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1. Introduction
Science is advancing at an increasingly quick

pace, as evidenced, for instance, by the exponen-
tial growth in the number of published research ar-
ticles per year [1]. On the one hand, this poses an
increasingly pressing challenge: Effectively navigat-
ing this ever-growing body of knowledge is tedious
and time-consuming in the best of cases, and more
often than not becomes infeasible for individual sci-
entists. On the other hand, from an AI point of view,
scientific literature offers a great opportunity: The
bodyof published researchworks offers a vast collec-
tion of highest-quality—literally expert-reviewed—
data about the relationships of concepts and the gov-
erning laws of our physical world.
Making use of the opportunity in order tomitigate

the challenge, computational systems have been in-
troduced which aim to support human researchers
in the initial phase of the scientific process by au-
tomatically extracting hypotheses from the knowl-
edge contained in published resources, i.e., by per-
forming automated hypothesis-generation (HG). Fa-
mously, [2] systematically used a scientific litera-
ture database to find potential connections between
previously disjoint bodies of research, as a result
hypothesizing a (later confirmed) curative relation-
ship between dietary fish oils and Raynaud’s syn-
drome. Swanson and Smalheiser then automatized
the search and linking process in the ARROWSMITH
system [3]. Their work and other more recent ex-
amples such as [4, 5, 6] demonstrate the usefulness
of computational methods in extracting latent infor-
mation from the vast body of scientific publications.
In the following, we summarize the current state

of our efforts to contribute to the development of a
fit-for-use HG system. Our report includes recent
developments regarding approaches to literature-
based HG and work aiming to make the resulting
type of HG system fit-for-use by scientists through
the provision of flanking explanatory information.

2. Hypothesis generation via temporally-aware
link prediction
In the context of HG, where the goal is to pre-

dict novel relationships between entities extracted
from scientific publications, comprehending prior

relationships is of paramount importance. Similar to
[7, 8, 9], we believe that modeling the temporal evo-
lution of these relationships thus plays a critical role
in constructing an effective and resilient HG model.
To harness the temporal dynamics, we

frame the HG task as a temporal graph prob-
lem. Given a sequence of timestamped graphs
G = {G0, G1, ..., GT }, each graph at time t is rep-
resented as Gt = (Vt, Et, Ft), where Vt is the set of
entities (nodes, domain concepts), Et is the set of
relations (edge types), and Ft ⊆ Vt × Et × Vt are
factual connections. These sets change over time,
reflecting the graph’s dynamic nature. The objective
is to predict which previously unconnected nodes in
GT should be linked.
In [10], we introducedTHiGER, a batch contrastive

temporal node-pair embeddingmethod for link pre-
diction. THiGER uses a hierarchical transformer
framework to effectively capture and learn from
temporal information inherent in the input knowl-
edge graphs, enabling efficient parallel temporal in-
formation aggregation. We also introduced THiGER-
A, an incremental training approach incorporating
an active curriculum learning strategy that trains the
model on high-utility samples whilst also mitigating
label bias arising from unobserved connections.
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Fig. 1: General overview of THiGER-A, highlighting
the Active Curriculum Learning strategy. [10]

Figure 1 shows the whole THiGER(-A) model. Let
vi, vj ∈ VT be nodes denoting two concepts. The pair
is assigned apositive label yi,j = 1 if a corresponding
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edge (i.e., a link) is observed in GT . That is, yi,j = 1
iff e(vi, vj) ∈ ET , otherwise 0. The model predicts a
score pi,j that reflects yi,j .
This link prediction score is givenby aneural clas-

sifier pi,j = fC(h
[0,T ]
i,j ; θC), where h

[0,T ]
i,j is an embed-

ding vector for the node pair, calculated using a hier-
archical transformer encoder (see Figure 2). The in-
put to the hierarchical encoder layer is the indepen-
dent local node pair embedding aggregation at each
time step. Subsequently, the local node pair embed-
dings aggregation is processed by the aggregation
layer. At each hierarchical layer, temporal node pair
embeddings are calculated for a sub-windowof fixed
size. The entire encoder architecture is denoted as
fE = f l

E : l = 1 . . . L.
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Fig. 2: Temporal Hierarchical Multilayer Encoder
taking as input the aggregated node pair embed-
dings at each time step, outputting the generalized
node pair embedding across all time steps. [10]

In [10] we modeled the classifier fC(.; θC) using
a multilayer perceptron network (MLP), the neigh-
borhood aggregation fA(.; θA) is based on Graph-
SAGE [11], and fE(.; θE) uses the described multi-
layer transformer encoder network. Empirical vali-
dation of our approach showed it to be effective in es-
tablished temporal-graph benchmarks and on real-
world datasets from the food-health domain.

3. More than just hypotheses
If the aim is tomakeHG systems truly useable and

useful for researchers in a scientific domain, it is not
sufficient to output only an isolated novel hypothe-
sis. Instead, additional information helping the do-
main expert to explain and contextualize the pre-
dicted hypotheses is strictly necessary. We, thus, are
working to complement our HG system with addi-
tional modules performing this explanation task.

3.1 KGExplainer
Working towards providing the information sci-

entists require to make sense of the generated hy-
potheses, in [12] we introduced KGExplainer, a post-
hoc and local explainable AI method tailored for
Knowledge Graph Embedding (KGE) models. It di-
rectly decodes the latent representations created by

KGE models, encoding the graph’s topology and the
interactions between its entities. KGExplainer lever-
ages the principle that similar embeddings reflect
similar behaviors within the symbolic structure of
the Knowledge Graph. By analyzing the subgraph
neighborhoods of these entities, symbolic regular-
ities in the form of conjunctive clauses are discov-
ered. KGExplainer translates these regularities into
symbolic rules, or triples comprehensible to hu-
mans, thereby uncovering the rationale behind the
models’ predictions in local subgraph contexts.
KGExplainer uses five steps to compile the ex-

planations: After getting the k-nearest neighbors
in the latent space of a predicted triple (Step 1), it
creates positive and negative entity-pairs from the
nearest neighbors (Step 2), and mines all possible
clauses and their frequency within the subgraph
neighborhood of the pairs (Step 3). It then identifies
the most descriptive clauses for positive entity-pairs
with the help of a surrogate model (Step 4), and fi-
nally grounds the most descriptive clauses to create
an explanation (Step 5). In doing so, KGExplainer
provides immediate, faithful explanations without
retraining, in doing so facilitating real-time applica-
tion on large-scale knowledge graphs.

3.2 GenACOX
True to the observation that different stakehold-

ers and end-users have varying preferences for how
explanations are presented [13, 14, 15], in addition
to KGExplainer we most recently also explored gen-
erative, instance-based post-hoc methods that iden-
tify the minimal and most relevant set of facts that
maximally influence a KGE prediction. We refer to
this class of models as the Generative Ant Colony
Optimization Explainer (GenACOX), which has sev-
eral desired properties. First, the generative na-
ture of GenACOX enables to find explanations that
may include previously unknown facts. Second,
since the space of possible facts is huge—of size
|V |2 × |E|—GenACOX leverages ant colony optimiza-
tion (ACO) [16] to efficiently explore this vast search
space. Third, GenACOX uses a fast-inference surro-
gate model that approximates the KGE scoring func-
tion. This surrogate allows for i) quick evaluation of
candidate fact sets as potential explanations; ii) re-
duces time and hardware requirements; and iii) en-
able applicability to black-box KGE models. That is,
to generate explanations even in scenarioswhere the
KGE model is proprietary so we can query it for pre-
dictions but lack access to its internal mechanisms
or training pipeline.

4. First steps on a long way
Whatwe presented are only pieces of a larger puz-

zle. Making HG systems maximally useful for sci-
entists will require further exploration of the role
these systems can play in actual day-to-day research
work—a process that crucially needs to involve sci-
entists throughout for input and feedback.
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