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A CoST MODELS

A.1 MODELING RUNTIME

The total iteration time in ProTrain is determined by the duration of the forward pass, backward
pass, and parameter updates, as defined in Equation 2. To estimate the forward computation time,
ProTrain adopts a chunk-based approach, as most operations in Figure I operate at the chunk level.
By comparing the computation and communication overheads for each chunk, the estimator identifies
whether the chunk is compute-bound or communication-bound, using the larger value as its runtime
estimate:

Nehunk+1
FWD [ : FWD_prefetch  ;
Trwp = Z max (Tcomp (Z - 1>7 Tcomm prefete (Z)) ) (3)
i=1
where TEWD represents the forward computation time of a chunk, which aggregates the runtimes of
p p gereg

comp
g o FWD_prefetch . )
individual operators within the chunk. Teomm™ - represents the communication time required to

prefetch parameters for the next chunk during the forward pass, which is calculated as follows:
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where TEP i5 the time to gather parameter chunks from multiple GPUs, and Ti5e is the time

to transfer non-persistent chunks from CPU to GPU. To estimate T 4nd TP proTrain uses
detailed profiling to accurately model their runtime. In contrast to conventional approaches that
assume a fixed bandwidth for memory transfers, ProTrain simulates various overlapping scenarios
to capture the effects of bandwidth contention. For instance, when activation swapping is enabled,
we estimate the swapping time, identify the affected chunks, and use the reduced bandwidth instead.
The activation swapping time is excluded from the forward pass calculation, as ProTrain carefully
controls ngwap to ensure its overhead is fully overlapped with computation.

Similarly, the runtime of the backward pass is calculated at the chunk level:

Nehunk+1
Towp = Y max (TENP(i) + Trecomp (i), T P (i — 1), TocqueeoMod(j 4 1)) . (5)
=1

In contrast to the forward pass, the backward computation includes additional recomputation over-
heads from gradient checkpointing, represented by Tiecomp (). The value is calculated as the ag-
gregated forward computation time for the checkpointed blocks within chunk i, following the
block-to-chunk mapping in the interleaved organization. Another key distinction from the forward
pass is the overhead related to gradient reduce and offloading during the backward pass, represented

by Treduce-offioad “which is defined as:

reduce (; e
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Treduce () 4 poffload 7y - otherwise.

As with Tomb P the performance of Treduce-offload j¢ directly influenced by the number of per-

sistent chunks, as persistent chunks avoid parameter prefetching and only involve gradient reduce.
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This difference arises because of the presence of chunk buffers, which cache the parameter loaded
and gathered during the forward pass, eliminating the need for re-loading and re-gathering in the
backward pass. As a result, uploading and gathering are only required for chunks that were evicted
due to limited buffer capacity.

Following the backward pass, parameter updates are executed on both the GPU and CPU, depending
on the chunk placement. For CPU-based updates, ProTrain employs the fast CPU Adam optimizer Ren
et al.[(2021), while GPU updates use the FusedAdam optimizer NVIDIA|(2018). ProTrain models
performance for both updates based on parameter size.

A.2 MODELING MEMORY CONSUMPTION

Accurately estimating peak memory usage is essential for efficient memory management, particularly
in LLMs, where memory constraints require careful data handling to prevent exceeding capacity. Our
estimator relies on the data collected by the profiler (detailed in Section[3.2) to compute memory

usage precisely. The profiled data includes the changes in current memory usage, AMgS:’ P and

PriorOp . Op Op .
peak memory usage, AMp_,- ", before each operation, as well as AM,. and AMp 7, during each

operation. Additionally, the profiler tracks the activation memory usage for each operator, Mgg, and
the memory usage at the end of the forward pass, Mgwp. Since memory usage typically peaks during
the backward pass, our focus is on identifying the peak memory usage in that phase.

To estimate peak memory usage, we define two key variables: the current memory usage, Mcy,, and

the peak memory usage, Mpe.. Initially, Mcy, is set to Mgwp + Zf\;pl Mgg(i). These values are
iteratively updated for each operator using Equation [8]and [0}

Meu(i) = M (i — 1) + AMET (i) + AMRn (i) — Mih (i), ®)

Mpeai (i) = maaz{ Mpea (i — 1), Meu(i — 1) + AMpio™P (3),

. PriorOp / . O . (9)

Meur(i = 1) + AMey " (i) + AMpgy (i)}
This iterative, operator-wise approach allows us to recover the peak memory usage by accounting for
both the transient nature of temporary tensors, which are typically confined to individual operators, and
the longer life cycle of activations, which span across multiple operations depending on the execution
order. The final value obtained from Equation@, denoted as MB%¢, serves as the foundational baseline
for estimating peak memory usage across various configurations. Building on this, the final peak
memory for any specific configuration is computed as:

Base
MPeak = Peak + Mpersisl * Npersist + Mbuffer * Nbuffer — Mswap * Nswap

M {Mcheckpointa if Necheckpoint T Mswap = Nblock, (10)
— M checkpoint * Tcheckpoint + .
0, otherwise,

where Mpersisc and Myusrer represent the memory allocated for a single persistent chunk and chunk
buffer, and Mgyap and Mheckpoint Teflect the memory savings from activation swapping and gradient
checkpointing for a single transformer block, respectively. When all blocks are involved in either
swapping or gradient checkpointing, recomputation during the backward pass is inevitable, leading
to an increase in memory consumption. Furthermore, actual memory usage is typically higher than
estimates due to memory fragmentation, so we include a fragmentation factor in the final estimation.

B IMPLEMENTATION DETAILS

B.1 ADAPTIVE CHUNK SIZE
ProTrain employs a dynamic search mechanism to determine the optimal chunk size for model

training, which organizes parameters according to their execution order and ensures that all parameters
within a block are grouped in a single chunk. For transformers that share parameters across layers,
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ProTrain uses the parameter’s first occurrence as the ordering criterion. To find the most efficient
chunk size, ProTrain conducts a grid search, simulating memory waste across various chunk sizes to
identify the size that minimizes waste.

B.2 MEMORY OPTIMIZATIONS

Proactive Memory Allocation ProTrain preallocates memory for tensors that persist until training
completes, including early allocation of persistent chunks for parameters and optimizer states, as
well as GPU chunk buffers. This proactive strategy reduces the number of memory allocations and
mitigates fragmentation by grouping long-lived tensors together, ensuring a more organized and
efficient memory layout.

Single-Stream Memory Allocation ProTrain unifies memory allocations within the default stream
to improve memory utilization. PyTorch’s allocator adopts a multi-heap design where each stream has
its own heap, limiting cross-heap memory reuse and necessitating the use of record_stream ()
to ensure correctness. By using a single stream for all allocations and directly managing deallocation
synchronization ourselves, we effectively prevent misuse and reallocation conflicts, thereby improving
memory efficiency.

Customized Pinned Memory Allocator We observe that the default pinned memory allocator
(CUDAHostAllocator) often over-allocates by rounding up to the nearest power of two, leading
to significant memory waste. To address this inefficiency, ProTrain developed a customized pinned
memory allocator that leverages insights from automatic memory management to precisely determine
pinned memory requirements, providing finer control and avoiding the excessive memory reservation
of the default allocator.

C EXPERIMENT SETTINGS

C.1 MODEL CONFIGURATIONS

The model configurations used in the experiment are shown in Table 2. The underlying model
implementation is from the HuggingFace library.

Table 2: Model Configuration

Model Parameter Size Hidden Size  #of Layers  # of Heads
Mistral 7B 4096 32 32
GPT-2 10B 4096 48 32
OPT, LLaMA 13B 5120 40 40
GPT-2 15B, 20B, 30B, 40B 8192 18, 24, 36, 50 64
OPT 30B 7168 48 56
LLaMA 34B 8192 48 64

C.2 HARDWARE CONFIGURATIONS

4x RTX 3090: The system contains four NVIDIA GeForce RTX 3090 GPUs with 24GB memory. It
is powered by Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz with 24 cores. The CPU DRAM size
is 384GB. The PCle version is 3 with 15.8GB/s bandwidth. NVLink is not available in this setup.

4x A100: The system contains four NVIDIA A100 GPUs with 80GB memory. It is powered by
Intel(R) Xeon(R) Platinum 8480+ with 112 cores. The CPU DRAM size is 1TB. The PCle version is
4 with 31.5GB/s bandwidth. GPUs are fully connected by NVLink 3.0 with 300GB/s bandwidth.

C.3 BASELINE CONFIGURATIONS

For our experiments, we utilized DeepSpeed-0.12.1, enabling ZeRO-3 alongside offloading of
both parameters and optimizer states. The configuration was fine-tuned for optimal performance,
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with key settings including stage3_max_live_parameter, stage3_max_reuse_distance,
stage3_prefetch bucket_size and reduce_bucket_size.

In the case of Colossal-Al, we leveraged version 0.3.3 along with the Gemini Plugin to facilitate
chunk-based memory management. This setup featured a static placement policy and also enabled
the offloading of parameters and optimizer states to make large models trainable.

For Fully Sharded Data Parallel (FSDP) which is integrated within PyTorch-2.0.1, we employed
the transformer_auto_wrap_policy to ensure that each transformer block was encapsulated
within a single FlatParameter. We also enable CPU offloading to accommodate the training of
larger models.

D FULL EXPERIMENT RESULTS

D.1 THROUGHPUT SCALABILITY ON A100 GPUs
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Figure 6: Scalability of performance on A100 GPUs (a) Maximum throughput across different
numbers of GPUs (b) Step time breakdown for different batch sizes

Figure[6(a) presents the scalability performance of ProTrain for LLaMA 34B on four A100 GPUs
compared to other frameworks. ProTrain demonstrates superior scalability, achieving a 2.49x to
3.58x speedup over a single GPU setup. The increased performance on A100 GPUs, compared to
RTX 3090 GPUs, can be attributed to ProTrain’s advanced memory management, which maximizes
the utilization of the A100’s larger memory capacity and higher bandwidth. This allows ProTrain
to effectively scale with larger batch sizes, fully leveraging the additional resources to improve the
training throughput.

Figure [6(b) breaks down the runtime per iteration into forward, backward, and parameter update
phases across various batch sizes on A100 GPUs. ProTrain consistently outperforms other frameworks
due to its efficient memory management and overlapping strategies. One of the most significant
improvements comes from its ability to overlap CPU parameter updates with backward computations,
effectively hiding the update time and reducing it to nearly zero. This optimization ensures that
parameter updates do not become a bottleneck, where other other frameworks experience significant
slowdowns. For instance, FSDP spends considerable time in the parameter update phase due to
its use of the default Adam optimizer, which is less efficient than the optimized variants used by
ProTrain. On the other hand, ProTrain significantly reduces backward execution time compared to
DeepSpeed, which relies on multiple thresholds for parameter prefetching and eviction, similar to a
sliding window. In DeepSpeed’s approach, parameters can only be evicted after full usage, and new
ones are prefetched only if they fit into the freed memory, leading to inefficient bandwidth utilization.
Overall, ProTrain delivers an average speedup of 3.47x to 7.43x compared to other frameworks,
showcasing its superior performance across various setups.

D.2 TRAINING THROUGHPUT W/ AND W/O OFFLOADING
Although ProTrain is designed for scenarios where the model cannot fully fit into GPU memory

(requiring offloading), it also delivers excellent performance compared to baselines in non-offloading
scenarios. As shown in Table [3, when DeepSpeed and Colossal-Al operate without offloading,
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Table 3: Maximum Training Throughput on four A100 GPUs w/ and w/o Offloading (Unit: token/s)

Model Mistral 7B GPT-2 10B LLaMA 13B GPT-2 20B
ProTrain automatic 11060.92 8266.40 6471.32 5043.75
DeenSpeed w/ 7708.30 (1.43x) 6447.70 (1.28x) 4446.43 (1.46x) 3420.90 (1.47x)
pSp w/o 9748.03 (1.13x) 7320.50 (1.13x) 5234.92 (1.24x) OOM
Colossal-Al w/ 7279.76 (1.52x) 6848.47 (1.21x) 4980.91 (1.30x) 3892.95 (1.30x)
w/o 8447.30 (1.31x) 785546 (1.05x) 4404.30 (1.47x) 2084.74 (2.42x)
FSDP w/ 5315.81 (2.08x) 4666.03 (1.77x) 3715.12 (1.74x) 2136.16 (2.36%)
w/o OOM OOM OoOM (0]0)\Y!

their training throughput improves for smaller models. However, as model size increases, the batch
size that can be trained without offloading decreases, diminishing the performance advantage. For
instance, Colossal-AI’s performance on LLaMA 13B is 15% slower without offloading compared
to with offloading. Overall, regardless of whether the baselines use offloading or not, ProTrain
consistently achieves the best performance, showing its versatility and adaptability across different
training scenarios.

D.3 TRAINING PERFORMANCE ON AMD MI300X GPUs

6000
4000
- I I I
0
o © o o 8o o
2 99@.15 99‘1.30 o 3 g")a’AO

20 ;
oot \art®

= ProTrain
DeepSpeed

o
=}
1)
5

Throughput (token/s
s 8
8 8

\Y] e
\\am?"10 N

Figure 7: Maximum Training Throughput on four AMD MI300X GPUs

Figure 7] presents the throughput comparison between ProTrain and DeepSpeed across various model
sizes on AMD Instinct™ MI300X GPUs, which feature 192 GB of HBM3 memory and provide 5.3
TB/s peak memory bandwidth. This extensive memory capacity and bandwidth, along with Infinity
Fabric interconnect technology, enables superior multi-GPU scaling compared to RTX 3090 and
A100 GPUs, making it especially advantageous for training larger models. As demonstrated in the
results, ProTrain consistently surpasses DeepSpeed, with speedups ranging from 1.39x to 1.83 %
across all model configurations. This performance improvement highlights ProTrain’s ability to
leverage the high memory bandwidth and capacity, resulting in better hardware utilization and overall
performance.

D.4 EFFECT OF RUNTIME/PEAK MEMORY USAGE ESTIMATOR

Figure [8| compares predicted versus actual runtime and peak memory usage using ProTrain’s chosen
configuration on four RTX 3090 GPUs. The top chart shows the runtime prediction error does not
exceed 5%, reflecting the high accuracy of the runtime estimator across different models and batch
sizes. The bottom chart compares the predicted and actual peak memory usage, measured using
max-memory_-allocated. Prediction error increases slightly with larger batch sizes, typically
overestimating by no more than 10%. This conservative estimation helps mitigate the risk of out-
of-memory errors by accounting for memory fragmentation, thus ensuring reliable performance in
diverse training conditions. Overall, these results validate ProTrain’s estimators for both runtime and
memory, confirming their reliability in automatic memory management.
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Figure 8: Comparison of Predicted vs. Actual Runtime and Peak Memory Usage for Various Models

E RELATED WORK

Swapping and Recomputation Swapping|Rhu et al. (2016); |Le et al. (2018); Huang et al.| (2020);
Ren et al.|(2021); Sun et al.| (2022) is a commonly employed technique which leverages external
memory such as CPU memory to offload tensors, thereby expanding the available memory for
training. Traditional swapping methods mainly focus on offloading activations, SwapAdvisor[Huang
(2020) extends it to parameters and ZeRO-offload |Ren et al.| (2021) further extends it to
optimizer states. Recomputation [Chen et al.| (2016)); Jain et al.| (2020); [Herrmann et al.| (2019); [Zhao|
et al. (2023a)); [Korthikanti et al.[(2023), also known as gradient checkpointing, is another widely
used technique that trades additional recompute time during backward pass for reduced memory
usage of activations. Initially, Chen et al. [Chen et al.| (2016) focuses on homogeneous sequential
networks, and subsequent studies [Jain et al.|(2020); Herrmann et al.| (2019) extended its applicability
to heterogeneous networks. Considering the scale and complexity of Transformers, which often
contain numerous layers, previous approaches become less efficient. Therefore, Rockmate Zhao|
let al. optimizes the plan generation by partitioning models into fine-grained blocks. NVIDIA
further proposes selective activation recomputation which checkpoints and recomputes parts of
layers [Korthikanti et al. (2023). To get the best of both worlds, some works [Peng et al.| (2020);
[Beaumont et al.[(2021); [Nie et al.| (2022) jointly optimize swapping and recomputation, whereas
ProTrain differentiates itself by tailoring to fit the specific structure of transformers.

ZeRO Techniques. ProTrain adopts ZeRO to manage model states. The Zero Redundancy Optimizer
(ZeRO) Rajbhandari et al.|(2020) distributes model states across multiple GPUs to reduce memory
pressure of each GPU. ZeRO operates in three stages: ZeRO-1 partitions optimizer states across
GPUs; ZeRO-2 extends this by also distributing gradients; and ZeRO-3 further divides the parameters,
which are required to be gathered before forward/backward computation. The ZeRO techniques
have been integrated into state-of-the-art frameworks such as DeepSpeed [Rasley et al.| (2020),
FSDP [Zhao et al. (2023b), and Colossal-Al (2023), each differing in their parameter
organization to optimize bandwidth utilization. Unlike DeepSpeed and FSDP, which require manual
configuration for parameter grouping, Colossal-Al automatically groups parameters into chunks and
dynamically adjusts their size according to the model’s scale. This chunk-based method, inspired by
PatrickStar [Fang et al.|(2022), is also adopted in ProTrain.

GPU Memory Management Deep learning frameworks, such as PyTorch [Paszke et al.| (2019)
and TensorFlow |Abadi et al. (2016), utilize caching allocators for efficient memory management.
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However, these frameworks often face memory fragmentation issues, particularly when integrating
memory-saving techniques like swapping, recomputation, and parallelization, which hurts allocation
efficiency. To address this, two main approaches have been proposed. The first is profiling-guided
optimization [Sekiyama et al.|(2018); |Steiner et al. (2022;2023), which leverages the repetitive and
predictable nature of memory allocation patterns during training. This method traces and analyzes
tensor allocations and deallocations to optimize tensor placement, thus improving memory efficiency.
Alternatively, GMLake |Guo et al. (2024) introduces Virtual Memory Stitching, a technique that
merges non-contiguous memory blocks, thereby reducing memory fragmentation at the operating
system level. These approaches are orthogonal to ProTrain’s method. Angel-PTM Nie et al.| (2023)
adopts a page-based memory management strategy that partitions model states to reduce the memory
fragmentation. In contrast, ProTrain designs a new chunk-based memory management inspired by
PatrickStar Fang et al.|(2022) grouping model states into chunks that align with the runtime execution
order, which not only improves bandwidth utilization but also enhances memory locality.

Overlapping Computation and Communication There are numerous work on overlapping com-
putation and communication, with many studies Mahajan et al.|(2023)); Hashemi et al. (2019); [Peng
et al. (2019); Jangda et al. (2022); Chen et al.|(2024) focus on substituting, splitting, and scheduling
complex operators to achieve fine-grained overlapping. CoCoNet Jangda et al.| (2022) enhances
lower-level operator optimization, while Centauri (Chen et al.| (2024) extends this to graph-level
scheduling, offering a more hierarchical abstraction. Despite these advances, most research focuses
on the optimization of collective communication operations in distributed cases. However, ProTrain
also considers the communication between CPU and GPU under limited GPU memory conditions,
making it orthogonal to existing research.

Training Frameworks for Transformers In response to the growing demand for efficient training
of transformers, several specialized frameworks have been developed, each offering unique features
and optimizations. DeepSpeed |Rasley et al.| (2020) by Microsoft enhances training efficiency through
ZeRO series techniques |Rajbhandari et al. (2020); Ren et al. (2021); Rajbhandari et al.|(2021) and
supports various parallelism strategies, swapping, and recomputation. Colossal-Al|Li et al. (2023)
from HPC-AI Tech, which offering similar features, distinguishes itself with a chunk-based memory
management approach Fang et al. (2022), which our work adopts. Megatron-LM |Shoeybi et al.| (2019)
by NVIDIA, on the other hand, specializes in model parallelism. These frameworks are designed
for large-scale transformer training, complemented by academic efforts [Sun et al.|(2022); |L1 et al.
(2022); [Feng et al.|(2023) to facilitate training on smaller systems.
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