations
and I/O through overlapping, effectively hiding much of the latency. This is evident from the figure,
where ProTrain’s parameter update time is nearly negligible compared to other phases, due to its
efficient overlap with backward computations. Second, ProTrain’s automatic memory management
module dynamically identifies the optimal balance of memory-saving techniques, improving both
memory efficiency and performance. As batch sizes increase, the runtime for one iteration generally
rises across all frameworks due to heavier computational and memory demands. In these cases,
ProTrain maximizes memory-saving techniques, with performance gains primarily driven by better
overlapping strategies. Appendix D.1 presents experimental results on A100 GPUs.

4.2 ABLATION STUDIES

Importance of the Configuration Parameters. Figure 5(a) illustrates the impact of removing
key optimization components in ProTrain when training a 10B GPT-2 model on four RTX 3090
GPUs. Without dual-chunk system, where persistent chunks are replaced by three chunk buffers,
we observe a 1.1× slowdown. As batch sizes grow and memory pressure increases, the optimal
configuration shifts toward fewer persistent chunks and chunk buffers, limiting further speedup.
However, ProTrain automatically adapts its memory management to match the model architecture
and hardware conditions, ensuring efficient resource utilization across various workloads. Similarly,
disabling the interleaved organization and applying gradient checkpointing to all transformer blocks
results in an average 1.04× slowdown. While the benefit of the interleaved organization diminishes at
larger batch sizes, ProTrain dynamically adjusts the number of blocks for swapping and checkpointing
to strike the optimal balance between memory efficiency and computational overhead. The largest
performance degradation occurs when the overlapped parameter update is removed. Switching to a
sequential approach results in a 1.22× slowdown. This aligns with Figure 4(b), where ProTrain’s
optimized parameter update greatly reduces its share of the overall runtime. Appendix D.5 summarizes
the combinations of techniques that achieve optimal memory management and performance.
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(a) (b)
Figure 5: (a) Effectiveness of dual-chunk system, interleaved organization, and overlapped parameter
update. The speedup on each bar reports the time spent by ProTrain w/o the optimization divided by

the time spent by ProTrain. (b) Effectiveness of runtime and peak memory usage estimator.

Effectiveness of Runtime Estimator. The upper chart in Figure 5(b) demonstrates the effectiveness
of the runtime estimator by comparing the estimated and actual runtimes for various configurations
during the training of the 10B GPT-2 model. The estimator consistently provides accurate predictions,
with the gaps staying within 4% across a wide range of configurations. This highlights its robustness
in managing diverse memory optimization strategies. We also confirm the generalizability of the
runtime estimator across different models and hardware setups. With precise runtime estimates,
ProTrain can automatically determine the most efficient memory management configurations for
specific models and hardware.

Effectiveness of Peak Memory Usage Estimator. We demonstrate that the estimated memory usage
is within 7% error of actual usage, as shown in the bottom chart of Figure 5(b). This high accuracy
ensures that the optimal configurations identified by the runtime estimator are not only efficient but
also safe, effectively preventing the risk of OOM errors during training. Appendix D.4 further shows
the predicted and actual runtime and peak memory usage for various models and batch sizes.

5 DISCUSSION

ProTrain is designed for small clusters, which may pose challenges in large-scale training where cross-
GPU communication overhead becomes more significant. However, in our preliminary experiments,
where we trained a 15B GPT-2 model with a batch size of 160 across two nodes (each equipped
with four V100 GPUs), ProTrain showed promising results, outperforming DeepSpeed by 1.53×
and Colossal-AI by 1.84×, while FSDP encountered OOM errors. Notably, these results were
achieved without any dedicated optimizations for multi-node environments in ProTrain, highlighting
the potential for further refinement and performance improvements.

Furthermore, ProTrain’s ability to independently profile each node makes it well-suited for adapting
to heterogeneous setups, opening up opportunities to explore optimizations across diverse hardware
configurations. As future work, we aim to enhance ProTrain’s performance in large-scale, multi-node
environments by leveraging these optimization opportunities.

6 CONCLUSION

This paper introduced ProTrain, a novel training system designed to simplify the training process
through automatic memory management. ProTrain highlights the significance of precise memory
usage and runtime data gathered through memory-aware, model-wise profiling to build high-fidelity
cost models, along with the careful abstraction of configuration parameters from memory management
strategies to automate optimal configuration search. ProTrain achieves up to 5× the performance
of existing state-of-the-art frameworks and enables the training of models with up to 75 billion
parameters on a single A100 GPU. We hope our work helps AI researchers and practitioners with
limited GPU resources, making LLMs more accessible to a wider audience.
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A COST MODELS

A.1 MODELING RUNTIME

The total iteration time in ProTrain is determined by the duration of the forward pass, backward
pass, and parameter updates, as defined in Equation 2. To estimate the forward computation time,
ProTrain adopts a chunk-based approach, as most operations in Figure 1 operate at the chunk level.
By comparing the computation and communication overheads for each chunk, the estimator identifies
whether the chunk is compute-bound or communication-bound, using the larger value as its runtime
estimate:

TFWD =

Nchunk+1∑
i=1

max
(
T FWD

comp (i− 1), T FWD prefetch
comm (i)

)
, (3)

where T FWD
comp represents the forward computation time of a chunk, which aggregates the runtimes of

individual operators within the chunk. T FWD prefetch
comm represents the communication time required to

prefetch parameters for the next chunk during the forward pass, which is calculated as follows:

T FWD prefetch
comm (i) =


T gather

comm (i), if i ≤ npersist,

0, if i > Nchunk,

T gather
comm (i) + T upload

comm (i), otherwise,
(4)

where T gather
comm is the time to gather parameter chunks from multiple GPUs, and T upload

comm is the time
to transfer non-persistent chunks from CPU to GPU. To estimate T gather

comm and T upload
comm , ProTrain uses

detailed profiling to accurately model their runtime. In contrast to conventional approaches that
assume a fixed bandwidth for memory transfers, ProTrain simulates various overlapping scenarios
to capture the effects of bandwidth contention. For instance, when activation swapping is enabled,
we estimate the swapping time, identify the affected chunks, and use the reduced bandwidth instead.
The activation swapping time is excluded from the forward pass calculation, as ProTrain carefully
controls nswap to ensure its overhead is fully overlapped with computation.

Similarly, the runtime of the backward pass is calculated at the chunk level:

TBWD =

Nchunk+1∑
i=1

max
(
TBWD

comp (i) + Trecomp(i), T
BWD prefetch
comm (i− 1), T reduce-offload

comm (i+ 1)
)
. (5)

In contrast to the forward pass, the backward computation includes additional recomputation over-
heads from gradient checkpointing, represented by Trecomp(i). The value is calculated as the ag-
gregated forward computation time for the checkpointed blocks within chunk i, following the
block-to-chunk mapping in the interleaved organization. Another key distinction from the forward
pass is the overhead related to gradient reduce and offloading during the backward pass, represented
by T reduce-offload

comm , which is defined as:

T reduce-offload
comm (i) =


T reduce

comm (i), if i ≤ npersist,

0, if i > Nchunk,

T reduce
comm (i) + T offload

comm (i), otherwise.
(6)

As with T FWD prefetch
comm , the performance of T reduce-offload

comm is directly influenced by the number of per-
sistent chunks, as persistent chunks avoid parameter prefetching and only involve gradient reduce.
However, TBWD prefetch

comm differs in its estimation from T FWD prefetch
comm , and is defined as:

TBWD prefetch
comm (i) =

{
0, if i ≤ npersist or i > Nchunk − nbuffer,

T gather
comm (i) + T upload

comm (i), otherwise.
(7)
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This difference arises because of the presence of chunk buffers, which cache the parameter loaded
and gathered during the forward pass, eliminating the need for re-loading and re-gathering in the
backward pass. As a result, uploading and gathering are only required for chunks that were evicted
due to limited buffer capacity.

Following the backward pass, parameter updates are executed on both the GPU and CPU, depending
on the chunk placement. For CPU-based updates, ProTrain employs the fast CPU Adam optimizer Ren
et al. (2021), while GPU updates use the FusedAdam optimizer NVIDIA (2018). ProTrain models
performance for both updates based on parameter size.

A.2 MODELING MEMORY CONSUMPTION

Accurately estimating peak memory usage is essential for efficient memory management, particularly
in LLMs, where memory constraints require careful data handling to prevent exceeding capacity. Our
estimator relies on the data collected by the profiler (detailed in Section 3.2) to compute memory
usage precisely. The profiled data includes the changes in current memory usage, ∆MPriorOp

Cur , and
peak memory usage, ∆MPriorOp

Peak , before each operation, as well as ∆MOp
Cur and ∆MOp

Peak during each
operation. Additionally, the profiler tracks the activation memory usage for each operator, MOp

Act, and
the memory usage at the end of the forward pass, MFWD. Since memory usage typically peaks during
the backward pass, our focus is on identifying the peak memory usage in that phase.

To estimate peak memory usage, we define two key variables: the current memory usage, MCur, and
the peak memory usage, MPeak. Initially, MCur is set to MFWD +

∑Nop
i=1 M

Op
Act(i). These values are

iteratively updated for each operator using Equation 8 and 9:

MCur(i) = MCur(i− 1) + ∆MPriorOp
Cur (i) + ∆MOp

Cur(i)−MOp
Act(i), (8)

MPeak(i) = max{MPeak(i− 1),MCur(i− 1) + ∆MPriorOp
Peak (i),

MCur(i− 1) + ∆MPriorOp
Cur (i) + ∆MOp

Peak(i)}.
(9)

This iterative, operator-wise approach allows us to recover the peak memory usage by accounting for
both the transient nature of temporary tensors, which are typically confined to individual operators, and
the longer life cycle of activations, which span across multiple operations depending on the execution
order. The final value obtained from Equation 9, denoted as MBase

Peak , serves as the foundational baseline
for estimating peak memory usage across various configurations. Building on this, the final peak
memory for any specific configuration is computed as:

MPeak = MBase
Peak +Mpersist · npersist +Mbuffer · nbuffer −Mswap · nswap

−Mcheckpoint · ncheckpoint +

{
Mcheckpoint, if ncheckpoint + nswap = Nblock,

0, otherwise,
(10)

where Mpersist and Mbuffer represent the memory allocated for a single persistent chunk and chunk
buffer, and Mswap and Mcheckpoint reflect the memory savings from activation swapping and gradient
checkpointing for a single transformer block, respectively. When all blocks are involved in either
swapping or gradient checkpointing, recomputation during the backward pass is inevitable, leading
to an increase in memory consumption. Furthermore, actual memory usage is typically higher than
estimates due to memory fragmentation, so we include a fragmentation factor in the final estimation.

B IMPLEMENTATION DETAILS

B.1 ADAPTIVE CHUNK SIZE

ProTrain employs a dynamic search mechanism to determine the optimal chunk size for model
training, which organizes parameters according to their execution order and ensures that all parameters
within a block are grouped in a single chunk. For transformers that share parameters across layers,
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ProTrain uses the parameter’s first occurrence as the ordering criterion. To find the most efficient
chunk size, ProTrain conducts a grid search, simulating memory waste across various chunk sizes to
identify the size that minimizes waste.

B.2 MEMORY OPTIMIZATIONS

Proactive Memory Allocation ProTrain preallocates memory for tensors that persist until training
completes, including early allocation of persistent chunks for parameters and optimizer states, as
well as GPU chunk buffers. This proactive strategy reduces the number of memory allocations and
mitigates fragmentation by grouping long-lived tensors together, ensuring a more organized and
efficient memory layout.

Single-Stream Memory Allocation ProTrain unifies memory allocations within the default stream
to improve memory utilization. PyTorch’s allocator adopts a multi-heap design where each stream has
its own heap, limiting cross-heap memory reuse and necessitating the use of record stream()
to ensure correctness. By using a single stream for all allocations and directly managing deallocation
synchronization ourselves, we effectively prevent misuse and reallocation conflicts, thereby improving
memory efficiency.

Customized Pinned Memory Allocator We observe that the default pinned memory allocator
(CUDAHostAllocator) often over-allocates by rounding up to the nearest power of two, leading
to significant memory waste. To address this inefficiency, ProTrain developed a customized pinned
memory allocator that leverages insights from automatic memory management to precisely determine
pinned memory requirements, providing finer control and avoiding the excessive memory reservation
of the default allocator.

C EXPERIMENT SETTINGS

C.1 MODEL CONFIGURATIONS

The model configurations used in the experiment are shown in Table 2. The underlying model
implementation is from the HuggingFace library.

Table 2: Model Configuration

Model Parameter Size Hidden Size # of Layers # of Heads

Mistral 7B 4096 32 32
GPT-2 10B 4096 48 32
OPT, LLaMA 13B 5120 40 40
GPT-2 15B, 20B, 30B, 40B 8192 18, 24, 36, 50 64
OPT 30B 7168 48 56
LLaMA 34B 8192 48 64

C.2 HARDWARE CONFIGURATIONS

4× RTX 3090: The system contains four NVIDIA GeForce RTX 3090 GPUs with 24GB memory. It
is powered by Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz with 24 cores. The CPU DRAM size
is 384GB. The PCIe version is 3 with 15.8GB/s bandwidth. NVLink is not available in this setup.

4× A100: The system contains four NVIDIA A100 GPUs with 80GB memory. It is powered by
Intel(R) Xeon(R) Platinum 8480+ with 112 cores. The CPU DRAM size is 1TB. The PCIe version is
4 with 31.5GB/s bandwidth. GPUs are fully connected by NVLink 3.0 with 300GB/s bandwidth.

C.3 BASELINE CONFIGURATIONS

For our experiments, we used DeepSpeed-0.12.1 with ZeRO-3 enabled, including offloading of
both parameters and optimizer states. Parameters and gradients were grouped at runtime based
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on the thresholds defined by stage3 prefetch bucket size and reduce bucket size.
Offloading behavior was controlled by settings such as stage3 max live parameter,
stage3 param persistence threshold, and stage3 max reuse distance, which
we fine-tuned to achieve optimal performance.

In the case of Colossal-AI, we leveraged version 0.3.3 along with the Gemini Plugin to facilitate
chunk-based memory management to group the parameters. This setup featured a static placement
policy and also enabled the offloading of parameters and optimizer states to make large models
trainable.

For Fully Sharded Data Parallel (FSDP) which is integrated within PyTorch-2.0.1, we employed
the transformer auto wrap policy to ensure that each transformer block was encapsulated
within a single FlatParameter. We also enable CPU offloading to accommodate the training of
larger models.

Gradient checkpointing is enabled for all baselines, with full checkpointing applied to every trans-
former block. We also compared ProTrain with FSDP using selective gradient checkpointing, as
shown in Appendix D.6.

D FULL EXPERIMENT RESULTS

D.1 THROUGHPUT SCALABILITY ON A100 GPUS

(a) (b)

Figure 6: Scalability of performance on A100 GPUs (a) Maximum throughput across different
numbers of GPUs (b) Step time breakdown for different batch sizes

Figure 6(a) presents the scalability performance of ProTrain for LLaMA 34B on four A100 GPUs
compared to other frameworks. ProTrain demonstrates superior scalability, achieving a 2.49× to
3.58× speedup over a single GPU setup. The increased performance on A100 GPUs, compared to
RTX 3090 GPUs, can be attributed to ProTrain’s advanced memory management, which maximizes
the utilization of the A100’s larger memory capacity and higher bandwidth. This allows ProTrain
to effectively scale with larger batch sizes, fully leveraging the additional resources to improve the
training throughput.

Figure 6(b) breaks down the runtime per iteration into forward, backward, and parameter update
phases across various batch sizes on A100 GPUs. ProTrain consistently outperforms other frameworks
due to its efficient memory management and overlapping strategies. One of the most significant
improvements comes from its ability to overlap CPU parameter updates with backward computations,
effectively hiding the update time and reducing it to nearly zero. This optimization ensures that
parameter updates do not become a bottleneck, where other other frameworks experience significant
slowdowns. For instance, FSDP spends considerable time in the parameter update phase due to
its use of the default Adam optimizer, which is less efficient than the optimized variants used by
ProTrain. On the other hand, ProTrain significantly reduces backward execution time compared to
DeepSpeed, which relies on multiple thresholds for parameter prefetching and eviction, similar to a
sliding window. In DeepSpeed’s approach, parameters can only be evicted after full usage, and new
ones are prefetched only if they fit into the freed memory, leading to inefficient bandwidth utilization.
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Overall, ProTrain delivers an average speedup of 3.47× to 7.43× compared to other frameworks,
showcasing its superior performance across various setups.

D.2 TRAINING THROUGHPUT W/ AND W/O OFFLOADING

Table 3: Maximum Training Throughput on four A100 GPUs w/ and w/o Offloading (Unit: token/s)

Model Mistral 7B GPT-2 10B LLaMA 13B GPT-2 20B

ProTrain automatic 11060.92 8266.40 6471.32 5043.75

DeepSpeed w/ 7708.30 (1.43×) 6447.70 (1.28×) 4446.43 (1.46×) 3420.90 (1.47×)
w/o 9748.03 (1.13×) 7320.50 (1.13×) 5234.92 (1.24×) OOM

Colossal-AI w/ 7279.76 (1.52×) 6848.47 (1.21×) 4980.91 (1.30×) 3892.95 (1.30×)
w/o 8447.30 (1.31×) 7855.46 (1.05×) 4404.30 (1.47×) 2084.74 (2.42×)

FSDP w/ 5315.81 (2.08×) 4666.03 (1.77×) 3715.12 (1.74×) 2136.16 (2.36×)
w/o OOM OOM OOM OOM

Although ProTrain is designed for scenarios where the model cannot fully fit into GPU memory
(requiring offloading), it also delivers excellent performance compared to baselines in non-offloading
scenarios. As shown in Table 3, when DeepSpeed and Colossal-AI operate without offloading, their
training throughput improves for smaller models. However, as model size increases, GPU memory
becomes a bottleneck, reducing the batch size that can be trained without offloading and diminishing
the performance advantage. For instance, Colossal-AI’s performance on LLaMA 13B is 15% slower
without offloading compared to with offloading. ProTrain addresses this bottleneck by efficiently
coordinating CPU offloading and gradient checkpointing, allowing it to handle larger batch sizes and
deliver better throughput. Importantly, ProTrain consistently outperforms baselines both with and
without offloading, showing its versatility and adaptability across different training scenarios.

D.3 TRAINING PERFORMANCE ON AMD MI300X GPUS

Figure 7: Maximum Training Throughput on four AMD MI300X GPUs

Figure 7 presents the throughput comparison between ProTrain and DeepSpeed across various model
sizes on AMD Instinct™ MI300X GPUs, which feature 192 GB of HBM3 memory and provide 5.3
TB/s peak memory bandwidth. This extensive memory capacity and bandwidth, along with Infinity
Fabric interconnect technology, enables superior multi-GPU scaling compared to RTX 3090 and
A100 GPUs, making it especially advantageous for training larger models. As demonstrated in the
results, ProTrain consistently surpasses DeepSpeed, with speedups ranging from 1.39× to 1.83×
across all model configurations. This performance improvement highlights ProTrain’s ability to
leverage the high memory bandwidth and capacity, resulting in better hardware utilization and overall
performance.
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Figure 8: Comparison of Predicted vs. Actual Runtime and Peak Memory Usage for Various Models

D.4 EFFECT OF RUNTIME/PEAK MEMORY USAGE ESTIMATOR

Figure 8 compares predicted versus actual runtime and peak memory usage using ProTrain’s chosen
configuration on four RTX 3090 GPUs. The top chart shows the runtime prediction error does not
exceed 5%, reflecting the high accuracy of the runtime estimator across different models and batch
sizes. The bottom chart compares the predicted and actual peak memory usage, measured using
max memory allocated. Prediction error increases slightly with larger batch sizes, typically
overestimating by no more than 10%. This conservative estimation helps mitigate the risk of out-
of-memory errors by accounting for memory fragmentation, thus ensuring reliable performance in
diverse training conditions. Overall, these results validate ProTrain’s estimators for both runtime and
memory, confirming their reliability in automatic memory management.

D.5 SEARCH OVERHEAD AND CONFIGURATION

D.5.1 SEARCH OVERHEAD

The optimal configuration search in ProTrain is highly efficient, requiring only 0.06 seconds on
average. The profiling duration scales with the model’s execution time; for example, profiling
Mistral-7B with a batch size of 4 takes 3.09 seconds, while profiling GPT-20B with the same batch
size takes 5.38 seconds. These results, obtained on RTX 3090 GPUs, highlight the minimal overhead
of ProTrain’s search process, enabling the effective identification of optimal configurations.

D.5.2 SEARCHED CONFIGURATIONS

Table 4: Automatically searched configurations with the best performance.

ID Model, BS, HW Chkpt / Total Blocks Swap Blocks Persistent / Total Chunks Chunk Buffers

A GPT-1B, 8, RTX 3090s 0 / 32 0 12 / 12 0
B GPT-1B, 64, RTX 3090s 24 / 32 2 2 / 12 3
C GPT-1B, 64, A100s 0 / 32 0 12 / 12 0
D GPT-10B, 8, RTX 3090s 48 / 48 0 3 / 49 46
E GPT-10B, 8, A100s 0 / 48 0 15 / 49 3
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Table 4 summarizes the configurations automatically determined by ProTrain, showing the impact of
batch size, hardware type, and model size on optimal memory management plans.

Batch Size Impact When increasing the batch size from 8 (row A) to 64 (row B) on RTX 3090
GPUs, the optimal configuration changes as follows: the number of swapping blocks increases from
0 to 2, the number of gradient checkpointing blocks increases from 0 to 24, the number of persistent
chunks decreases from 12 to 2, and the number of chunk buffers increases from 0 to 3. These
configurations align with runtime execution patterns. A larger batch size increases the computation
intensity of the forward and backward pass, making it possible for parameter uploads to be fully
hidden by the computation. As a result, as the batch size increases, ProTrain prioritizes offloading
and thus uses fewer persistent chunks and more swapping blocks to save GPU memory. ProTrain
selects 2 swapping blocks as the swapping overhead for 2 blocks can be effectively overlapped with
computation without impacting parameter prefetching.

Hardware Impact When training GPT-1B with BS=8 (row A), GPU memory is sufficient on both
A100 and RTX 3090 hardware. Therefore, no offloading or activation checkpointing is required, and
the configurations are identical. For GPT-1B with BS=64 (rows B and C), A100 GPUs have sufficient
memory, while RTX 3090 requires offloading and checkpointing, leading to different configuration
choices. For GPT-10B with BS=8 (rows D and E), both hardware lack sufficient memory, but
their configurations differ due to varying runtime patterns. RTX 3090s, lacking NVLink and being
communication-bound for NCCL operations, use checkpointing for all blocks to allocate more space
for larger chunk buffers and persistent chunks, reducing parameter gathering overhead that cannot be
fully hidden by computation. In contrast, A100 GPUs, equipped with NVLink and thus have a much
higher communication bandwidth, retain all activations and save memory by offloading model states,
using fewer chunk buffers and persistent chunks.

Model Size Impact The table shows that different model sizes require different configuration
combinations. As the model size increases, there is generally more offloading (fewer persistent chunks
and chunk buffers, more swapping blocks) and more gradient checkpointing (more checkpointing
blocks). These adjustments optimize memory, enabling efficient training and fine-tuning of larger
models within hardware limits.

D.6 COMPARISON OF PROTRAIN AND FSDP WITH SELECTIVE CHECKPOINTING

Table 5: Maximum Training Throughput of FSDP with and without selective checkpointing and
ProTrain (Unit: tokens/s)

Model FSDP + Selective Checkpointing FSDP - Selective Checkpointing ProTrain

LLaMA-13B 3996.67 (1.00×) 3715.12 (0.93×) 6471.32 (1.62×)
GPT-20B 2392.17 (1.00×) 2136.16 (0.89×) 5043.75 (2.11×)
GPT-30B 1383.52 (1.00×) 1307.88 (0.95×) 3431.38 (2.48×)
OPT-30B 1621.85 (1.00×) 1342.40 (0.83×) 3266.02 (2.01×)
LLaMA-34B 1247.25 (1.00×) 1024.23 (0.82×) 2845.18 (2.28×)
GPT-40B 1143.06 (1.00×) 1208.68 (1.06×) 2723.50 (2.38×)

The FSDP baseline initially applied gradient checkpointing to all blocks. To assess the potential
benefits of selective gradient checkpointing, we re-evaluated FSDP with this approach on both RTX
3090 and A100 GPUs. On RTX 3090 GPUs, selective checkpointing does not improve throughput
because execution is communication-bound, making recomputation savings ineffective. In contrast, on
A100 GPUs, selective checkpointing improves throughput for all models except GPT-40B, which fails
to scale due to GPU OOM issues. Table 5 shows the maximum throughput on A100 GPUs for three
configurations: (A) FSDP with Selective Checkpointing, (B) FSDP without Selective Checkpointing,
and (C) ProTrain. Although FSDP with selective checkpointing improves performance compared
to the configuration without it, ProTrain still outperforms it by effectively balancing offloading and
checkpointing, enabling better utilization of hardware resources and higher throughput.
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E RELATED WORK

Swapping and Recomputation Swapping Rhu et al. (2016); Le et al. (2018); Huang et al. (2020);
Ren et al. (2021); Sun et al. (2022) is a commonly employed technique which leverages external
memory such as CPU memory to offload tensors, thereby expanding the available memory for
training. Traditional swapping methods mainly focus on offloading activations, SwapAdvisor Huang
et al. (2020) extends it to parameters and ZeRO-offload Ren et al. (2021) further extends it to
optimizer states. Recomputation Chen et al. (2016); Jain et al. (2020); Herrmann et al. (2019); Zhao
et al. (2023a); Korthikanti et al. (2023), also known as gradient checkpointing, is another widely
used technique that trades additional recompute time during backward pass for reduced memory
usage of activations. Initially, Chen et al. Chen et al. (2016) focuses on homogeneous sequential
networks, and subsequent studies Jain et al. (2020); Herrmann et al. (2019) extended its applicability
to heterogeneous networks. Considering the scale and complexity of Transformers, which often
contain numerous layers, previous approaches become less efficient. Therefore, Rockmate Zhao
et al. (2023a) optimizes the plan generation by partitioning models into fine-grained blocks. NVIDIA
further proposes selective activation recomputation which checkpoints and recomputes parts of
layers Korthikanti et al. (2023). To get the best of both worlds, some works Peng et al. (2020);
Beaumont et al. (2021); Nie et al. (2022) jointly optimize swapping and recomputation, whereas
ProTrain differentiates itself by tailoring to fit the specific structure of transformers.

ZeRO Techniques. ProTrain adopts ZeRO to manage model states. The Zero Redundancy Optimizer
(ZeRO) Rajbhandari et al. (2020) distributes model states across multiple GPUs to reduce memory
pressure of each GPU. ZeRO operates in three stages: ZeRO-1 partitions optimizer states across
GPUs; ZeRO-2 extends this by also distributing gradients; and ZeRO-3 further divides the parameters,
which are required to be gathered before forward/backward computation. The ZeRO techniques
have been integrated into state-of-the-art frameworks such as DeepSpeed Rasley et al. (2020),
FSDP Zhao et al. (2023b), and Colossal-AI Li et al. (2023), each differing in their parameter
organization to optimize bandwidth utilization. Unlike DeepSpeed and FSDP, which require manual
configuration for parameter grouping, Colossal-AI automatically groups parameters into chunks and
dynamically adjusts their size according to the model’s scale. This chunk-based method, inspired by
PatrickStar Fang et al. (2022), is also adopted in ProTrain.

GPU Memory Management Deep learning frameworks, such as PyTorch Paszke et al. (2019)
and TensorFlow Abadi et al. (2016), utilize caching allocators for efficient memory management.
However, these frameworks often face memory fragmentation issues, particularly when integrating
memory-saving techniques like swapping, recomputation, and parallelization, which hurts allocation
efficiency. To address this, two main approaches have been proposed. The first is profiling-guided
optimization Sekiyama et al. (2018); Steiner et al. (2022; 2023), which leverages the repetitive and
predictable nature of memory allocation patterns during training. This method traces and analyzes
tensor allocations and deallocations to optimize tensor placement, thus improving memory efficiency.
Alternatively, GMLake Guo et al. (2024) introduces Virtual Memory Stitching, a technique that
merges non-contiguous memory blocks, thereby reducing memory fragmentation at the operating
system level. These approaches are orthogonal to ProTrain’s method. Angel-PTM Nie et al. (2023)
adopts a page-based memory management strategy that partitions model states to reduce the memory
fragmentation. In contrast, ProTrain designs a new chunk-based memory management inspired by
PatrickStar Fang et al. (2022) grouping model states into chunks that align with the runtime execution
order, which not only improves bandwidth utilization but also enhances memory locality.

Overlapping Computation and Communication There are numerous work on overlapping com-
putation and communication, with many studies Mahajan et al. (2023); Hashemi et al. (2019); Peng
et al. (2019); Jangda et al. (2022); Chen et al. (2024) focus on substituting, splitting, and scheduling
complex operators to achieve fine-grained overlapping. CoCoNet Jangda et al. (2022) enhances
lower-level operator optimization, while Centauri Chen et al. (2024) extends this to graph-level
scheduling, offering a more hierarchical abstraction. Despite these advances, most research focuses
on the optimization of collective communication operations in distributed cases. However, ProTrain
also considers the communication between CPU and GPU under limited GPU memory conditions,
making it orthogonal to existing research.
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Training Frameworks for Transformers In response to the growing demand for efficient training
of transformers, several specialized frameworks have been developed, each offering unique features
and optimizations. DeepSpeed Rasley et al. (2020) by Microsoft enhances training efficiency through
ZeRO series techniques Rajbhandari et al. (2020); Ren et al. (2021); Rajbhandari et al. (2021) and
supports various parallelism strategies, swapping, and recomputation. Colossal-AI Li et al. (2023)
from HPC-AI Tech, which offering similar features, distinguishes itself with a chunk-based memory
management approach Fang et al. (2022), which our work adopts. Megatron-LM Shoeybi et al. (2019)
by NVIDIA, on the other hand, specializes in model parallelism. These frameworks are designed
for large-scale transformer training, complemented by academic efforts Sun et al. (2022); Li et al.
(2022); Feng et al. (2023) to facilitate training on smaller systems.
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