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ABSTRACT

Deep learning for time series forecasting has seen significant advancements over
the past decades. However, despite the success of large-scale pre-training in lan-
guage and vision domains, pre-trained time series models remain limited in scale
and operate at a high cost, hindering the development of larger capable forecast-
ing models in real-world applications. In response, we introduce TIME-MOE, a
scalable and unified architecture designed to pre-train larger, more capable fore-
casting foundation models while reducing inference costs. By leveraging a sparse
mixture-of-experts (MoE) design, TIME-MOE enhances computational efficiency
by activating only a subset of networks for each prediction, reducing computa-
tional load while maintaining high model capacity. This allows TIME-MOE to
scale effectively without a corresponding increase in inference costs. TIME-MOE
comprises a family of decoder-only transformer models that operate in an auto-
regressive manner and support flexible forecasting horizons with varying input
context lengths. We pre-trained these models on our newly introduced large-scale
data Time-300B, which spans over 9 domains and encompassing over 300 bil-
lion time points. For the first time, we scaled a time series foundation model up
to 2.4 billion parameters, achieving significantly improved forecasting precision.
Our results validate the applicability of scaling laws for training tokens and model
size in the context of time series forecasting. Compared to dense models with
the same number of activated parameters or equivalent computation budgets, our
models consistently outperform them by large margin. These advancements posi-
tion TIME-MOE as a state-of-the-art solution for tackling real-world time series
forecasting challenges with superior capability, efficiency, and flexibility.

Resources: https://github.com/Time-MoE/Time-MoE

1 INTRODUCTION

Time series data is a major modality in real-world dynamic systems and applications across various
domains (Box et al., 2015; Zhang et al., 2024; Liang et al., 2024). Analyzing time series data is
challenging due to its inherent complexity and distribution shifts, yet it is crucial for unlocking
insights that enhance predictive analytics and decision-making. As a key task in high demand,
time series forecasting has long been studied and is vital for driving various use cases in fields
such as energy, climate, education, quantitative finance, cloud service, and urban computing, (Jin
et al., 2023; Nie et al., 2024; Wang et al., 2023c; Mao et al., 2024). Traditionally, forecasting
has been performed in a task-specific, end-to-end manner using either statistical or deep learning
models. Despite their competitive performance, the field has not converged on building unified,
general-purpose forecasting models until recently, with the emergence of a few foundation models
(FMs) for universal forecasting (Das et al., 2024; Woo et al., 2024; Ansari et al., 2024). Although
promising, they are generally small in scale and have limited task-solving capabilities compared
to domain-specific models, limiting their real-world impact when balancing forecasting precision
against computational budget.

∗ Equal contribution ♠ Project lead † Corresponding author
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Figure 1: Performance overview. (Left) Comparison between TIME-MOE models and state-of-the-
art time series foundation models, reporting the average zero-shot performance across six benchmark
datasets. (Right) Comparison of few- and zero-shot performance between TIME-MOE and dense
variants, with similar effective FLOPs per time series token, across the same six benchmarks.

Increasing model size and training tokens typically leads to performance improvements, as known
as scaling laws, which have been extensively explored in the language and vision domains (Kaplan
et al., 2020; Alabdulmohsin et al., 2022). However, such properties have not been thoroughly in-
vestigated in the time series domain (Yao et al., 2025). Assuming that scaling forecasting models
with high-quality training data follows similar principles, several challenges remain: Dense versus
sparse training. Most time series forecasting models compose of dense layers, which means each
input time series tokens requires computations with all model parameters. While effective, this is
computationally intensive. In contrast, sparse training with mixture-of-experts (MoE) is more flop-
efficient per parameter and allows for scaling up model size with a fixed inference budget while
giving better performance, as showcased on the right of Figure 1. However, optimizing a sparse,
large-scale time series model faces another challenge of stability and convergency. Time series are
highly heterogeneous (Woo et al., 2024; Dong et al., 2024), and selecting the appropriate model
design and routing algorithm often involves a trade-off between performance and computational
efficiency. Sparse solutions for time series foundation models have yet to be explored, leaving a
significant gap in addressing these two challenges. While time series pre-training datasets are no
longer a major bottleneck, most existing works (Das et al., 2024; Woo et al., 2024; Ansari et al.,
2024) have not extensively discussed their in-model data processing pipelines or mixing strategies.
Answering this is particularly important, given that existing data archives are often noisy and largely
imbalanced across domains.

On the other hand, most time series FMs face limitations in flexibility and generalizability. General-
purpose forecasting is a fundamental capability, requiring a model to handle any forecasting prob-
lems, regardless of context lengths, forecasting horizons, input variables, and other properties such
as frequencies and distributions. Meanwhile, achieving strong generalizability pushes the bound-
aries further that existing works often fail to meet simultaneously. For instance, Timer (Liu et al.,
2024d) has limited native support for arbitrary output lengths, which may lead to truncated out-
puts, while Moment (Goswami et al., 2024) operates with a fixed input context length. Although
Moirai (Woo et al., 2024) achieves universal forecasting, it depends on hardcoded heuristics in both
the input and output layers.

The recognition of the above challenges naturally raises a pivotal question:

How to scale time series foundation models to achieve universal forecasting while balancing model capability
and computational overhead, mirroring the success of foundation models in other domains?

Answering this question drives the design of TIME-MOE, a scalable and unified architecture for
pre-training larger, more capable forecasting FMs while reducing computational costs. TIME-MOE
consists of a family of decoder-only transformer models with a mixture-of-experts architecture, op-
erating in an auto-regressive manner to support any forecasting horizon and accommodate context
lengths of up to 4096. With its sparsely activated design, TIME-MOE enhances computational ef-
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ficiency by activating only a subset of networks for each prediction, reducing computational load
while maintaining high model capacity. This allows TIME-MOE to scale effectively without signifi-
cantly increasing inference costs. Our proposal is built on a minimalist design, where the input time
series is point-wise tokenized and encoded before being processed by a sparse transformer decoder,
activating only a small subset of parameters. Pre-trained on large-scale time series data across 9
domains and over 300 billion time points, TIME-MOE is optimized through multi-task learning to
forecast at multiple resolutions. During inference, different forecasting heads are utilized to enable
forecasts across diverse scales, enabling flexible forecast horizons. For the first time, we scale a time
series FM up to 2.4 billion parameters, achieving substantial improvements in forecasting precision
compared to existing models, as shown on the left of Figure 1. Compared to dense models with the
same number of activated parameters or equivalent computational budgets, our models consistently
outperform them by a large margin. Our contributions lie in three aspects:

1. We present TIME-MOE, a universal decoder-only time series forecasting foundation model ar-
chitecture with mixture-of-experts. To the best of our knowledge, this is the first work to scale
time series foundation models up to 2.4 billion parameters. TIME-MOE achieves substantial im-
provements in forecasting accuracy and consistently outperforms dense models with comparable
computational resources, while maintaining high efficiency.

2. We introduce Time-300B, the largest open-access time series data collection, comprising over
300 billion time points spanning more than nine domains, accompanied by a well-designed data-
cleaning pipeline. Our TIME-MOE models and Time-300B data collection are open-sourced.

3. Trained on Time-300B, TIME-MOE models outperform other time series foundation models
with a similar number of activated parameters across six real-world benchmarks, achieving re-
ductions in forecasting errors by an average of 20% and 24% in zero-shot and in-distribution
scenarios, respectively.

2 RELATED WORK

Time Series Forecasting. Deep learning models have become powerful tools for time series fore-
casting over the past decade, which can be broadly categorized into two types: (1) univariate models,
such as DeepState (Rangapuram et al., 2018), DeepAR (Salinas et al., 2020), and N-BEATS (Ore-
shkin et al., 2020), which focus on modeling individual time series, and (2) multivariate models,
which include both transformer-based approaches (Wen et al., 2023; Zhou et al., 2021; Nie et al.,
2023; Liu et al., 2024b; Wang et al., 2024c; Chen et al., 2024; Wang et al., 2022) and non-transformer
models (Sen et al., 2019; Jin et al., 2022; Wang et al., 2024b; Hu et al., 2024; Qi et al., 2024;
Wang, 2024), designed to handle multiple time series simultaneously. While these models achieve
competitive in-domain performance (Wang et al., 2025), many are task-specific and fall short in
generalizability when applied to cross-domain data in few-shot or zero-shot scenarios.

Large Time Series Models. Self-supervised learning has been extensively developed for time se-
ries (Zhang et al., 2024), employing masked reconstruction (Zerveas et al., 2021; Nie et al., 2023)
or contrastive learning (Zhang et al., 2022; Wang et al., 2023b; Yue et al., 2022). However, these
methods are limited in both data and model scale, with many focused on in-domain learning and
transfer. Recently, general pre-training of time series models on large-scale data has emerged (Liang
et al., 2024), though still in its early stages with insufficient exploration into sparse solutions. See
Appendix A for more information. Unlike these dense models, TIME-MOE introduces a scalable,
unified architecture for pre-training larger, more capable forecasting foundation models while main-
taining the same scale of activated parameters and computational budget.

Sparse Deep Learning for Time Series. Deep learning models are often dense and over-
parameterized (Hoefler et al., 2021), leading to increased memory and computational demands
during both training and inference. However, sparse networks, such as mixture-of-experts mod-
els (Jacobs et al., 1991), which dynamically route inputs to specialized expert networks, have shown
comparable or even superior generalization to dense models while being more efficient (Fedus et al.,
2022; Riquelme et al., 2021). In time series research, model sparsification has received relatively
less attention, as time series models have traditionally been small in scale, with simple models like
DLinear (Zeng et al., 2023) and SparseTSF (Lin et al., 2024) excelling in specific tasks prior to
the advent of large-scale, general pre-training. The most relevant works on this topic include Path-
former (Chen et al., 2024), MoLE (Ni et al., 2024), and IME (Ismail et al., 2023). However, none of
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Figure 2: The architecture of TIME-MOE, which is a decoder-only model. Given an input time
series of arbitrary length, 1 we first tokenize it into a sequence of data points, 2 which are then
encoded. These tokens are processed through N -stacked backbone layers, primarily consisting of
causal multi-head self-attention and 3 sparse temporal mixture-of-expert layers. During training, 4
we optimize forecasting heads at multiple resolutions. For model inference, TIME-MOE provides
forecasts of flexible length by 5 dynamically scheduling these heads. Details about the causal multi-
head self-attention are in Appendix B and illustrated in Figure 5.

them delve into the scalability of foundation models with sparse structures. Besides, MoLE and IME
are not sparse models, as input data is passed to all heads and then combined to make predictions.

3 METHODOLOGY

Our proposed TIME-MOE, illustrated in Figure 2, adopts a mixture-of-experts-based, decoder-only
transformer architecture, comprising three key components: (1) input token embedding, (2) MoE
transformer block, and (3) multi-resolution forecasting. For the first time, we scale a sparsely-
activated time series model to 2.4 billion parameters, achieving significantly better zero-shot perfor-
mance with the same computation. This marks a major step forward in developing large time series
models for universal forecasting.

Problem Statement. We address the problem of predicting future values in a time series: given
a sequence of historical observations X1:T = (x1, x2, . . . , xT ) ∈ RT spanning T time steps, our
objective is to forecast the next H time steps, i.e., X̂T+1:T+H = fθ (X1:T ) ∈ RH . Here, fθ
represents a time series model, where T is the context length and H is the forecasting horizon.
Notably, both T and H can be flexible during TIME-MOE inference, distinguishing it from task-
specific models with fixed horizons. Additionally, channel independence (Nie et al., 2023) is adopted
to transform a multivariate input into univariate series, allowing TIME-MOE to handle any-variate
forecasting problems in real-world applications.

3.1 TIME-MOE OVERVIEW

Input Token Embedding. We utilize point-wise tokenization for time series embedding to ensure
the completeness of temporal information. This enhances our model’s flexibility and broad applica-
bility in handling variable-length sequences. Then, we employ SwiGLU (Shazeer, 2020) to embed
each time series point:

h0
t = SwiGLU(xt) = Swish (Wxt)⊗ (V xt) , (1)
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where W ∈ RD×1 and V ∈ RD×1 are learnable parameters, and D denotes the hidden dimension.

MoE Transformer Block. Our approach builds upon a decoder-only transformer (Vaswani, 2017)
and integrates recent advancements from large language models (Bai et al., 2023; Touvron et al.,
2023). We employ RMSNorm (Zhang & Sennrich, 2019) to normalize the input of each transformer
sub-layer, thereby enhancing training stability. Instead of using absolute positional encoding, we
adopt rotary positional embeddings (Su et al., 2024), which provide greater flexibility in sequence
length and improved extrapolation capabilities. In line with (Chowdhery et al., 2023), we remove
biases from most layers but retain them in the QKV layer of self-attention to improve extrapolation.
To introduce sparsity, we replace a feed-forward network (FFN) with a mixture-of-experts layer,
incorporating a shared pool of experts that are sparsely activated.

ul
t = SA

(
RMSNorm

(
hl−1
t

))
+ hl−1

t , (2)

ūl
t = RMSNorm

(
ul
t

)
, (3)

hl
t = Mixture

(
ūl
t

)
+ ul

t. (4)

Here, SA denotes self-attention with a causal mask, and Mixture refers to the mixture-of-experts
layer. In practice, Mixture comprises several expert networks, each mirroring the architecture of a
standard FFN. An individual time series point can be routed to either a single expert (Fedus et al.,
2022) or multiple experts (Lepikhin et al., 2020). One expert is designated as a shared expert to
capture and consolidate common knowledge across different contexts.

Mixture
(
ūl
t

)
= gN+1,t FFNN+1

(
ūl
t

)
+

N∑
i=1

(
gi,t FFNi

(
ūl
t

))
, (5)

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ N},K),

0, otherwise,
(6)

gN+1,t = Sigmoid
(
Wl

N+1ū
l
t

)
, (7)

si,t = Softmaxi
(
Wl

iū
l
t

)
, (8)

where Wl
i ∈ R1×D denotes the trainable parameters, and N and K respectively denote the numbers

of non-shared experts and activated non-shared experts per mixture-of-experts layer.

Multi-resolution Forecasting. We introduce a novel multi-resolution forecasting head, which al-
lows for forecasting at multiple scales simultaneously, in contrast to existing foundation models
that are limited to a single fixed scale. This capability enhances TIME-MOE ’s flexibility by en-
abling forecasting across various horizons. The model employs multiple output projections from
single-layer FFNs, each designed for different prediction horizons. During training, TIME-MOE
aggregates forecasting errors from different horizons to compute a composite loss (Section 3.2.2),
thereby improving the model generalization. By incorporating a simple greedy scheduling algorithm
(see Appendix B), TIME-MOE efficiently handles predictions across arbitrary horizons. This design
also boosts prediction robustness through multi-resolution ensemble learning during inference.

3.2 MODEL TRAINING

3.2.1 TIME-300B DATASET

Training time series foundation models require extensive, high-quality data. Recent advancements
have facilitated the collection of numerous time series datasets from various sources (Godahewa
et al., 2021; Ansari et al., 2024; Woo et al., 2024; Liu et al., 2024d;a). Nonetheless, data quality still
remains a challenge, with prevalent issues such as missing values and invalid observations (Wang
et al., 2024a) that can significantly impair model performance and destabilize training. To mitigate
these issues, we developed a streamlined data-cleaning pipeline (Appendix C) to filter and refine
raw data, and constructed the largest open-access, high-quality time series data collection named
Time-300B for foundation model pre-training. Time-300B comprises a diverse array of publicly
available datasets from domains such as energy, retail, healthcare, weather, finance, transportation,
and web, augmented with synthetic data to enhance both quantity and diversity. It spans sam-
pling frequencies from seconds to yearly intervals and, after processing through our data-cleaning
pipeline, includes over 300 billion time points, as summarized in Table 1.
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Table 1: Key statistics of the pre-training dataset Time-300B from various domains.

Energy Finance Healthcare Nature Sales Synthetic Transport Web Other Total
# Seqs. 2,875,335 1,715 1,752 31,621,183 110,210 11,968,625 622,414 972,158 40,265 48,220,929
# Obs. 15.981 B 413.696 K 471.040 K 279.724 B 26.382 M 9.222 B 2.130 B 1.804 B 20.32 M 309.09 B
Percent% 5.17 % 0.0001% 0.0001% 90.50 % 0.008 % 2.98% 0.69 % 0.58 % 0.006 % 100%

3.2.2 LOSS FUNCTION

Pre-training time series foundation models in large scale presents significant challenges in training
stability due to the massive datasets and the vast number of parameters involved. To address this,
we use the Huber loss (Huber, 1992; Wen et al., 2019), which provides greater robustness to outliers
and improves training stability:

Lar (xt, x̂t) =

{
1
2 (xt − x̂t)

2
, if |xt − x̂t| ≤ δ,

δ ×
(
|xt − x̂t| − 1

2 × δ
)
, otherwise,

(9)

where δ is a hyperparameter that balances the L1 and L2 loss components.

When training the model with a MoE architecture, focusing solely on optimizing prediction er-
ror often leads to load imbalance issues among the experts. A common problem is routing col-
lapse (Shazeer et al., 2017), where the model predominantly selects only a few experts, limiting
training opportunities for others. To mitigate this, following the approaches of (Dai et al., 2024; Fe-
dus et al., 2022), we achieve expert-level balancing with an auxiliary loss to reduce routing collapse:

Laux = N

N∑
i=1

firi, fi =
1

KT

T∑
t=1

I (Time point t selects Expert i) , ri =
1

T

T∑
t=1

si,t, (10)

where fi represents the fraction of tokens assigned to expert i, and ri denotes the proportion of router
probability allocated to expert i. I is the indicator function. Finally, we combine the auto-regressive
losses across all multi-resolution projections with the auxiliary balance loss to form the final loss:

L =
1

P

P∑
j=1

Lar

(
Xt+1:t+pj , X̂t+1:t+pj

)
+ αLaux, (11)

where P is the number of multi-resolution projections and pj is the horizon of the j-th projection.

3.2.3 MODEL CONFIGURATIONS AND TRAINING DETAILS

Informed by the scaling laws demonstrated in (Dubey et al., 2024; Touvron et al., 2023), which
show that a 7- or 8-billion parameter model continues to improve performance even after training on
over one trillion tokens, we chose to scale TIME-MOE up to 2.4 billion parameters with around 1
billion of them activated. This model, TIME-MOEultra, supports inference on consumer-grade GPUs
with less than 8GB of VRAM. We have also developed two smaller models: TIME-MOEbase, with
50 million activated parameters, and TIME-MOElarge, with 200 million activated parameters, both
specifically designed for fast inference on CPU architectures. The detailed model configurations are
in Table 2. Each model undergoes training for 100, 000 steps with a batch size of 1024, where the
maximum sequence length is capped at 4096. This setup results in the consumption of 4 million time
points per iteration. We choose {1, 8, 32, 64} as different forecast horizons in the output projection
and set the factor of the auxiliary loss α to 0.02. Refer to Appendix B for optimization details.

Table 2: A high-level summary of TIME-MOE model configurations.

Layers Heads Experts K dmodel dff dexpert Activated Params Total Params

TIME-MOEbase 12 12 8 2 384 1536 192 50 M 113 M
TIME-MOElarge 12 12 8 2 768 3072 384 200 M 453 M
TIME-MOEultra 36 16 8 2 1024 4096 512 1.1 B 2.4 B
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4 MAIN RESULTS

TIME-MOE consistently outperforms state-of-the-art models by large margins across 6 well-
established benchmarks and settings (Appendix B). To ensure a fair comparison, we adhered to
the configurations from (Woo et al., 2024) for out-of-distribution forecasting and (Wu et al., 2023a)
for in-distribution forecasting with a unified evaluation pipeline we developed. Specifically, we
evaluate TIME-MOE against 16 different baselines, representing state-of-the-art forecasting foun-
dation models. They are categorized into two groups: (1) zero-shot forecasting group, includes
pre-trained models such as Moirai (2024), TimesFM (2024), Moment (2024), and Chronos (2024);
(2) in-distribution (full-shot) forecasting group, consists of up-to-date models such as iTrans-
former (2024b), TimeMixer (2024b), TimesNet (2023a), PatchTST (2023), Crossformer (2023),
TiDE (2023), DLinear (2023),FEDformer (2022b). We also include addition comparisons with
Timer (2024d), TFT (2021), and N-BEATS (2020) in Appendix D.3.

4.1 ZERO-SHOT FORECASTING

Table 3: Full results of zero-shot forecasting experiments. A lower MSE or MAE indicates a better
prediction. TimesFM, due to its use of Weather datasets in pretraining, is not evaluated on this
dataset and is denoted by a dash (−). Red: the best, Blue: the 2nd best.

Models
TIME-MOE (Ours) Zero-shot Time Series Models

TIME-MOEbase TIME-MOElarge TIME-MOEultra Moiraismall Moiraibase Moirailarge TimesFM Moment Chronossmall Chronosbase Chronoslarge
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.357 0.381 0.350 0.382 0.349 0.379 0.401 0.402 0.376 0.392 0.381 0.388 0.414 0.404 0.688 0.557 0.466 0.409 0.440 0.393 0.441 0.390
192 0.384 0.404 0.388 0.412 0.395 0.413 0.435 0.421 0.412 0.413 0.434 0.415 0.465 0.434 0.688 0.560 0.530 0.450 0.492 0.426 0.502 0.424
336 0.411 0.434 0.411 0.430 0.447 0.453 0.438 0.434 0.433 0.428 0.495 0.445 0.503 0.456 0.675 0.563 0.570 0.486 0.550 0.462 0.576 0.467
720 0.449 0.477 0.427 0.455 0.457 0.462 0.439 0.454 0.447 0.444 0.611 0.510 0.511 0.481 0.683 0.585 0.615 0.543 0.882 0.591 0.835 0.583

Avg. 0.400 0.424 0.394 0.419 0.412 0.426 0.428 0.427 0.417 0.419 0.480 0.439 0.473 0.443 0.683 0.566 0.545 0.472 0.591 0.468 0.588 0.466

ETTh2

96 0.305 0.359 0.302 0.354 0.292 0.352 0.297 0.336 0.294 0.330 0.296 0.330 0.315 0.349 0.342 0.396 0.307 0.356 0.308 0.343 0.320 0.345
192 0.351 0.386 0.364 0.385 0.347 0.379 0.368 0.381 0.365 0.375 0.361 0.371 0.388 0.395 0.354 0.402 0.376 0.401 0.384 0.392 0.406 0.399
336 0.391 0.418 0.417 0.425 0.406 0.419 0.370 0.393 0.376 0.390 0.390 0.390 0.422 0.427 0.356 0.407 0.408 0.431 0.429 0.430 0.492 0.453
720 0.419 0.454 0.537 0.496 0.439 0.447 0.411 0.426 0.416 0.433 0.423 0.418 0.443 0.454 0.395 0.434 0.604 0.533 0.501 0.477 0.603 0.511

Avg. 0.366 0.404 0.405 0.415 0.371 0.399 0.361 0.384 0.362 0.382 0.367 0.377 0.392 0.406 0.361 0.409 0.424 0.430 0.405 0.410 0.455 0.427

ETTm1

96 0.338 0.368 0.309 0.357 0.281 0.341 0.418 0.392 0.363 0.356 0.380 0.361 0.361 0.370 0.654 0.527 0.511 0.423 0.454 0.408 0.457 0.403
192 0.353 0.388 0.346 0.381 0.305 0.358 0.431 0.405 0.388 0.375 0.412 0.383 0.414 0.405 0.662 0.532 0.618 0.485 0.567 0.477 0.530 0.450
336 0.381 0.413 0.373 0.408 0.369 0.395 0.433 0.412 0.416 0.392 0.436 0.400 0.445 0.429 0.672 0.537 0.683 0.524 0.662 0.525 0.577 0.481
720 0.504 0.493 0.475 0.477 0.469 0.472 0.462 0.432 0.460 0.418 0.462 0.420 0.512 0.471 0.692 0.551 0.748 0.566 0.900 0.591 0.660 0.526

Avg. 0.394 0.415 0.376 0.405 0.356 0.391 0.436 0.410 0.406 0.385 0.422 0.391 0.433 0.418 0.670 0.536 0.640 0.499 0.645 0.500 0.555 0.465

ETTm2

96 0.201 0.291 0.197 0.286 0.198 0.288 0.214 0.288 0.205 0.273 0.211 0.274 0.202 0.270 0.260 0.335 0.209 0.291 0.199 0.274 0.197 0.271
192 0.258 0.334 0.250 0.322 0.235 0.312 0.284 0.332 0.275 0.316 0.281 0.318 0.289 0.321 0.289 0.350 0.280 0.341 0.261 0.322 0.254 0.314
336 0.324 0.373 0.337 0.375 0.293 0.348 0.331 0.362 0.329 0.350 0.341 0.355 0.360 0.366 0.324 0.369 0.354 0.390 0.326 0.366 0.313 0.353
720 0.488 0.464 0.480 0.461 0.427 0.428 0.402 0.408 0.437 0.411 0.485 0.428 0.462 0.430 0.394 0.409 0.553 0.499 0.455 0.439 0.416 0.415

Avg. 0.317 0.365 0.316 0.361 0.288 0.344 0.307 0.347 0.311 0.337 0.329 0.343 0.328 0.346 0.316 0.365 0.349 0.380 0.310 0.350 0.295 0.338

Weather

96 0.160 0.214 0.159 0.213 0.157 0.211 0.198 0.222 0.220 0.217 0.199 0.211 - - 0.243 0.255 0.211 0.243 0.203 0.238 0.194 0.235
192 0.210 0.260 0.215 0.266 0.208 0.256 0.247 0.265 0.271 0.259 0.246 0.251 - - 0.278 0.329 0.263 0.294 0.256 0.290 0.249 0.285
336 0.274 0.309 0.291 0.322 0.255 0.290 0.283 0.303 0.286 0.297 0.274 0.291 - - 0.306 0.346 0.321 0.339 0.314 0.336 0.302 0.327
720 0.418 0.405 0.415 0.400 0.405 0.397 0.373 0.354 0.373 0.354 0.337 0.340 - - 0.350 0.374 0.404 0.397 0.397 0.396 0.372 0.378

Avg. 0.265 0.297 0.270 0.300 0.256 0.288 0.275 0.286 0.287 0.281 0.264 0.273 - - 0.294 0.326 0.300 0.318 0.292 0.315 0.279 0.306

Global Temp

96 0.211 0.343 0.210 0.342 0.214 0.345 0.227 0.354 0.224 0.351 0.224 0.351 0.255 0.375 0.363 0.472 0.234 0.361 0.230 0.355 0.228 0.354
192 0.257 0.386 0.254 0.385 0.246 0.379 0.269 0.396 0.266 0.394 0.267 0.395 0.313 0.423 0.387 0.489 0.276 0.400 0.273 0.395 0.276 0.398
336 0.281 0.405 0.267 0.395 0.266 0.398 0.292 0.419 0.296 0.420 0.291 0.417 0.362 0.460 0.430 0.517 0.314 0.431 0.324 0.434 0.327 0.437
720 0.354 0.465 0.289 0.420 0.288 0.421 0.351 0.437 0.403 0.498 0.387 0.488 0.486 0.545 0.582 0.617 0.418 0.504 0.505 0.542 0.472 0.535

Avg. 0.275 0.400 0.255 0.385 0.253 0.385 0.285 0.409 0.297 0.416 0.292 0.413 0.354 0.451 0.440 0.524 0.311 0.424 0.333 0.431 0.326 0.431

Average 0.336 0.384 0.336 0.380 0.322 0.372 0.349 0.377 0.347 0.370 0.359 0.373 0.396 0.413 0.461 0.454 0.428 0.420 0.429 0.412 0.416 0.405

1st Count 3 10 28 2 11 10 1 4 0 0 1

Setup. Time series foundation models have recently demonstrated impressive zero-shot learning
capabilities (Liang et al., 2024; Liu et al., 2024c). In this section, we conducted experiments on
the six well-known long-term forecasting benchmarks for which datasets were not included in the
pre-training corpora. We use four different prediction horizons, which are {96, 192, 336, 720}, with
the corresponding input time series lengths {512, 1024, 2048, 3072}. The evaluation metrics adopt
mean square error (MSE) and mean absolute error (MAE).

Results. Detailed results of zero-shot forecasting are in Table 3. TIME-MOE achieves consis-
tent state-of-the-art performances, improving a large margin as MSE reduction in average ex-
ceeding 20% over the other most competitive baselines. Importantly, as the model size scales
(e.g., TIME-MOEbase → TIME-MOEultra), it continuously exhibits enhanced performance across all
datasets, affirming the efficacy of scaling laws within our time series foundation models. Further-
more, in comparisons with robust baselines that have a similar number of activated parameters,
TIME-MOE demonstrates significantly superior performance. The largest models among the state-
of-the-art baselines are Chronoslarge, Moment and Moirailarge. Compared to those models, TIME-
MOE achieves average MSE reductions of 23%, 30% and 11% respectively.
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Table 4: Full results of in-domain forecasting experiments. A lower MSE or MAE indicates a better
prediction. Full-shot results besides Global Temp are obtained from (Liu et al., 2024b). Red: the
best, Blue: the 2nd best.

Models
TIME-MOE (Ours) Full-shot Time Series Models

TIME-MOEbase TIME-MOElarge TIME-MOEultra iTransformer TimeMixer TimesNet PatchTST Crossformer TiDE DLinear FEDformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.345 0.373 0.335 0.371 0.323 0.365 0.386 0.405 0.375 0.400 0.384 0.402 0.414 0.419 0.423 0.448 0.479 0.464 0.386 0.400 0.376 0.419
192 0.372 0.396 0.374 0.400 0.359 0.391 0.441 0.436 0.436 0.429 0.421 0.429 0.460 0.445 0.471 0.474 0.525 0.492 0.437 0.432 0.420 0.448
336 0.389 0.412 0.390 0.412 0.388 0.418 0.487 0.458 0.484 0.458 0.491 0.469 0.501 0.466 0.570 0.546 0.565 0.515 0.481 0.459 0.459 0.465
720 0.410 0.443 0.402 0.433 0.425 0.450 0.503 0.491 0.498 0.482 0.521 0.500 0.500 0.488 0.653 0.621 0.594 0.558 0.519 0.516 0.506 0.507

Avg. 0.379 0.406 0.375 0.404 0.373 0.406 0.454 0.447 0.448 0.442 0.454 0.450 0.468 0.454 0.529 0.522 0.540 0.507 0.455 0.451 0.440 0.459

ETTh2

96 0.276 0.340 0.278 0.335 0.274 0.338 0.297 0.349 0.289 0.341 0.340 0.374 0.302 0.348 0.745 0.584 0.400 0.440 0.333 0.387 0.358 0.397
192 0.331 0.371 0.345 0.373 0.330 0.370 0.380 0.400 0.372 0.392 0.402 0.414 0.388 0.400 0.877 0.656 0.528 0.509 0.477 0.476 0.429 0.439
336 0.373 0.402 0.384 0.402 0.362 0.396 0.428 0.432 0.386 0.414 0.452 0.541 0.426 0.433 1.043 0.731 0.643 0.571 0.594 0.541 0.496 0.487
720 0.404 0.431 0.437 0.437 0.370 0.417 0.427 0.445 0.412 0.434 0.462 0.657 0.431 0.446 1.104 0.763 0.874 0.679 0.831 0.657 0.463 0.474

Avg. 0.346 0.386 0.361 0.386 0.334 0.380 0.383 0.406 0.364 0.395 0.414 0.496 0.386 0.406 0.942 0.683 0.611 0.549 0.558 0.515 0.436 0.449

ETTm1

96 0.286 0.334 0.264 0.325 0.256 0.323 0.334 0.368 0.320 0.357 0.338 0.375 0.329 0.367 0.404 0.426 0.364 0.387 0.345 0.372 0.379 0.419
192 0.307 0.358 0.295 0.350 0.281 0.343 0.377 0.391 0.361 0.381 0.374 0.387 0.367 0.385 0.450 0.451 0.398 0.404 0.380 0.389 0.426 0.441
336 0.354 0.390 0.323 0.376 0.326 0.374 0.426 0.420 0.390 0.404 0.410 0.411 0.399 0.410 0.532 0.515 0.428 0.425 0.413 0.413 0.445 0.459
720 0.433 0.445 0.409 0.435 0.454 0.452 0.491 0.459 0.454 0.441 0.478 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.474 0.453 0.543 0.490

Avg. 0.345 0.381 0.322 0.371 0.329 0.373 0.407 0.409 0.381 0.395 0.400 0.405 0.387 0.400 0.513 0.495 0.419 0.419 0.403 0.406 0.448 0.452

ETTm2

96 0.172 0.265 0.169 0.259 0.183 0.273 0.180 0.264 0.175 0.258 0.187 0.267 0.175 0.259 0.287 0.366 0.207 0.305 0.193 0.292 0.203 0.287
192 0.228 0.306 0.223 0.295 0.223 0.301 0.250 0.309 0.237 0.299 0.249 0.309 0.241 0.302 0.414 0.492 0.290 0.364 0.284 0.362 0.269 0.328
336 0.281 0.345 0.293 0.341 0.278 0.339 0.311 0.348 0.298 0.340 0.321 0.351 0.305 0.343 0.597 0.542 0.377 0.422 0.369 0.427 0.325 0.366
720 0.403 0.424 0.451 0.433 0.425 0.424 0.412 0.407 0.391 0.396 0.408 0.403 0.402 0.400 1.730 1.042 0.558 0.524 0.554 0.522 0.421 0.415

Avg. 0.271 0.335 0.284 0.332 0.277 0.334 0.288 0.332 0.275 0.323 0.291 0.332 0.280 0.326 0.757 0.610 0.358 0.403 0.350 0.400 0.304 0.349

Weather

96 0.151 0.203 0.149 0.201 0.154 0.208 0.174 0.214 0.163 0.209 0.172 0.220 0.177 0.218 0.158 0.230 0.202 0.261 0.196 0.255 0.217 0.296
192 0.195 0.246 0.192 0.244 0.202 0.251 0.221 0.254 0.208 0.250 0.219 0.261 0.225 0.259 0.206 0.277 0.242 0.298 0.237 0.296 0.276 0.336
336 0.247 0.288 0.245 0.285 0.252 0.287 0.278 0.296 0.251 0.287 0.280 0.306 0.278 0.297 0.272 0.335 0.287 0.335 0.283 0.335 0.339 0.380
720 0.352 0.366 0.352 0.365 0.392 0.376 0.358 0.349 0.339 0.341 0.365 0.359 0.354 0.348 0.398 0.418 0.351 0.386 0.345 0.381 0.403 0.428

Avg. 0.236 0.275 0.234 0.273 0.250 0.280 0.257 0.278 0.240 0.271 0.259 0.286 0.258 0.280 0.258 0.315 0.270 0.320 0.265 0.316 0.308 0.360

Global Temp

96 0.192 0.328 0.192 0.329 0.189 0.322 0.223 0.351 0.215 0.346 0.250 0.381 0.219 0.349 0.272 0.406 0.223 0.352 0.221 0.354 0.261 0.392
192 0.238 0.375 0.236 0.375 0.234 0.376 0.282 0.404 0.266 0.393 0.298 0.418 0.269 0.395 0.305 0.435 0.278 0.401 0.257 0.388 0.299 0.423
336 0.259 0.397 0.256 0.397 0.253 0.399 0.313 0.431 0.313 0.430 0.315 0.434 0.319 0.435 0.352 0.468 0.330 0.440 0.294 0.418 0.341 0.454
720 0.345 0.465 0.322 0.451 0.292 0.426 0.393 0.488 0.468 0.536 0.407 0.497 0.452 0.526 0.508 0.562 0.485 0.544 0.380 0.479 0.359 0.469

Avg. 0.258 0.391 0.251 0.388 0.242 0.380 0.303 0.419 0.316 0.426 0.318 0.433 0.315 0.426 0.359 0.468 0.329 0.434 0.288 0.410 0.315 0.435

Average 0.306 0.362 0.304 0.359 0.301 0.358 0.349 0.382 0.337 0.375 0.356 0.400 0.349 0.382 0.560 0.516 0.421 0.439 0.387 0.416 0.375 0.417

1st Count 4 21 33 0 7 0 0 0 0 0 0

4.2 IN-DISTRIBUTION FORECASTING

Setup. We fine-tune the pre-trained TIME-MOE models on the train split of the above-mentioned
six benchmarks and set the number of finetuning epochs to only one.

Results. The full results are in Table 4. TIME-MOE exhibits remarkable capabilities, comprehen-
sively surpassing advanced deep time series models from recent years, achieving a MSE reduction
of 24% in average. Fine-tuning on downstream data with only one epoch significantly improves pre-
dictive performance, showcasing the remarkable potential of large time series models built on the
MoE architecture. Similar to zero-shot forecasting, as the model size increases, the scaling law con-
tinues to be effective, leading to continuous improvements in the performance of the TIME-MOE.

4.3 ABLATION STUDY

Table 5: Ablation studies. (Left) Average MSE for horizon-96 forecasting across six benchmarks,
evaluated with different model components. (Right) Analysis of various multi-resolution forecast-
ing configurations. More details are in Appendix D.1.

Average MSE
TIME-MOEbase 0.262

w/o Huber loss 0.267
w/o multi-resolution layer 0.269
w/o mixture-of-experts 0.272
w/o auxiliary loss 0.275

Average MSE Inference Speed
TIME-MOEbase w/ {1,8,32,64} 0.262 0.095 s/iter
TIME-MOEbase w/ {1,8,32} 0.273 0.130 s/iter
TIME-MOEbase w/ {1,8} 0.320 0.411 s/iter
TIME-MOEbase w/ {1} 1.382 2.834 s/iter

To validate our designs in TIME-MOE, we conducted detailed ablation studies on key architectural
components and loss functions across all experimental benchmarks, as shown in Table 5.

Model Architecture. Replacing the MoE layers with standard FFNs (w/o mixture-of-experts) led
to an average performance drop from 0.262 to 0.272, highlighting the performance boost provided
by the sparse architecture. A detailed comparison of dense and sparse models is presented in Sec-
tion 4.4. We retained only the horizon-32 output layer by eliminating the other multi-resolution
output layers from the TIME-MOEbase, excluding the multi-task optimization (w/o multi-resolution
layer). Consequently, we observed that the performance of this modified model was slightly inferior
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Figure 3: Scalability analysis. (Left) Comparison of dense and sparse models in terms of training
and inference costs. (Right) Average MSE for 96-horizon forecasting across six benchmarks, com-
paring TIME-MOE and dense models, both trained from scratch with varying data sizes.

compared to that of the TIME-MOEbase. Additionally, as shown in the right side of Table 5, our
default selection of four multi-resolution output projections with receptive horizons of {1, 8, 32, 64}
results in optimal predictive performance and inference speed. As we reduce the number of multi-
resolution output projections, performance consistently declines, and inference speed significantly
increases. This demonstrates the rationality of our multi-resolution output projection design.

Training Loss. Models trained with Huber loss outperformed those using MSE loss (w/o Huber
loss), due to Huber loss’s superior robustness in handling outlier time points. We also removed
the auxiliary loss from the objective function, retaining only the auto-regressive loss (w/o auxiliary
loss) while still using the MoE architecture. This adjustment caused the expert layers to collapse
into a smaller FFN during training, as the activation score of the most effective expert became
disproportionately stronger without the load balance loss. Consequently, the model’s performance
was significantly worse than the TIME-MOEbase.

4.4 SCALABILITY ANALYSIS

Dense versus Sparse Models. To assess the performance and efficiency benefits of sparse archi-
tectures in time series forecasting, we replaced the MoE layer with a dense layer containing an
equivalent number of parameters as the activated parameters in the MoE layer. Using identical
training setup and data, we trained three dense models corresponding to the sizes of the three TIME-
MOE models. A zero-shot performance comparison between the dense and sparse models is shown
in Figure 3. Our approach reduced training costs by an average of 78% and inference costs by 39%
compared to dense variants. This clearly demonstrates the advantages of TIME-MOE, particularly
in maintaining exceptional performance while significantly reducing costs.

Model and Data Scaling. We save model checkpoints at intervals of every 20 billion time points
during training, allowing to plot performance traces for models of different sizes trained on various
data scales. The right side of Figure 3 shows that models trained on larger datasets consistently
outperform those trained on smaller datasets, regardless of model size. Our empirical results confirm
that as both data volume and model parameters scale, sparse models demonstrate continuous and
substantial improvements in performance, as well as achieve better forecasting accuracy compared
to the dense counterparts under the same scales.

Training Precision. We trained a new model, TIME-MOEbase (FP32), using identical configura-
tions but with float32 precision instead of bfloat16. As shown in Table 6, the forecasting performance
of both models is comparable. However, the bfloat16 model achieves a 12% improvement in train-
ing speed and reduces memory consumption by 20% compared to the float32 model. Moreover, the
bfloat16 model can seamlessly integrate with flash-attention (Dao, 2024), further boosting training
and inference speed by 23% and 19% respectively.
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Table 6: Comparison of BF16 and FP32 in terms of training and inference efficiency. FA denotes
flash-attention. More details are in Table 13 of Appendix D.2.

.
Average MSE Training Speed Inference Speed Training Memory Inference Memory

TIME-MOEbase 0.262 0.84 s/iter 0.095 s/iter 1.77 GB 226.70 MB
TIME-MOEbase w/o FA 0.262 1.09 s/iter 0.118 s/iter 1.77 GB 226.70 MB
TIME-MOEbase w/ FP32 0.261 1.24 s/iter 0.133 s/iter 2.21 GB 453.41 MB

4.5 SPARSIFICATION ANALYSIS

Activation Visualization. As shown in Figure 4, TIME-MOE dynamically activates different ex-
perts across various datasets, with each expert specializing in learning distinct knowledge. This
leads to diverse activation patterns across datasets from different domains, showcasing TIME-MOE’s
strong generalization capabilities. The heterogeneous activations indicate that the model adapts its
learned representations to the specific characteristics of each dataset, contributing to its great trans-
ferability and generalization as a large-scale time series foundation model.

Figure 4: Gating scores for experts across different layers in the six benchmarks.

Table 7: Performance and inference speed
across different topk setups. Average MSE
for horizon-96 forecasting evaluated across
six benchmarks. Lower values of inference
speed (s/iter) indicate better performance.

TIME-MOEbase Average MSE Inference Speed
w/ {Top1} 0.264 0.082 s/iter
w/ {Top2} 0.262 0.095 s/iter
w/ {Top4} 0.262 0.109 s/iter
w/ {Top6} 0.265 0.120 s/iter
w/ {Top8} 0.269 0.129 s/iter

Number of Experts. We performed a sensitivity
analysis on the number of experts, represented as
topk, within the TIME-MOE architecture, as shown
in Table 7. As k increases, performance shows only
marginal changes, with minimal improvements in
average MSE. However, inference time increases no-
ticeably as more experts are utilized. This indicates
that increasing sparsity within the MoE architecture
does not compromise performance but significantly
enhances computational efficiency. This balance is
critical for scaling time series foundation models,
where optimizing performance and computational
cost is essential. Sparse MoE architectures inherently offer advantages in these areas.

5 CONCLUSION

In this paper, we introduced TIME-MOE, a scalable and unified architecture for time series foun-
dation models that leverages a sparse design with mixture-of-experts to enhance computational ef-
ficiency without compromising model capacity. Pre-trained on our newly introduced large-scale
time series dataset, Time-300B, TIME-MOE was scaled to 2.4 billion parameters, with 1.1 billion
activated, demonstrating significant improvements in forecasting capabilities. Our results validate
the scaling properties in time series forecasting, showing that TIME-MOE consistently outperforms
dense models with equivalent computational budgets across multiple widely accepted benchmarks.
With its ability to perform universal forecasting and superior performance in both zero-shot and fine-
tuned scenarios, TIME-MOE establishes itself as a state-of-the-art solution for real-world forecasting
challenges. This work lays the groundwork for future advancements in scaling and enhancing the
efficiency of time series foundation models, paving the way toward time series general intelligence.
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A FURTHER RELATED WORK

In this section, we delve deeper into the related work on large time series models. Current research
efforts in universal forecasting with time series foundation models can be broadly classified into
three categories, as summarized in Table 8: (1) encoder-only models, such as Moirai (Woo et al.,
2024) and Moment (Goswami et al., 2024), which employ masked reconstruction and have been
pre-trained on datasets containing 27B and 1B time points, respectively, with model sizes reaching
up to 385M parameters; (2) encoder-decoder models, exemplified by Chronos (Ansari et al., 2024),
which offers pre-trained models at four scales, with up to 710M parameters; and (3) decoder-only
models, including TimesFM (Das et al., 2024), Lag-Llama (Rasul et al., 2023), and Timer (Liu
et al., 2024d), with the largest models containing up to 200M parameters. The concurrent work,
Moirai-MoE (Liu et al., 2024a), includes up to 935M parameters but with a different expert and
routing design. In contrast to these models, TIME-MOE introduces a scalable, unified architecture
with a sparse mixture-of-experts design, optimized for larger time series forecasting models while
reducing inference costs. Trained on our Time-300B dataset, comprising over 300B time points,
TIME-MOE is scaled to 2.4B parameters for the first time. It outperforms existing models with the
same number of activated parameters, significantly enhancing both model efficiency and forecasting
precision, while avoiding limitations such as fixed context lengths or hardcoded heuristics.

Table 8: Comparison between large time series models.

Method Time-MoE Moirai TimesFM Moment Chronos Timer Lag-Llama TimeGPT

Architecture
Decoder- Encoder- Decoder- Encoder- Encoder- Decoder- Decoder- Encoder-

Only Only Only Only Decoder Only Only Decoder

(Max) Model Size 2.4B 311M 200M 385M 710M 67M 200M Unknown

Input Token Point Patch Patch Patch Point Patch Point Patch

Dataset Scale 309B 27B/231B* 100B 1.13B 84B 28B 0.36B 100B

Max Length 4096 † 5000 512 512 512 1440 1024 Unknown

FFN Sparse Dense Dense Dense Dense Dense Dense Dense

Open-source Data ✓ ✓ ✓ ✓

Source Ours Woo et al. Das et al. Goswami et al. Ansari et al. Liu et al. Rasul et al. Garza et al.
* Depend on the way of calculation according to the original paper. † indicates the total of the context and prediction lengths.

B IMPLEMENTATION DETAILS

Training Configuration. Each model is trained for 100,000 steps with a batch size of 1,024, and a
maximum sequence length capped at 4,096. This setup processes 4 million time points per iteration.
We use forecast horizons of {1, 8, 32, 64} in the output projection and set the auxiliary loss factor
α to 0.02. For optimization, we apply the AdamW optimizer with the following hyperparameters:
lr = 1e-3, weight decay = 1e-1, β1 = 0.9, and β2 = 0.95. A learning rate scheduler with a linear
warmup for the first 10,000 steps, followed by cosine annealing, is used. Training is performed on
128 × NVIDIA A100-80G GPUs with BF16 precision. To improve batch processing efficiency and
handle varying sequence lengths, we employ sequence packing (Raffel et al., 2020), which reduces
padding requirements.

Benchmark Details. We evaluate the performance of various models for long-term forecasting
across eight well-established datasets, including the Weather (Wu et al., 2021), Global Temp (Wu
et al., 2023b), and ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021). A detailed
description of each dataset is provided in Table 9.
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Table 9: Detailed dataset descriptions. Dataset sizes are listed as (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Frequency Forecastability∗ Information

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.46 Temperature

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min 0.55 Temperature

Long-term ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly 0.38 Temperature

Forecasting ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly 0.45 Temperature

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min 0.75 Weather

Global Temp 1000 {96, 192, 336, 720} (12280, 1755, 3509) Hourly 0.78 Temperature

∗ The forecastability is calculated by one minus the entropy of Fourier decomposition of time series (Goerg, 2013). A
larger value indicates better predictability.

Metrics. We use mean square error (MSE) and mean absolute error (MAE) as evaluation metrics
for time-series forecasting. These metrics are calculated as follows:

MSE =
1

H

H∑
i=1

(xi − x̂i)
2, MAE =

1

H

H∑
i=1

|xi − x̂i|,

where xi, x̂i ∈ R are the ground truth and predictions of the i-th future time point.

Technical Details. Our mixture-of-experts layer consists of one shared expert and several isolated
experts, each represented by a feedforward network that is smaller than the standard FFN employed
in dense models. In the formulation from Equations 5 to 8, FFNN+1 denotes the shared expert,
while FFN1 to FFNN correspond to the isolated experts. The weight gN+1,t associated with the
shared expert for token t is normalized using the Sigmoid function. In contrast, the weight gi,t for
the i-th isolated expert of token t is normalized using the Softmax function. Furthermore, we retain
only the top-k largest scores among the isolated experts and set the remaining scores to zero.

ScaledDot-Product
Attention

Linear Linear Linear

Q K V

RoPE RoPE

Concat

Heads

Linear

Figure 5: Causal attention layer.

To prevent routing collapse among experts, we adopt the
strategy proposed by (Fedus et al., 2022), incorporating
an auxiliary loss to ensure balanced expert load. The
key aspect of this method is to penalize experts with
high gating scores. This helps prevent a scenario where
stronger experts, being exposed to more tokens, become
even stronger while weaker experts continue to fall be-
hind. The mathematical formulation is presented in Equa-
tion 10, where fi represents the fraction of tokens as-
signed to expert i, and ri denotes the proportion of router
probability allocated to expert i. If one expert is assigned
too many tokens and achieves a higher routing score, it
will incur a correspondingly higher loss.

Multi-resolution Forecasting. To construct the multi-
resolution forecasting head, we define P output projec-
tions, each corresponding to a distinct forecasting hori-
zon, denoted as (p1, p2, . . . , pP ). The output projection
for horizon pj is used to forecast the subsequent pj time
steps, as follows:

X̂t+1:t+pj
= Wpj

hL
t , (12)

where Wpj
∈ Rpj×D is the learnable parameter matrix for that horizon, and hL

t represents the
output hidden state from the last MoE Transformer block. All output projections are optimized
simultaneously during model training.

During inference, we apply a greedy scheduling algorithm for arbitrary target output lengths H , as
outlined in Algorithm 1. For each forecast operation in the auto-regressive process, we select a pro-
jection pj with the closest forecasting horizon that does not exceed the remaining forecast duration.
This approach allows TIME-MOE to extend predictions beyond the next immediate time step or
fixed horizon, significantly improving both the model’s utility and overall forecasting accuracy.
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Algorithm 1 Scheduling for the Multi-resolution Forecasting

Require: Target output length H , forecast horizon of each output projection {p1, p2, . . . , pP } in
ascending order

Ensure: Combined output length Ĥ = H , p1 = 1

1: Ĥ ← 0
2: J ← {}
3: while Ĥ < H do
4: for j = P down to 1 do
5: if Ĥ + pj ≤ H then
6: Ĥ ← Ĥ + pj
7: add pj to J
8: break
9: end if

10: end for
11: end while
12: return J

C PROCESSED DATA ARCHIVE

Going beyond the previous work (Ansari et al., 2024; Woo et al., 2024; Liu et al., 2024d), we
organized a comprehensive large-scale time series dataset from a vast collection of complex raw
data. We utilize the missing value ratio and the invalid observation ratio as metrics to assess the
quality of the dataset. These two metrics can effectively identify data issues caused by the instability
of data collection and artificially imputed values. The missing value ratio is defined as the proportion
of ‘nan’ and ‘inf’ values present in the time series. Meanwhile, the invalid observation ratio refers
to the maximum proportion of zeros in the first- or second-order differences of the time series. To
address these issues and drawing inspiration from the data processing techniques of large language
models (Penedo et al., 2023; Computer, 2023; Jin et al., 2024), we developed a fine-grained data-
cleaning pipeline specifically designed for time series data:

Missing Value Processing. In time series data, missing values often appear as ‘nan’ (not a number)
or ‘inf’ (infinity). While previous studies commonly address this by replacing missing values with
the mean, this may distort the original time series pattern. Instead, we employ a method that splits
the original sequence into multiple sub-sequences at points where missing values occur, effectively
removing those segments while preserving the integrity of the original time series pattern.

Invalid Observation Processing. In some data collection systems, missing values are often filled
with 0 or another constant, leading to sequences with constant values that do not represent valid
patterns for the model. To address this, we developed a filtering method that uses a fixed-length
window to scan the entire sequence. For each window, we calculate the ratio of first-order and
second-order differences, discarding the window if this ratio exceeds a pre-specified threshold (set
to 0.2 in our case). The remaining valid continuous window sequences are then concatenated into a
single sequence. This process transforms the original sequence into multiple sub-sequences, effec-
tively removing segments with invalid patterns.

Following the processing steps described above, we compiled a high-quality time series dataset
named Time-300B, which spans a range of sampling frequencies from seconds to yearly intervals,
encompassing a total of 309.09 billion time points. To optimize memory efficiency and loading
speed, each dataset is split into multiple binary files, with a metafile providing details such as the
start and end positions of each sequence. This setup allows us to load the data using a fixed amount
of memory during training, preventing memory shortages. Datasets like Weatherbench, CMIP6,
and ERA5 are particularly large, often leading to data imbalance and homogenization. To mitigate
these issues, we apply down-sampling to these datasets. During training, we utilized approximately
117 billion time points in Time-300B, sampling each batch according to fixed proportions of
domains and distributions of observation values.
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Below, we outline the key properties of the datasets after processing, including their domain, sam-
pling frequency, number of time series, total number of observations, and data source. Also, we
present the key component’s source code of the data-cleaning pipeline in Algorithm 2.

Table 10: Datasets and key properties from Time-300B. For frequency: S = second, T = minute,
H = hour, D = day, B = business day, W = week, M = month, Q = quarter, Y = year.

Dataset Domain Freq. # Time Series # Obs. Source

Electricity (15 min) Energy 15T 347 39,708,170 Godahewa et al. (2021)

Electricity (Weekly) Energy W 318 49,608 Godahewa et al. (2021)

ERCOT Load Energy H 152 1,238,832 ourownstory (2023)

Australian Electricity Energy 30T 5 1,153,584 Godahewa et al. (2021)

Solar Power Energy 4S 26 5,248 Godahewa et al. (2021)

Wind Farms Energy T 43,246 39,705,317 Godahewa et al. (2021)

BDG-2 Bear Energy H 215 1,422,320 Emami et al. (2023)

BDG-2 Fox Energy H 179 2,285,288 Emami et al. (2023)

BDG-2 Panther Energy H 136 893,840 Emami et al. (2023)

BDG-2 Rat Energy H 455 4,596,080 Emami et al. (2023)

Borealis Energy H 17 82,757 Emami et al. (2023)

Buildings900K Energy H 2,464,188 15,124,358,211 Emami et al. (2023)

BDG-2 Bull Energy H 464 501,832 Wang et al. (2023d)

BDG-2 Cockatoo Energy H 4 17032 Wang et al. (2023d)

Covid19 Energy Energy H 1 31,912 Wang et al. (2023d)

Elecdemand Energy 30T 1 17,520 Godahewa et al. (2021)

GEF12 Energy H 20 788,280 Wang et al. (2023d)

GEF17 Energy H 8 140,352 Wang et al. (2023d)

BDG-2 Hog Energy H 152 365,304 Wang et al. (2023d)

IDEAL Energy H 225 1,253,088 Emami et al. (2023)

KDD Cup 2018 Energy H 3,054 922,746 Godahewa et al. (2021)

KDD Cup 2022 Energy 10T 8,554 2,332,874 Zhou et al. (2022a)

London Smart Meters Energy 30T 24,132 160,041,727 Godahewa et al. (2021)

PDB Energy H 1 17,520 Wang et al. (2023d)

Residential Load Power Energy T 79,508 404,832,695 Bergmeir et al. (2023)

Residential PV Power Energy T 248,888 184,238,228 Bergmeir et al. (2023)

Sceaux Energy H 1 34,223 Emami et al. (2023)

SMART Energy H 5 95,709 Emami et al. (2023)

Spanish Energy H 1 35,064 Wang et al. (2023d)

Exchange Rate Finance B 13 56,096 Ansari et al. (2024)

CIF 2016 Finance M 72 7,108 Godahewa et al. (2021)

Bitcoin Finance D 29 68927 Godahewa et al. (2021)

FRED MD Finance M 104 71,624 Godahewa et al. (2021)

NN5 Daily Finance D 220 35,303 Godahewa et al. (2021)

Tourism Monthly Finance M 359 98,867 Godahewa et al. (2021)

Tourism Quarterly Finance Q 427 39,128 Godahewa et al. (2021)

Tourism Yearly Finance Y 419 11,198 Godahewa et al. (2021)

COVID Deaths Healthcare D 2 364 Godahewa et al. (2021)

Hospital Healthcare M 727 55,224 Godahewa et al. (2021)

CDC Fluview ILINet Healthcare W 286 220,144 CDC (2017)

CDC Fluview WHO NREVSS Healthcare W 108 56,407 CDC (2017)

Project Tycho Healthcare W 588 120,183 van Panhuis et al. (2018)

20



Published as a conference paper at ICLR 2025

Table 10 continued from previous page

Dataset Domain Freq. # Time Series # Obs. Source

US Births Healthcare D 1 7,275 Godahewa et al. (2021)

Weatherbench (Hourly) Nature H 3,984,029 74,630,250,518 Rasp et al. (2020)

Weatherbench (Daily) Nature D 301,229 3,223,513,345 Rasp et al. (2020)

Weatherbench (Weekly) Nature W 226,533 462,956,049 Rasp et al. (2020)

Beijing Air Quality Nature H 4,262 2,932,657 Chen (2019)

China Air Quality Nature H 17,686 4,217,605 Zheng et al. (2015)

CMIP6 Nature 6H 14,327,808 104,592,998,400 Nguyen et al. (2023)

ERA5 Nature H 11,940,789 93,768,721,472 Nguyen et al. (2023)

Oikolab Weather Nature H 309 615,574 Godahewa et al. (2021)

Saugeen Nature D 38 17,311 Godahewa et al. (2021)

Subseasonal Nature D 17,604 51,968,498 Mouatadid et al. (2023)

Subseasonal Precipitation Nature D 13,467 4,830,284 Mouatadid et al. (2023)

Sunspot Nature D 19 45,312 Godahewa et al. (2021)

Temperature Rain Nature D 13,226 3,368,098 Godahewa et al. (2021)

Weather Nature D 9,525 26,036,234 Ansari et al. (2024)

Dominick Sales D 3,712 759,817 Godahewa et al. (2021)

Car Parts Sales M 16 816 Godahewa et al. (2021)

Favorita Sales Sales D 91,513 20,371,303 Woo et al. (2024)

Favorita Transactions Sales D 258 81,196 Woo et al. (2024)

Hierarchical Sales Sales D 215 114,372 Mancuso et al. (2021)

Restaurant Sales D 155 30,289 Woo et al. (2024)

M5 Sales D 14,341 5,011,077 Alexandrov et al. (2020)

Mexico City Bikes Transport H 556 78,848 Ansari et al. (2024)

Traffic Transport H 1,371 14,993,544 Godahewa et al. (2021)

Taxi (Hourly) Transport H 2,433 1,762,024 Ansari et al. (2024)

Beijing Subway Transport 30T 552 19,872 Wang et al. (2023a)

Covid Mobility Transport D 426 120,950 Godahewa et al. (2021)

HZMetro Transport 15T 160 11,680 Wang et al. (2023a)

LargeST Transport 5T 1,208,997 4,175,062,621 Liu et al. (2023)

Loop Seattle Transport 5T 1,809 33,700,832 Wang et al. (2023a)

Los-Loop Transport 5T 3,381 6,231,168 Wang et al. (2023a)

Pedestrian Counts Transport H 80 3,125,914 Godahewa et al. (2021)

PEMS Bay Transport 5T 3,980 15,975,920 Wang et al. (2023a)

PEMS03 Transport 5T 1,651 9,210,432 Wang et al. (2023a)

PEMS04 Transport 5T 6,634 14,638,784 Wang et al. (2023a)

PEMS07 Transport 5T 3,828 23,789,760 Wang et al. (2023a)

PEMS08 Transport 5T 2,612 8,684,480 Wang et al. (2023a)

Q-Traffic Transport 15T 46,990 257,200,384 Wang et al. (2023a)

SHMetro Transport 15T 574 41,902 Wang et al. (2023a)

SZ-Taxi Transport 15T 156 464,256 Wang et al. (2023a)

Rideshare Transport H 1,352 192,949 Godahewa et al. (2021)

Taxi Transport 30T 96,758 40,584,636 Alexandrov et al. (2020)

Traffic Hourly Transport H 1,363 14,858,016 Godahewa et al. (2021)

Traffic Weekly Transport W 821 78,816 Godahewa et al. (2021)

Uber TLC Daily Transport D 235 42,533 Alexandrov et al. (2020)

Uber TLC Hourly Transport H 344 510,284 Alexandrov et al. (2020)

Vehicle Trips Transport D 10 1,626 Godahewa et al. (2021)

Wiki Daily (100k) Web D 100,001 274,099,872 Ansari et al. (2024)
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Table 10 continued from previous page

Dataset Domain Freq. # Time Series # Obs. Source

Alibaba Cluster Trace 2018 Web 5T 48,640 83,776,950 Woo et al. (2023)

Azure VM Traces 2017 Web 5T 263,928 880,648,165 Woo et al. (2023)

Borg Cluster Data 2011 Web 5T 216,636 176,650,715 Woo et al. (2023)

Kaggle Web Traffic Weekly Web W 133,388 15,206,232 Godahewa et al. (2021)

Extended Web Traffic Web D 161,890 332,586,145 Godahewa et al. (2021)

Wiki-Rolling Web D 47,675 40,619,100 Alexandrov et al. (2020)

TSMixup 10M Synthetic - 10,968,625 8,198,358,952 Ansari et al. (2024)

KernelSynth 1M Synthetic - 1,000,000 1,024,000,000 Ansari et al. (2024)

M1 Monthly Other M 8 1,047 Godahewa et al. (2021)

M1 Quarterly Other 3M 195 9,628 Godahewa et al. (2021)

M1 Yearly Other Y 106 3136 Godahewa et al. (2021)

M3 Monthly Other M 799 109,538 Godahewa et al. (2021)

M3 Quarterly Other 3M 755 36,960 Godahewa et al. (2021)

M3 Yearly Other Y 645 18,319 Godahewa et al. (2021)

M4 Daily Other D 4,134 9,903,554 Godahewa et al. (2021)

M4 Hourly Other H 415 352,988 Godahewa et al. (2021)

M4 Monthly Other M 30,126 8,480,953 Godahewa et al. (2021)

M4 Quarterly Other 3M 2,623 491,632 Godahewa et al. (2021)

M4 Weekly Other W 293 348,224 Godahewa et al. (2021)

M4 Yearly Other Y 106 3,136 Godahewa et al. (2021)
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Algorithm 2 Code Snippet of Data-cleaning Pipline

# Missing Value Processing
def split_seq_by_nan_inf(seq, minimum_seq_length: int = 1):

output = []
sublist = []
for num in seq:

if num is None or np.isnan(num) or np.isinf(num):
if len(sublist) >= minimum_seq_length:

output.append(sublist)
sublist = []

else:
sublist.append(num)

if len(sublist) >= minimum_seq_length:
output.append(sublist)

return output

# Invalid Observation Processing
def split_seq_by_window_quality(seq, window_size: int = 128, zero_threshold,

minimum_seq_length: int = 256):
if len(seq) <= window_size:

flag, info = check_sequence(seq, zero_threshold=zero_threshold)
if flag:

return [seq]
else:

return []

i = window_size
sub_seq = []
out_list = []
while True:

if i + window_size > len(seq):
window_seq = seq[i - window_size: len(seq)]
i = len(seq)

else:
window_seq = seq[i - window_size: i]

flag, info = check_sequence(window_seq, zero_threshold=zero_threshold)
if flag:

sub_seq.extend(window_seq)
else:

if len(sub_seq) >= minimum_seq_length:
out_list.append(sub_seq)

sub_seq = []
if i >= len(seq):

break
i += window_size

if len(sub_seq) >= minimum_seq_length:
out_list.append(sub_seq)

return out_list

def check_sequence(seq, zero_threshold: float):
import numpy as np
if not isinstance(seq, np.ndarray):

seq = np.array(seq)

if len(seq.shape) > 1:
raise RuntimeError(f’Dimension of the seq is not equal to 1: {seq.shape}’)

flag = True
info = {}

nan_count = np.sum(np.isnan(seq))
info[’nan_count’] = nan_count
if nan_count > 0:

flag = False
return flag, info

inf_count = np.sum(np.isinf(seq))
info[’inf_count’] = inf_count
if inf_count > 0:

flag = False
return flag, info

zero_ratio = np.sum(seq == 0) / len(seq)
info[’zero_ratio’] = zero_ratio
if zero_ratio > zero_threshold:

flag = False

first_diff = seq[1:] - seq[:-1]
first_diff_zero_ratio = np.sum(first_diff == 0) / len(first_diff)

info[’first_diff_zero_ratio’] = first_diff_zero_ratio
if first_diff_zero_ratio > zero_threshold:

flag = False

second_diff = seq[2:] - seq[:-2]
second_diff_zero_ratio = np.sum(second_diff == 0) / len(second_diff)

info[’second_diff_zero_ratio’] = second_diff_zero_ratio
if second_diff_zero_ratio > zero_threshold:

flag = False

return flag, info
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D ADDITIONAL RESULTS

D.1 ABLATION STUDY

Table 11: MSE and MAE for horizon-96 forecasting across six benchmarks, evaluated with different
model components.

ETTh1 ETTh2 ETTm1 ETTm2 Weather Global Temp
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TIME-MOEbase 0.357 0.381 0.305 0.359 0.338 0.368 0.201 0.291 0.160 0.214 0.211 0.343
w/o Huber loss 0.365 0.383 0.309 0.366 0.344 0.369 0.205 0.295 0.163 0.221 0.217 0.359
w/o multi-resolution layer 0.358 0.379 0.313 0.362 0.348 0.377 0.212 0.301 0.164 0.219 0.217 0.354
w/o mixture-of-experts 0.370 0.398 0.317 0.372 0.347 0.373 0.212 0.298 0.163 0.218 0.223 0.357
w/o auxiliary loss 0.368 0.394 0.325 0.387 0.350 0.377 0.219 0.304 0.164 0.220 0.226 0.363

As shown in Table 11, replacing the MoE layers with standard FFNs (denoted as “w/o mixture-of-
experts ”) led to a noticeable performance decline, with the average MSE worsening from 0.262 to
0.272. This highlights the significant contribution of the sparse architecture to the model’s overall
performance, as its dynamic routing enables more specialized processing of diverse input patterns.

We also conducted experiments by retaining only the horizon-32 forecasting head from the TIME-
MOEbase (denoted as “w/o multi-resolution layer”), excluding the multi-task optimization. The per-
formance of this modified model was slightly inferior to the complete TIME-MOEbase.

Table 12: Full ablation results for different multi-resolution forecasting configurations.

ETTh1 ETTh2 ETTm1 ETTm2 Weather Global Temp Average MSE Inference Speed

TIME-MOEbase w/ {1,8,32,64} 0.357 0.305 0.338 0.201 0.160 0.211 0.262 0.095 s/iter
TIME-MOEbase w/ {1,8,32} 0.353 0.316 0.370 0.225 0.161 0.213 0.273 0.130 s/iter
TIME-MOEbase w/ {1,8} 0.389 0.391 0.441 0.304 0.174 0.222 0.320 0.411 s/iter
TIME-MOEbase w/ {1} 1.071 0.920 2.098 2.320 1.500 0.383 1.382 2.834 s/iter

As shown in Table 12, the default configuration of four multi-resolution forecasting heads with
receptive horizons of 1, 8, 32, 64 delivers optimal predictive performance and inference speed. Re-
ducing the number of heads consistently resulted in decreased performance and longer inference
time. This inverse relationship highlights the effectiveness of our multi-resolution forecasting de-
sign, striking a balance between accuracy and computational efficiency in a decoder-only forecasting
foundation model.

These findings highlight the importance of key architectural components in TIME-MOE, such as the
mixture-of-experts, multi-task optimization, and multi-resolution forecasting, in delivering state-of-
the-art performance in universal time series forecasting.

D.2 TRAINING PRECISION ANALYSIS

To optimize model performance and efficiency, we conducted a comparative study examining the
impact of numerical precision during training. We trained two versions of our model under identical
configurations, with the only difference being the precision: one using bfloat16 and the other using
float32. The model trained with float32 precision is referred to as TIME-MOEbase w/ FP32.

Table 13: Full results of the comparison between BF16 and FP32 in terms of training and inference
efficiency. FA denotes flash-attention.

ETTh1 ETTh2 ETTm1 ETTm2 Weather Global Temp Average MSE Training Speed Inference Speed Training Memory Inference Memory

TIME-MOEbase 0.357 0.305 0.338 0.201 0.160 0.211 0.262 0.84 s/iter 0.095 s/iter 1.77 GB 226.70 MB
TIME-MOEbase w/o FA 0.357 0.305 0.338 0.201 0.160 0.211 0.262 1.09 s/iter 0.118 s/iter 1.77 GB 226.70 MB
TIME-MOEbase w/ FP32 0.358 0.303 0.342 0.198 0.158 0.208 0.261 1.24 s/iter 0.133 s/iter 2.21 GB 453.41 MB

As detailed in Table 6, our analysis reveals that the forecasting performances of these two models
are remarkably comparable. This finding is significant as it demonstrates that the use of reduced
precision (e.g., bfloat16) does not compromise the predictive capabilities of our model.
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However, the similarities in performance belie the substantial differences in computational efficiency
and resource utilization:

• Training Speed: Notably, the bfloat16 model demonstrates a 12% improvement in training
speed compared to its float32 counterpart. This considerable acceleration in the training process
can significantly reduce the time-to-deployment for large-scale models and facilitate more rapid
experimentation and iteration.

• Memory Consumption: In terms of memory usage, the bfloat16 model exhibits superior effi-
ciency, consuming substantially less memory than the float32 model. Specifically, we observed
a reduction of 20% in memory usage. This memory optimization is crucial for scaling models
to larger sizes or deploying them on memory-constrained hardware.

• Compatibility with Advanced Techniques: A key advantage of the bfloat16 model is its seam-
less integration with advanced optimization techniques. In particular, it can easily be combined
with flash-attention (Dao, 2024), a state-of-the-art attention mechanism designed for better effi-
ciency. This integration results in an additional 23% increase in training speed and a 19% boost
in inference speed, further enhancing the already significant performance gains.

The implications of these findings are far-reaching:

• Resource Efficiency: The reduced memory footprint and increased training speed of the
bfloat16 model translate to more efficient utilization of computational resources, potentially
lowering infrastructure costs and energy consumption.

• Scalability: The memory savings offered by bfloat16 precision enable the training of larger,
more complex models on the same hardware, potentially leading to improved model capabilities
without increasing computational requirements.

• Faster Development Cycles: The substantial improvements in training speed can accelerate the
research and development process, allowing for more rapid prototyping and experimentation.

• Inference Optimization: The compatibility with flash-attention not only benefits training but
also enhances inference speed, which is crucial for real-time applications and large-scale de-
ployments.

Our experiments show that adopting bfloat16 precision, combined with advanced techniques like
flash-attention, provides a compelling balance between model performance, computational effi-
ciency, and resource utilization. These optimizations enable the scalable and efficient deployment
of large-scale time series forecasting models without sacrificing predictive accuracy.

D.3 ADDITIONAL EXPERIMENTAL RESULTS

D.3.1 TAXIBJ DATASET

We include a benchmark dataset, TaxiBJ (Zhang et al., 2017) for short-term forecasting evaluation.
This original dataset encompasses taxicab GPS data and meteorological information collected from
Beijing over four distinct intervals: July 1, 2013 - October 30, 2013; March 1, 2014 - June 30, 2014;
March 1, 2015 - June 30, 2015; and November 1, 2015 - April 10, 2016. We selected the in-flow data
from the period November 1, 2015, to April 10, 2016 as our benchmark. This benchmark dataset
consists of 1,024 time-series sequences derived from 32× 32 grid cells.

We conducted evaluations on all zero-shot models using this benchmark, and set the context length
to 512 for all baselines. The results are summarized in Table 14.

Table 14: Short-term zero-shot forecasting results in TaxiBJ: A lower MSE or MAE indicates a
better prediction. Red: the best, Blue: the 2nd best.

Models
TIME-MOE (Ours) Zero-shot Time Series Models

TIME-MOEbase TIME-MOElarge TIME-MOEultra Moiraismall Moiraibase Moirailarge TimesFM Moment Chronossmall Chronosbase Chronoslarge
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TaxiBJ

1 0.214 0.294 0.214 0.292 0.214 0.294 0.334 0.373 0.282 0.334 0.267 0.323 0.247 0.316 0.866 0.751 0.250 0.315 0.255 0.316 0.250 0.303
8 0.302 0.363 0.297 0.356 0.302 0.362 0.487 0.470 0.427 0.422 0.431 0.425 0.393 0.430 0.883 0.759 0.341 0.380 0.311 0.352 0.310 0.351

24 0.385 0.419 0.376 0.410 0.385 0.417 0.610 0.529 0.530 0.477 0.548 0.488 0.494 0.495 0.894 0.764 0.438 0.440 0.427 0.420 0.431 0.418
48 0.423 0.448 0.414 0.440 0.422 0.444 0.626 0.542 0.559 0.497 0.563 0.500 0.524 0.515 0.892 0.765 0.502 0.478 0.475 0.450 0.494 0.460
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The results indicate that our models consistently outperform other baselines in short-term forecasting
on the TaxiBJ dataset.

D.3.2 COMPARISON TO TIMER, TFT, AND N-BEATS

In this section, we incorporate additional baseline models for a more comprehensive evaluation.
Specifically, Timer (2024d) is included for zero-shot forecasting (Table 15), while TFT (2021) and
N-BEATS (2020) are included for in-domain forecasting (Table 16). The results indicate that our
models consistently demonstrate improved performance relative to these established approaches.

Table 15: Additional zero-shot forecasting results of Timer, with 1B, 16B and 28B representing the
scale of pretraining datasets as presented in the original paper Liu et al. (2024d). A lower MSE or
MAE indicates a better prediction. Red: the best, Blue: the 2nd best.

Models
TIME-MOE (Ours) Timer

TIME-MOEbase TIME-MOElarge TIME-MOEultra 1B 16B 28B

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.357 0.381 0.350 0.382 0.349 0.379 0.438 0.425 0.364 0.388 0.393 0.421
192 0.384 0.404 0.388 0.412 0.395 0.413 0.509 0.459 0.401 0.410 0.434 0.447
336 0.411 0.434 0.411 0.430 0.447 0.453 0.554 0.482 0.423 0.422 0.460 0.464
720 0.449 0.477 0.427 0.455 0.457 0.462 0.706 0.544 0.436 0.444 0.487 0.494

Avg. 0.400 0.424 0.394 0.419 0.412 0.426 0.552 0.478 0.406 0.416 0.444 0.456

ETTh2

96 0.305 0.359 0.302 0.354 0.292 0.352 0.315 0.351 0.294 0.350 0.308 0.369
192 0.351 0.386 0.364 0.385 0.347 0.379 0.393 0.402 0.353 0.385 0.348 0.398
336 0.391 0.418 0.417 0.425 0.406 0.419 0.412 0.422 0.376 0.400 0.366 0.414
720 0.419 0.454 0.537 0.496 0.439 0.447 0.425 0.440 0.393 0.420 0.409 0.446

Avg. 0.366 0.404 0.405 0.415 0.371 0.399 0.386 0.404 0.354 0.389 0.358 0.407

ETTm1

96 0.338 0.368 0.309 0.357 0.281 0.341 0.690 0.526 0.766 0.549 0.420 0.418
192 0.353 0.388 0.346 0.381 0.305 0.358 0.757 0.560 0.755 0.553 0.467 0.445
336 0.381 0.413 0.373 0.408 0.369 0.395 0.832 0.594 0.765 0.561 0.502 0.467
720 0.504 0.493 0.475 0.477 0.469 0.472 0.883 0.627 0.752 0.565 0.558 0.499

Avg. 0.394 0.415 0.376 0.405 0.356 0.391 0.791 0.577 0.760 0.557 0.487 0.457

ETTm2

96 0.201 0.291 0.197 0.286 0.198 0.288 0.213 0.295 0.234 0.312 0.247 0.324
192 0.258 0.334 0.250 0.322 0.235 0.312 0.283 0.339 0.287 0.343 0.294 0.358
336 0.324 0.373 0.337 0.375 0.293 0.348 0.346 0.377 0.340 0.373 0.335 0.385
720 0.488 0.464 0.480 0.461 0.427 0.428 0.424 0.424 0.437 0.426 0.386 0.418

Avg. 0.317 0.365 0.316 0.361 0.288 0.344 0.317 0.359 0.324 0.364 0.316 0.371

Weather

96 0.160 0.214 0.159 0.213 0.157 0.211 0.181 0.232 0.203 0.255 0.243 0.283
192 0.210 0.260 0.215 0.266 0.208 0.256 0.234 0.284 0.254 0.296 0.288 0.320
336 0.274 0.309 0.291 0.322 0.255 0.290 0.297 0.332 0.313 0.336 0.323 0.345
720 0.418 0.405 0.415 0.400 0.405 0.397 0.364 0.380 0.408 0.395 0.362 0.374

Avg. 0.265 0.297 0.270 0.300 0.256 0.288 0.269 0.307 0.294 0.321 0.304 0.331

Global Temp

96 0.211 0.343 0.210 0.342 0.214 0.345 0.250 0.373 0.245 0.372 0.308 0.425
192 0.257 0.386 0.254 0.385 0.246 0.379 0.299 0.415 0.300 0.418 0.359 0.465
336 0.281 0.405 0.267 0.395 0.266 0.398 0.347 0.451 0.365 0.466 0.415 0.507
720 0.354 0.465 0.289 0.420 0.288 0.421 0.452 0.521 0.542 0.585 0.579 0.617

Avg. 0.275 0.400 0.255 0.385 0.253 0.385 0.337 0.440 0.363 0.460 0.415 0.504

Average 0.336 0.384 0.336 0.380 0.322 0.372 0.394 0.406 0.378 0.393 0.344 0.391

Table 16: Additional results of in-domain forecasting baselines. A lower MSE or MAE indicates a
better prediction. Red: the best, Blue: the 2nd best.

Models
TIME-MOE (Ours) Full-shot Time Series Models

TIME-MOEbase TIME-MOElarge TIME-MOEultra TFT N-BEATS

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.345 0.373 0.335 0.371 0.323 0.365 0.478 0.476 0.383 0.405
192 0.372 0.396 0.374 0.400 0.359 0.391 0.510 0.486 0.453 0.447
336 0.389 0.412 0.390 0.412 0.388 0.418 0.548 0.505 0.517 0.493
720 0.410 0.443 0.402 0.433 0.425 0.450 0.549 0.515 0.594 0.546

Avg. 0.379 0.406 0.375 0.404 0.373 0.406 0.521 0.496 0.487 0.473

ETTh2

96 0.276 0.340 0.278 0.335 0.274 0.338 0.352 0.387 0.362 0.384
192 0.331 0.371 0.345 0.373 0.330 0.370 0.429 0.432 0.413 0.430
336 0.373 0.402 0.384 0.402 0.362 0.396 0.461 0.460 0.430 0.448
720 0.404 0.431 0.437 0.437 0.370 0.417 0.475 0.473 0.554 0.530

Avg. 0.346 0.386 0.361 0.386 0.334 0.380 0.429 0.438 0.440 0.448

ETTm1

96 0.286 0.334 0.264 0.325 0.256 0.323 0.468 0.444 0.334 0.372
192 0.307 0.358 0.295 0.350 0.281 0.343 0.557 0.488 0.379 0.401
336 0.354 0.390 0.323 0.376 0.326 0.374 0.682 0.528 0.421 0.425
720 0.433 0.445 0.409 0.435 0.454 0.452 0.722 0.565 0.476 0.471

Avg. 0.345 0.381 0.322 0.371 0.329 0.373 0.607 0.506 0.403 0.417

ETTm2

96 0.172 0.265 0.169 0.259 0.183 0.273 0.223 0.295 0.208 0.283
192 0.228 0.306 0.223 0.295 0.223 0.301 0.281 0.329 0.344 0.372
336 0.281 0.345 0.293 0.341 0.278 0.339 0.364 0.373 0.354 0.383
720 0.403 0.424 0.451 0.433 0.425 0.424 0.475 0.435 0.460 0.455

Avg. 0.271 0.335 0.284 0.332 0.277 0.334 0.336 0.358 0.342 0.373

Weather

96 0.151 0.203 0.149 0.201 0.154 0.208 0.186 0.231 0.165 0.224
192 0.195 0.246 0.192 0.244 0.202 0.251 0.240 0.275 0.209 0.269
336 0.247 0.288 0.245 0.285 0.252 0.287 0.302 0.317 0.261 0.310
720 0.352 0.366 0.352 0.365 0.392 0.376 0.388 0.369 0.336 0.362

Avg. 0.236 0.275 0.234 0.273 0.250 0.280 0.279 0.298 0.243 0.291

Global Temp

96 0.192 0.328 0.192 0.329 0.189 0.322 0.260 0.390 0.210 0.344
192 0.238 0.375 0.236 0.375 0.234 0.376 0.301 0.423 0.253 0.385
336 0.259 0.397 0.256 0.397 0.253 0.399 0.359 0.464 0.282 0.411
720 0.345 0.465 0.322 0.451 0.292 0.426 0.371 0.477 0.342 0.457

Avg. 0.258 0.391 0.251 0.388 0.242 0.380 0.323 0.439 0.272 0.399

Average 0.306 0.362 0.304 0.359 0.301 0.358 0.416 0.422 0.364 0.400
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E FORECAST SHOWCASES

To visualize the performance differences among various time series foundation models, we present
the forecasting results of our model, TIME-MOE, in comparison to the ground truth across six real-
world benchmarks. These benchmarks include ETTh1, ETTh2, ETTm1, ETTm2, Weather, and
Global Temp datasets. Alongside TIME-MOE’s results, we also show the performance of other
foundation models at different scales, providing a comprehensive view of their comparative capabil-
ities (Figures 6 – 11). In all figures, the context length is set to 512, and the forecast horizon is 96.
To enhance clarity and aesthetics, we display the full forecast output, complemented by a portion of
the preceding historical input data, ensuring a more intuitive comparison.

The results clearly demonstrate the superiority of TIME-MOE over the other foundational models.
Its ability to consistently produce more accurate forecasts across a range of datasets underscores
the effectiveness of its architecture and design. The performance gains are especially noticeable
in long-term prediction scenarios, where TIME-MOE’s handling of temporal dependencies proves
more robust than its counterparts. These visual comparisons highlight the practical advantages of
TIME-MOE in large-scale time series forecasting, reinforcing its status as a state-of-the-art model.
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(a) Time−MoE𝑏𝑎𝑠𝑒 (b) Time−MoE𝑙𝑎𝑟𝑔𝑒 (c) Time−MoE𝑢𝑙𝑡𝑟𝑎

(d) Moirai𝑠𝑚𝑎𝑙𝑙 (e) Moirai𝑏𝑎𝑠𝑒 (f) Moirai𝑙𝑎𝑟𝑔𝑒

(g) Chronos𝑠𝑚𝑎𝑙𝑙 (h) Chronos𝑏𝑎𝑠𝑒 (i) Chronos𝑙𝑎𝑟𝑔𝑒

(j) Moment (k) TimesFM

Figure 6: Zero-shot forecasting cases from ETTh1 by different models, with forecast horizon 96.
Blue lines are the ground truths and read lines are the model predictions.
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(a) Time−MoE𝑏𝑎𝑠𝑒 (b) Time−MoE𝑙𝑎𝑟𝑔𝑒 (c) Time−MoE𝑢𝑙𝑡𝑟𝑎

(d) Moirai𝑠𝑚𝑎𝑙𝑙 (e) Moirai𝑏𝑎𝑠𝑒 (f) Moirai𝑙𝑎𝑟𝑔𝑒

(g) Chronos𝑠𝑚𝑎𝑙𝑙 (h) Chronos𝑏𝑎𝑠𝑒 (i) Chronos𝑙𝑎𝑟𝑔𝑒

(j) Moment (k) TimesFM

Figure 7: Zero-shot forecasting cases from ETTh2 by different models, with forecast horizon 96.
Blue lines are the ground truths and read lines are the model predictions.

29



Published as a conference paper at ICLR 2025

(a) Time−MoE𝑏𝑎𝑠𝑒 (b) Time−MoE𝑙𝑎𝑟𝑔𝑒 (c) Time−MoE𝑢𝑙𝑡𝑟𝑎

(d) Moirai𝑠𝑚𝑎𝑙𝑙 (e) Moirai𝑏𝑎𝑠𝑒 (f) Moirai𝑙𝑎𝑟𝑔𝑒

(g) Chronos𝑠𝑚𝑎𝑙𝑙 (h) Chronos𝑏𝑎𝑠𝑒 (i) Chronos𝑙𝑎𝑟𝑔𝑒

(j) Moment (k) TimesFM

Figure 8: Zero-shot forecasting cases from ETTm1 by different models, with forecast horizon 96.
Blue lines are the ground truths and read lines are the model predictions.
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(a) Time−MoE𝑏𝑎𝑠𝑒 (b) Time−MoE𝑙𝑎𝑟𝑔𝑒 (c) Time−MoE𝑢𝑙𝑡𝑟𝑎

(d) Moirai𝑠𝑚𝑎𝑙𝑙 (e) Moirai𝑏𝑎𝑠𝑒 (f) Moirai𝑙𝑎𝑟𝑔𝑒

(g) Chronos𝑠𝑚𝑎𝑙𝑙 (h) Chronos𝑏𝑎𝑠𝑒 (i) Chronos𝑙𝑎𝑟𝑔𝑒

(j) Moment (k) TimesFM

Figure 9: Zero-shot forecasting cases from ETTm2 by different models, with forecast horizon 96.
Blue lines are the ground truths and read lines are the model predictions.
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(a) Time−MoE𝑏𝑎𝑠𝑒 (b) Time−MoE𝑙𝑎𝑟𝑔𝑒 (c) Time−MoE𝑢𝑙𝑡𝑟𝑎

(d) Moirai𝑠𝑚𝑎𝑙𝑙 (e) Moirai𝑏𝑎𝑠𝑒 (f) Moirai𝑙𝑎𝑟𝑔𝑒

(g) Chronos𝑠𝑚𝑎𝑙𝑙 (h) Chronos𝑏𝑎𝑠𝑒 (i) Chronos𝑙𝑎𝑟𝑔𝑒

(j) Moment (k) TimesFM

Figure 10: Zero-shot forecasting cases from Weather by different models, with forecast horizon 96.
Blue lines are the ground truths and read lines are the model predictions.
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(a) Time−MoE!"#$ (b) Time−MoE%"&'$ (c) Time−MoE(%)&"

(d) Moirai#*"%% (e) Moirai!"#$ (f) Moirai%"&'$

(g) Chronos#*"%% (h) Chronos!"#$ (i) Chronos%"&'$

(j) Moment (k) TimesFM

Figure 11: Zero-shot forecasting cases from Global Temp by different models, with forecast horizon
96. Blue lines are the ground truths and read lines are the model predictions.
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