
Supplemental Material for539

“Efficient Sequence Packing without Cross-540

contamination: Accelerating Large Language541

Models without Impacting Performance”542

543

Table of Contents544

1 Introduction 1545

2 Sequence length distributions 2546

3 Methods 3547

3.1 Packing algorithms . 3548

3.2 packedBERT: model changes . 4549

3.3 Adjust hyperparameters . 5550

4 Experiments 6551

4.1 Bin packing algorithm comparison . 6552

4.2 MLPerf™ phase 2 pretraining setup: learning curves and hyperparameter adjustment 7553

4.3 Full pretraining and SQuAD finetuning . 8554

4.4 Scaling analysis: Impact of accelerators count . 9555

5 Conclusion 9556

A Broader impact 16557

B Reproducibility Statement 16558

C Related work 17559

D Theorem on LAMB hyperparameter correction heuristic 18560

E Un-padding scaling estimate 19561

F Technical background on packing 21562

F.1 Canonical packing problem . 21563

F.2 Approximate bin packing problem . 21564

F.3 Definitions . 22565

F.4 Non-negative least squares histogram-packing . 22566

F.5 Discussion of residual weight choice . 25567

G Complexity analysis of the proposed packing approaches 26568

G.1 Complexity Analysis of non-negative least-squares histogram-packing 26569

G.2 Complexity Analysis of shortest-pack-first histogram-packing 27570

H Performance Comparison to GREEDY Packing in T5 27571

14

I Impact of NSP loss 27572

J Wikipedia with Longer Sequence Length 28573

K Packing SQuAD 1.1 29574

L Packing GLUE 30575

M Packing Audio Data (LibriSpeech) 31576

N Packing Paper Abstracts (PubMed) 32577

O MLPerf™ phase 2 learning curves 33578

P Full pretraining of BERT base and large learning curves 34579

Q Note on changing the sequence length for optimal packing 36580

R Fine-tuned longest-pack-first histogram-packing 36581

S Extended NNLS with padding token weighting 37582

T Packing source code 38583

15

A Broader impact584

We showed that when pre-training BERT on Wikipedia, the computational overhead taken to process585

padding tokens is roughly 50%. By eliminating this wasted computational time, the approach586

presented in this paper paves a way to halving the carbon footprint of training BERT-based models.587

Furthermore, our approach circumvents the need for custom kernels, making the benefits of packing588

readily accessible to a broader audience of NLP practitioners. As such, we are hopeful the research589

will have a positive impact on the NLP community, and do not see any disadvantage of using this590

approach.591

The benefit of our algorithm is based on two assumptions: A skewed length distribution in the592

training dataset and a hardware setup that trains efficiently on a fixed batch size. If efficient training593

is possible, with a variable batch size approaches like FasterTransformer and the fairseq sorted batch594

approach will result in the same or even larger benefits (due to smaller self-attention matrices). If the595

dataset is generated differently like in GPT models [4] and RoBERTa (FULL-SENTENCES) [16], all596

sequences will be at full length and sequences cannot be concatenated and there is indeed no benefit597

in packing sequences. However, strategies that reach full sequence length usually combine segments598

from different unrelated document sources which can result in reduced performance. Even in the599

normal BERT model, there might be this contamination between segments from different documents.600

Our paper introduced an approach to avoid the contamination between sequences. However, the same601

approach could also be applied to avoid contamination between segments and it remains future work602

to explore its benefits beyond BERT pretraining.603

Future work would need to investigate the applicability of packing on text produced by different604

cultures and in different languages. We have already shown that the speed-up resulting from using605

our methods does not only occur when pre-training BERT on Wikipedia but also on other datasets606

such as SQuAD and GLUE. Furthermore, the sentence length distribution of the original English607

language text shows similar characteristics. Our research leads us to believe that compressible608

distributions arise naturally in language tasks and beyond, for instance in DNA sequence lengths [40],609

protein lengths [39], and speech (Section M). Many such sequence modelling workloads are based610

on variations of the BERT/transformer architecture and would therefore easily benefit from our611

acceleration.612

Failures in NLP can have a big impact on society; many technologies, such as Alexa, Siri, and Google613

Home, rely on them. Whilst any errors arising from our approach can be avoided, one potential source614

of error comes from the implementation. Both the attention mask and the per-sequence loss need to be615

modified to support packing. These changes are significantly smaller than those required by custom616

kernels, however they may still be time consuming to implement and debug. To help mitigate the risk617

of any implementation errors, we share our reference implementations of the required changes in the618

appendix.619

B Reproducibility Statement620

All code for the packing algorithms is available in the appendix (Section T) and is directly linked to621

our GitHub page to simplify the download and usage. We even provide code for different variants622

and the histograms of sequence length for different datasets that got tokenized for BERT training of623

fine-tuning.624

To generate the learning curves, our public submission to MLPerf™ could be used and we are625

preparing further code releases in other frameworks. To encourage the use of the adjustments of626

models for packed sequences, we additionally provide detailed explanations and code snippets in627

TensorFlow.628

Detailed mathematical formulas (Section E and F), a theorem proof (Section D), and complexity629

calculations (Section G) are provided in this appendix to support our claims in the paper in full detail.630

16

C Related work631

The most obvious way to reduce the extent of padding in the dataset is to group samples by size632

before batching (SORT), i.e., process the shorter samples together and longer samples together.633

BERT is pre-trained in two phases, where the first phase uses sequence length 128 for 900K steps634

and the second phase uses sequence length 512 for 100K steps. However even by splitting the635

training in this way, the wasted compute due to padding is approximately 20% (see Figure 1). Other636

examples of this “sorted batching” approach can be found in Faster Transformer [21], lingvo [28]637

fairseq [22], and RoBERTa [16], which group samples of similar size together in one batch and fill638

up with padding only to the maximum length in this batch. This approach can be highly efficient639

in cases where the dataset length is multiple orders of magnitude larger than the batch size and the640

number of different sequence lengths. Despite its high computational efficiency, this approach has641

multiple drawbacks. We outline these below and propose an alternative which maintains the high642

efficiency, while also circumventing the downsides. Firstly, sorting the data can reduce the overall643

convergence speed when the batch size is large because it violates the i.i.d. assumption on the data644

distribution [2, 18]. Secondly, processing batches with shorter sequence lengths under-utilizes the645

compute compared to running the same batch size with a longer sequence length. For GPUs, a646

common heuristic to mitigate this effect is to adjust the batch size to keep the number of processed647

tokens near constant [22, 16]. In general however, the relationship between the sequence length648

and the optimum batch size is more complex and maximizing compute utilization can require the649

model to be sharded differently across multiple accelerators. Avoiding this, often manual process,650

is important for ease of use and the portability of methods across different hardware architectures.651

Thirdly, modern NLP applications are optimized and compiled for fixed tensor sizes using tools such652

as XLA [34, 9], which provides a ⇡ 7x acceleration for BERT in MLPerf™ [17] compared to the653

non-XLA baseline [34]. Changing the sequence length or batch size requires re-optimization of654

the computational graph and recompilation of the program for the new tensor shapes. For complex655

models such as BERT, optimization and recompilation take a non-negligible amount of time. Even if656

one pre-compiled and cached all combinations of batch size and sequence length, the kernels would657

still need to be re-uploaded to the device every time the shapes change. Depending on how frequently658

the tensor shapes change, the overhead from switching kernels adds up. To avoid these issues, it is659

preferable (and common) to work with fixed tensor shapes for the entire duration of the training run.660

More advanced approaches for reducing the padding overhead rely on custom computational kernels.661

Loosely these are referred to as “un-padding” approaches. In Effective Transformer [5], the input662

batch is provided as a padded matrix but padding values are dynamically removed and restored during663

different calculation stages. While un-padding implementations are highly sophisticated and are able664

to completely circumvent the processing of padding tokens, they introduce a significant overhead665

due to the multiple GPU kernel launches (i.e., one kernel per sequence rather than one kernel per666

batch). Additionally the time to process each batch will fluctuate depending on the sequence lengths667

in each batch, i.e., batches with only shorter sequences will typically be processed faster. When668

working with more than one accelerator, this variability in throughput results in all devices in the669

cluster waiting for the device with the most compute intensive batch to finish processing. As such,670

un-padding approaches are not appropriate for deployment on large clusters. The “packing” based671

approach introduced in this paper offers significant advantages over un-padding approaches. Firstly,672

packing is implemented directly at the framework level and requires no additional custom kernel673

implementations. Secondly, the processing time for each batch is independent of the content of the674

batch, allowing the packing based approach to maintain the same speed-up whether running on a675

single device or thousands.676

While we demonstrate the effectiveness of packing specifically on the Wikipedia dataset, packing677

SQuAD [25] or GLUE datasets [31, 30] for BERT also leads to significant speed-ups (some in excess678

of 9x) (Sections K and L). The effectiveness of packing is a result of both the length distribution679

of the documents in the source datasets as well as the different text preprocessing steps for BERT680

[8]. The use of bi-directional self-attention in BERT implies that the input sequences should contain681

complete sentences. If a sentence is abruptly cut short, the hidden state on other (preceding) tokens682

in the sequence will be affected. Language models with causal attention (only attending to previous683

tokens in the input) do not have this issue to the same degree. For such models, if a sequence is684

cut short at an arbitrary token, the other tokens (which occur earlier in the sequence) will not be685

affected. This ability to cut sequences arbitrarily completely trivializes the packing problem for686

models based on causal attention. For instance, GPT-3 [4] is trained with a maximum sequence687

17

length of 2048 where a single sequence may contain multiple segments of sentences separated by a688

special end of segment token. The last segment in each sequence is simply cut to meet the sequence689

length requirement making the packing problem trivial and avoiding any padding. In the interest690

of computational efficiency GPT-3 does not mask the attention between different segments in a691

sequence. In contrast, the packing approach presented in this paper introduces a mask in the attention692

layer (see Section 3.2.2) to prevent cross-contamination between examples in a pack. Note, we mask693

the interaction between different sequences and not between different sentences or segments in the694

same sequence. This ensures that the characteristics of the original dataset and model are matched695

as closely as possible. RoBERTa and many other models in production like T5 [24] use a similar696

packing approach as GPT-3, combining full sentences/sequences with GREEDY packing (first come697

first concatenate) and also separation tokens or additional padding. The RoBERTa ablation study698

shows that mixing of sentences from different documents reduces accuracy, but it is used nonetheless699

for load balancing reasons which indicates that sorted batching is not sufficient.700

There might be hidden code snippets as in the deprecated tensor2tensor library that seems to im-701

plement the same attention masking mechanism as we propose. However, these lack a sufficient702

documentation, testing, evaluation, ablation, and communication to the research community to be703

considered state of the art in NLP research. More general, to the best of our knowledge and the704

knowledge of many other engineers and researchers that we were in contact with, there is no other705

research work that focuses on packing in NLP.706

D Theorem on LAMB hyperparameter correction heuristic707

With packing, the effective batch size changes and hence hyperparameters of the LAMB optimizer [35]708

need to be adjusted. For a packed dataset with a packing factor p, we update the decay parameters as:709

�1 := �
p
1 , �2 := �

p
2 . For instance if �1 = 0.81 for the un-packed dataset, then for a packed dataset710

with an average of 2 sequences per sample one should use a value of 0.812 ⇡ 0.66 instead. Assuming711

no or only minor changes in gradients and p being a natural number, we can prove that this heuristic712

is the exact solution to make sure that momentum and velocity in LAMB are unaffected by packing.713

This can be proven by mathematical induction. Note that p � 1 by definition.714

Theorem D.1. For any p 2 N and assuming that respective gradients on a batch of b random samples715

are (approximately) the same, choosing716

�1 := �
p
1 (1)

�2 := �
p
2 . (2)

as hyperparameters in the LAMB optimizer ensures that the momentum and velocity after p separate717

update steps are the same as with one packed update step with p⇥ b samples.718

Proof.719

• Base Case:720

For p = 1 the left and right side of the equation are the same which matches exactly the721

unpacked case. Hence, the theorem holds for p = 1.722

• Inductive hypothesis: Suppose the theorem holds for all values of p up to some k, k � 1.723

• Inductive proposition: The theorem holds for p = k + 1.724

• Proof of the inductive step: Let l be the loss function, wt the weight vector after t updates,725

and x
t
1, . . . , x

t
b the respective underlying data to calculate the gradient gt. For a single726

update step in LAMB with batch size b samples, we compute the gradient727

gt =
1

b

bX

i=1

@l

@w
(xt

i, w
t). (3)

Since g1 ⇡ g2 ⇡ . . . ⇡ gk+1, We have with the inductive hypothesis and the definitions in728

LAMB:729

mk = �
k
1m0 + (1� �

k
1)g1 (4)

vk = �
k
2 v0 + (1� �

k
2)g

2
1 (5)

18

https://github.com/tensorflow/tensor2tensor/commit/c9144dfa5f514cab529f487b069415daee5e211e#diff-3c271923bb62bdd35f3b0f6a2c94ea320825d834bbf51334a9acbc04fbea9763R538

Now we can calculate (with g1 ⇡ gk+1)730

mk+1 = �1mk + (1� �1)gk+1 (6)

⇡ �1

�
�
k
1m0 + (1� �

k
1)g1

�
+ (1� �1)g1 (7)

= �
k+1
1 m0 + (1� �

k+1
1)g1 (8)

The calculation for vk is the same. As reference for a packed update with p = k+1 with �1731

and �2, we would get732

g =
1

pb

pX

j=1

bX

i=1

@l

@w
(xj

i , w
1) =

1

p

pX

j=1

1

b

bX

i=1

@l

@w
(xj

i , w
1)

!
⇡ 1

p

pX

j=1

g1 = g1 (9)

since we are calculating gradients over b samples which are assumed to be approximately733

the same. Consequently, the updates for momentum and velocity would be734

mk = �1m0 + (1� �1)g1 (10)

vk = �2v0 + (1� �2)g
2
1 . (11)

Hence, �1 = �
k+1
1 and �2 = �

k+1
2 is required to map to the formula with the consecutive735

updates (for the same amount of data).736

• Conclusion: The theorem holds for any p 2 N.737

738

Since we proved that the formulas �1 := �
p
1 , �2 := �

p
2 . hold for all p 2 N, p � 1, it is safe to assume739

that it is an appropriate heuristic for all p 2 R, p � 1.740

E Un-padding scaling estimate741

To demonstrate the severity of the load-imbalance issue in Section 4.4 we consider the scaling of an742

un-padding approach with a per-device batch size of 32 running on eight devices [20]. From there,743

we readily extrapolate the performance to both larger and smaller cluster sizes by fitting a Gumbel744

distribution to the observed processing times as described in this section. On a single device with745

batch size 32 un-padding outperforms packing and exceeds the theoretical upper-bound for packing.746

As the number of devices increases to two or more, the proposed packing approach outperforms the747

dynamic un-padding approach. On a cluster with 32 accelerators the speed-up from un-padding drops748

to 50% and with 2048 devices the speed-up is only 30%. In contrast, the speed-up due to packing749

is independent of the number of accelerators and stays at 1.913. Switching to a smaller batch size750

would reduce the load-imbalance issue to some extent, but would also result in under-utilization of751

the available memory and compute.752

Firstly, we retrieve the per-batch processing time for an un-padding implementation running pre-753

training on the Wikipedia dataset from [20]. These processing times were obtained using 8 GPUs754

each with a per-device batch size of 32. We also retrieve the throughput numbers for the same system755

running with padding from [44] and use that as the baseline to compare the un-padded throughput756

against.757

The throughput on the 8 GPU system is effectively limited by the slowest of the eight batches being758

processed in parallel. The Gumbel distribution is particularly suited to modelling the maximum or759

minimum value of a fixed size collection of i.i.d. samples (in this case batches). We observe that on760

8 GPUs the throughput (i.e. speed-up) distribution indeed closely resembles a Gumbel distribution761

with ↵1 = 1.6 and �8 = 0.13 as shown in Figure 6.762

We can extrapolate the performance on the 8 GPU system to larger clusters by recognizing that763

the processing time for each cluster is effectively determined by the slowest batch being processed.764

Specifically, we could randomly sample (without replacement) two processing times for the 8 GPU765

system, and record the max of the two as the processing time for a system of 16 GPUs. However,766

this simple approach is too sensitive to outliers in the data and would result in an under-estimate767

of the performance of un-padding on large systems. We mitigate the effect of outliers in the data768

19

Figure 6: Left: Speed-up from un-padding on 8 GPUs closely resembles a Gumbel distribution.
Right: statistical estimate of speed-up distribution on a 1 GPU system running un-padding

by avoiding directly sampling the processing times. Instead, we fit a Gumbel distribution to the769

processing times of a single batch of size 32 running on one GPU. To perform the fit, we observe that770

the cdf on one GPU (P1) is related to the cdf on 8 GPUs (P8) through [41](section 1.3):771

(1� P8(s)) = (1� P1(s))
8 (12)

In other words, if the speed-up on the cluster is larger than s, this implies that the speed-up on772

every GPUs in the cluster was at least s. Assuming P1 is Gumbel and given the 8 GPU Gumbel773

parameters ↵8 and �8, we need to fit two parameters, ↵1 and �1. Consequently for the median774

(s = ↵8 � �8 ln(ln(2)), P8(s) = 0.5), we have:775

0.5 = (1� P1(↵8 � �8 ln(ln(2))))
8
. (13)

And since P8 is Gumbel, we also have an equation for the mode (s = ↵8, P8(s) = e
�1):776

(1� e
�1) = (1� P1(↵8))

8
. (14)

We solve these two non-linear equations simultaneously using the standard SciPy optimization777

package.778

Listing 1: Infer Gumble distribution parameters.
import numpy as np779
from scipy import stats, optimize780
alpha_8 = 1.6038781
beta_8 = 0.1288782
def g(x):783
 alpha_1, beta_1 = x784
 dist = stats.gumbel_r(loc=alpha_1, scale=beta_1)785
 # Equations for median and mode786
 median = alpha_8 - beta_8*np.log(np.log(2))787
 equation1 = 0.5 - dist.sf(median)**n_gpu788
 mode = alpha_8789
 equation2 = (1-np.exp(-1)) - dist.sf(mode)**n_gpu790
 return (equation1**2 + equation2**2)791

792
res = optimize.minimize(g, [alpha_8, beta_8], method="Nelder-Mead")793
alpha_1, beta_1 = res.x794

The resulting estimated speed-up Gumbel distribution for a single device has ↵ = 1.94, � = 0.108795

and is shown in Figure 6 [right]. To simulate the performance of a cluster of size n with a batch796

size of 32 per device, we take the minimum over n samples from this distribution. Repeating this797

process to generate many samples allows us to estimate the expected speed-up for any given cluster798

size. Unfortunately, we cannot make any statistical inference about the processing times of individual799

sequences since the data is only provided at the granularity of 32 sequences per batch, and it is not800

clear how much of the computation is done in parallel and how much in serial.801

20

F Technical background on packing802

F.1 Canonical packing problem803

The bin packing problem deals with the assignment of items into bins of a fixed capacity such that the804

number of utilized bins is minimized. In the canonical formulation of the packing problem a vector805

s(i) of length n is used to represent the items being packed, where s(i) denotes the length of the i-th806

sequence/item. The allocation of items into bins is tracked through the assignment matrix B, where807

Bij 2 {0, 1} states whether the i-th sequence should be placed into the j-th bin. In the worst case808

scenario, every item is assigned to its own bin, thus B 2 Rn⇥n. Notably, s grows linearly in the809

number of sequences/items being packed and B grows with the square. To mask out unused bins810

yj 2 {0, 1}, denotes whether the j-th bin is being used. The optimization objective is to minimize the811

sum of yj while making sure to assign each si to exactly one bin and not exceeding the maximum812

bin capacity sm for each bin. This problem formulation is well known as bin packing [14].813

min
y2{0,1}n,B2{0,1}n⇥n

nX

j=1

yj Minimize the number of bins.

s.t.
X

j=1

bij = 1 8i Assign each length/sequence to only one bin.

nX

i=1

s(i)bij smyj 8j Cumulative length cannot exceed capacity.

(15)

Bin packing is a strongly NP-complete [14] problem. Producing an exact and optimal solution814

is possible with a variety of existing algorithms, for example with the branch-and-cut-and-price815

algorithm [37]. However, given that we want to apply it for very large n (16M for the Wikipedia816

dataset) an approximate approach is required.817

F.2 Approximate bin packing problem818

Approximate packing approaches are divided into online and offline algorithms [12]. Online algo-819

rithms process incoming sequences one-by-one in a streaming fashion, whereas offline algorithms820

have a holistic view of all samples to be packed but typically still operate on a per sample basis.821

This results in best case time and memory complexities of at least O(n log(n)) and solutions that822

can sometimes be far from optimal, especially for the online algorithms which do not have access823

to a holistic view of the datasets. The simplest online approach (next-fit) would be to keep a single824

open bin at any given time. An incoming sequence is added to this open bin if it fits, otherwise the825

bin is closed (can never be appended to again) and a new one is opened to accommodate the new826

sequence [12]. In the case of the Wikipedia pre-training dataset almost 25% of the sequences are of827

length 512, which makes this approach very inefficient since bins would frequently be closed because828

the incoming sequence did not fit. More specifically, this approach is not able to efficiently combine829

one long sequence with one shorter sequence, when the number of long sequences is large. The830

algorithms that come closest to the approaches proposed in this paper are the online harmonic-k algo-831

rithm [15], which creates harmonic sized bins for the assignment decision, and the offline Modified832

First Fit Decreasing method [13, 36], which sorts the data, groups it into 4 size categories and defines833

a strategy adjusted to these sizes.834

In our approaches, we make three major simplifications. We make the problem of bin packing less835

dependent on n by operating on the histogram of sequence lengths with bin size 1. Hence, we replace836

s(i) by its histogram b and the bin assignment y,B by a mixture of strategies x, where the set of all837

available packing strategies is modeled as the matrix A (see also Section F.4.2).838

Then, we do not solve the full packing problem but focus on a fixed packing depth (in other words839

the well known 3-partition problem). Last but not least, we solve the limited depth packing problem840

only approximately either with a non-negativity-constrained linear least squares [3] (NNLS) followed841

by rounding to nearest integer solution or by applying Worst-Fit [13, 36] to the histogram, sorted842

from largest to smallest (in contrast to using an unsorted dataset). An exact solution would not be843

appropriate, since the 3-partition problem is strongly NP-complete [38] as well.844

21

F.3 Definitions845

In this section, we standardize the terms used throughout our methods. Firstly, the terms pack and bin846

may be used interchangeably. Secondly, the presented packing schemes impose a limit on how many847

sequences can be packed into any given bin. This limit is referred to as the maximum packing depth.848

For simplicity, we require the different sequence lengths in a pack to always add up exactly to the849

bin capacity sm (we can always generate a padding sequence of just the right length to fill-up the850

bin). A packing strategy is a sorted list of sequence lengths, for example [5, 7, 500], such that the851

total sequence length is no more than sm and the number of sequences in the pack does not exceed852

the maximum packing depth. The output of a packing scheme is typically as set of packing strategies853

and the corresponding repeat count for each strategy stating how many times each strategy should854

be repeated in order to cover the entire dataset. The strategy repeat count is also referred to as the855

mixture of strategies. The objective of the packing algorithm is to jointly design a set of packing856

strategies and their repeat counts, such that the amount of padding is (approximately) minimized.857

The presence of padding in the packs can either be implicit or explicit. For instance for sm = 512858

the strategy [2, 508] has an implicit padding of 2 (needed to fill the pack up to the sm). Alternatively,859

the strategy repeat count may over-subscribe a particular sequence length leading to explicit packing.860

For instance constructing a pack of [4, 508] may require a new padding sequence of length 4 be861

constructed, if there are not enough sequences of that length in the dataset. The packing algorithms,862

we present, use both representations.863

F.4 Non-negative least squares histogram-packing864

The first algorithm proposed in this paper is suitable for settings where it is desirable to achieve a865

high packing efficiency with a limited packing depth. The algorithm is deterministic and has three866

major components described in Sections F.4.1, F.4.2 and F.4.3.867

F.4.1 Enumerating packing strategies of fixed packing depth868

Listing all unique ways of packing up to a maximum packing depth can be achieved through dynamic869

programming. We only consider packing at most up to 3 sequences per pack. This is the smallest870

packing depth that can eliminate the need for most padding on the Wikipedia dataset. Increasing the871

depth to 4, increases the size of the packing problem drastically and yields no throughput benefit.2872

With only two sequences, packing would be not as efficient since the distribution on sequence length873

is not symmetric. We use dynamic programming to enumerate all feasible ways/strategies that up874

to M sequences of length 1� 512 can be packed into a bin of length 512. For example, a packing875

strategy may be [512] or [6, 506] or [95, 184, 233]. To avoid listing the same strategy multiple times,876

we enforce the sequence lengths within a pack to occur in sorted order, for example, [95, 184, 233] is877

equivalent to [184, 95, 233] and should only be listed once. This reduces the search space as well as878

the space of potential solutions by a factor of 6 approximately and thus significantly accelerates the879

optimization process. If you had the same strategy repeated 6 times instead of having just one instance880

of that strategy with weight X , you will have six instances with weight x/6 (for example, or any881

other distribution). This would conflict with integer rounding of the solutions and with convergence882

of optimization algorithms.883

F.4.2 Constructing the packing matrix884

The number of rows in the packing matrix is equal to the number of different sequence length885

categories. For instance, if we are using a granularity of 1 token to distinguish between different886

sequence lengths, then there are “maximum sequence length” rows. Each column of the matrix887

corresponds to a valid packing strategy (given the depth of packing). An example packing matrix888

for fitting up to 3 sequences into sequence length 8 is given in Table 4. Each column of the matrix889

represents a packing strategy. For instance, the first column represents the strategy [1, 1, 6] of890

packing two length-1 sequences and one length-6 sequence together to form a pack of length 8. The891

number of strategies (and columns in the matrix) is discussed in Section G. For a packing depth892

of 3 and maximum sequence length, we obtain around s2m+6sm+12
12 strategies. For depth 4, around893

sm(sm+4)(2sm+1)
288 more get added.894

2For data distributions that are more skewed than Wikipedia this might look different.

22

Table 4: Example packing matrix for sequence length 8. Columns represent different kinds of packs.
Rows represent the number of sequences in these packs with a certain length. The last column
represents a pack with only a single sequence of length six.

2 1 1 1 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 2 0 1 0 0
0 0 1 0 1 0 0 0 2 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

F.4.3 Solution of the NNLS approximate packing problem895

A solution of the packing problem is the mixture of packing strategies x that minimizes the amount of896

padding in the packed dataset. We solve directly for the mixture (positive real numbers) and recover897

the padding as the negative portion of the residual (see Section F.4.4).898

min
x2Rm

kA · x� bk2

s.t. x � 0
(16)

The solution vector x will represent the mixture of the columns of A, in other words the mixture899

of valid packing strategies such that A · x is as close as possible (in the least squares sense) to the900

histogram of sequence lengths b. We obtain a solution with a non-negative least squares implemen-901

tation [42, 46] Interestingly in the case of sequence length 512 only 634 out of the 22102 available902

packing strategies of depth up to 3 are used (3%).903

F.4.4 Padding as the residuals of the packing problem904

We compute the residuals of the least squares solution (after rounding the mixture to integer) as:905

r = b�A · round(x) (17)
The negative portion of the residuals represents sequences that we are “short”. That is, there is a906

deficit of those sequences and we are over-subscribing to them. The positive portion of the residuals907

represents sequences which have failed to be packed. Typically, there is a deficit of short sequences908

and a surplus of long sequences as demonstrated by the following plot.909

Figure 7: Visualization of the residual of the NNLS packing problem

In total, there are n = 16‘279‘552 sequences in the Wikipedia pre-training dataset. After910

the non-negative least squares packing (and rounding to integer solution) there are 56‘799 un-911

packed sequences left un-packed (about 0.352%). The residual on sequence lengths 1 to 8 are912

23

[�4620,�4553,�4612,�4614,�3723,�3936,�3628,�3970]. These negative residuals imply913

that we need to add this many sequences of their corresponding sequence length to realize the mixture914

of packing strategies. In total the first iteration introduces 7.94106 tokens of padding. In contrast915

large sequence lengths have a positive residual (a surplus of unused sequences). For sequence lengths916

504 to 512 the values are [3628, 3936, 3724, 4613, 4612, 4553, 4619, 0]. Note that sequence length917

512 has a residual of 0 since they do not need packing. Intermediate sequence lengths typically have918

non-zero (but much smaller) residuals.919

The detailed code for the algorithm is provided in Listing 2.920

F.4.5 Residual weighting921

A natural extension of the non-negative least squares problem introduced in Section F.4.3 is to weight922

the residuals on different sequence length differently.923

min
x2Rm

k(wA) · x� (wb)k2

s.t. x � 0
(18)

We should not significantly penalize a deficit in short sequence lengths (smaller than 8 tokens) as924

adding up to 8 tokens of padding is not much overhead. Similarly, a surplus in long sequences is925

not worrisome because the amount of padding needed to achieve a sequence length of 512 is small.926

Reducing the weight of the residual on the first 8 tokens to 0.09 leads to the following residual plot927

shown on the right in Figure 8. In this case the residual is almost entirely shifted to the shorter928

sequences and the positive residual on the longer sequences has virtual disappeared.929

Figure 8: Visualization of the weighted residual of the NNLS packing problem

24

F.5 Discussion of residual weight choice930

This section discusses the choice and effect of the weighting parameters in the NNLSP packing931

algorithm. To simplify the problem of selecting reasonable defaults for the residual weights, we932

use just two parameters to completely describe the weights: an “offset” parameter and a “weight”933

parameter. Originally, all sequence length residuals are given the same weight of 1. This results934

in a packing with leftover long sequences, because there are not enough short sequences to pack935

them with. To reduce the residual on long sequences, we could either increase the residual weight on936

long sequences or reduce the weight on short sequences. We chose to reduce the weight on short937

sequences. Specifically, sequence lengths up to the “offset” length have a reduced “weight”. The938

other residual weights stay at 1.939

To start, we chose an offset of 8 tokens, which is the smallest power of 2 for which there are examples940

in the Wikipedia dataset. We decrease the weight on sequences shorter than the “offset” from 1 to 0.9941

to 0.09 to see which order of magnitude is the most appropriate. On visual inspection (looking at the942

residual plots as in Figure 8), we found that 0.9 still left too many long sequences unpacked. So, we943

reduced the weight a further order of magnitude to 0.09. This seemed sufficient to encourage nearly944

all long sequences to pack. While visual inspection helps in understanding how many long/short945

sequences are leftover, we are also interested in the impact the weights have on the overall efficiency946

of the packing.947

Without any weighting, we get 99.746359% efficiency, whereas the weighted approach results in948

99.746274% efficiency. Hence, we conclude that the impact of the weights on the packing efficiency949

is very limited. Additionally, using an “offset” length of 4, resulted in similar numbers, for the full950

range of weights from 0 to 1. Using a weight of 0 for an “offset” length of 8 resulted in insignificantly951

higher efficiency of 99.7519%, whereas using an “offset” length of 16 reduces performance to952

99.38964%. A weight of 0 implies that the residual on those lengths can be safely ignored, i.e., the953

packing algorithm can thus add as many short sequences as it chooses without any penalty. It is954

very interesting that this does not significantly impact the packing efficiency, and can even have a955

slightly positive impact. However, increasing the “offset” length further significantly decreases the956

performance with weight 0. Keeping the weight at 0.09 and increasing the length reduces performance957

slightly, for example with 99.53% at length 256 and 99.728% at length 16.958

For our Squad analysis, weighting improved the efficiency slightly from 96.94% to 97.38%. Fine959

tuning further with direction grid search, delivered a local optimum of 98.767% efficiency with length960

64 and weight 0.002.961

Overall the influence of different residual weights on the packing efficiency (and the acceleration962

factor) is less than 1%. This might differ from application to application, but it shows that we are963

able to use the residual weights to achieve secondary targets (like not having leftover long sequences)964

without significantly compromising the packing efficiency.965

25

G Complexity analysis of the proposed packing approaches966

Since approximate packing algorithms have a complexity of at least O(n log(n)) and we would like967

to be able to tackle datasets with 2K million samples, we will discuss the complexity of our packing968

algorithms in this section. The complexity depends on the maximum sequence length sm, the number969

of samples n, and the packing depth d.970

To create the histogram, we have to iterate over the data once (O(n)). Our histograms will be binned971

by size 1, meaning one bin for each sequence length. Hence, a dictionary can be generated (O(sm))972

and used for the sorting (O(1)). The respective histogram vector has dimension sm.973

G.1 Complexity Analysis of non-negative least-squares histogram-packing974

For a packing depth of one, there is only the strategy [sm]. For a packing depth of two, we add975

the strategies [1, sm � 1], ..., [sm � b sm
2 c] which results in an additional b sm

2 c potential strategies.976

Following the dynamic programming approach, the number of possible additional strategies of depth977

three can be calculated with978

potential strategies =
b sm

3 cX

j=1

b sm�j
2 cX

i=j

1 =

b sm
3 cX

j=1

�
sm � j

2

⌫
� (j � 1)

⇡
b sm

3 cX

j=1

sm

2
� 3

2
j ⇡ sm

2

sm

3
� 3

2

sm/3(sm/3 + 1)

2

⇡

s
2
m

12

�

(19)

Note that for sm = 512 the approximation is exact. This means that our strategy matrix A has the979

dimensions sm ⇥
⇣h

s2m
12

i
+ b sm

2 c+ 1
⌘

. Overall, this leaves us with a space complexity of s3m since980

A is larger than w, x, and b. So it contains 11‘316‘224 numbers which is still much smaller than981

n. Note that the original data matrix B had n
2 entries, which all needed to be optimized together982

with the n bin assignments y. We now have only
h
s2m
12

i
+ b sm

2 c free variables in the strategy vector983

x. Also note that A can be precomputed when sm is known and is independent of the number of984

samples. Given a problem matrix with dimension i⇥ j, Luo et al. [43] indicate that the asymptotic985

complexity of most solution approaches is O(ij2), whereas they propose an O(ij) solution. Since986

we use the standard SciPy implementation [42], our estimated total time complexity for NNLSHP is987

O(n+ s
5
m).988

For sm = 2048, the estimate would be 3500540 potential strategies which is still far less than the989

number of samples. For packing depth 4, we calculate [48]:990

b sm
4 cX

k=1

b sm�k
3 cX

j=k

b sm�j�k
2 cX

i=j

1

⇡
b sm

4 cX

k=1

b sm�k
3 cX

j=k

sm � k + 2� 3j

2

⇡
b sm

4 cX

k=1

1

12
(s+ 4� 4k)(s+ 3� 4k)

⇡ 1

288
s(2s2 + 9s+ 4)

=
1

288
s(s+ 4)(2s+ 1)

(20)

So with sm = 512, there would be around 940K strategies. In our implementation, this number of991

strategies would be too high to create the problem matrix. One alternatives to simplify would be to992

26

not use the exact length of sequences but to only consider even numbers for the sequence length and993

round up. That way arbitrary sequence length could also be handled and the limiting factor would be994

the complexity of the attention layer in BERT which does not scale well with the sequence length.995

G.2 Complexity Analysis of shortest-pack-first histogram-packing996

The complexity calculation of SPFHP is straightforward. We go over the whole data once for the997

histogram sorting. Next, we iterate over each of the sm bins in the histogram. Lastly, we iterate over998

all strategies that were encountered so far. It can be proven that, at each iteration, the number of999

strategies can be maximally increased by one. In each step, we potentially add a sequence to existing1000

strategies but a new strategy is opened up only in the final step, when we either create a new strategy1001

or we split one of the existing strategies into two. Hence, the number of strategies is bounded by sm1002

and the overall time complexity is bounded by O(n+ s
2
m). The space complexity is O(s2m) since we1003

need to store up to sm strategies with maximum sm counts for different sequence length.1004

H Performance Comparison to GREEDY Packing in T51005

T5 [24] is normally trained on the C4 dataset. However, to give an idea of the difference in1006

packing efficiency and acceleration compared to our newly introduced algorithm, we can analyse the1007

performance of greedy aggregation of samples on our given Wikipedia dataset.1008

We take the histogram and cast it back to a list of different sequence lengths since this is all that1009

matters for analysing packing behaviour. Next, we randomly shuffle the dataset and iterate with the1010

greedy aggregation algorithm multiple times to account for randomness. We iterate sequence by1011

sequence and combine them provided the maximum sequence length of 512 is not yet reached. If it is1012

exceeded, the packed sequence is considered finished and a new sequence is started.1013

The greedy packing algorithm itself takes a bit more than 10 seconds, since we are operating on single1014

sequences and not histogram counts. The efficiency of this approach is 78.24% (standard deviation of1015

0.005) compared to our 99.75% for NNLSHP. The respective acceleration would be around 1.566x1016

compared to our 2x. With respective separator tokens, the performance decreases around 0.13%1017

for one separator token and 0.27% when two separator tokens are required between two sequences.1018

Following the brief documentation at tensor2tensor [link], two separator tokens would be expected in1019

the T5 processing.1020

In addition to the packing preprocessing, our paper proposes, rather than using separator tokens, to1021

instead modify the masking of the attention matrix during training. The RoBERTa paper shows that1022

avoiding contamination of sequences from different documents can consistently improve downstream1023

F1 scores by 0.35%.1024

I Impact of NSP loss1025

When running packed BERT base without the NSP loss but keeping everything else the same, we1026

observed that downstream performance on SQuAD reduced the F1 measure by 1.31% and EM by1027

1.15%.1028

For the packing in approaches like RoBERTa or T5, it is crucial that there is no NSP loss because1029

that would circumvent putting arbitrary sequences together in contrast to our approach that can1030

handle multiple sequences from different documents without cross-contamination. Liu et al. [16]1031

argument that NSP can be omitted because “removing the NSP loss matches or slightly improves1032

downstream task performance”. In their experiments, they compare the normal BERT setup with1033

NSP (“SEGMENT-PAIR”) to the “DOC-SENTENCES” approach, where there is no NSP and data1034

in one sequence comes only from one document. For the “SEGMENT-PAIR” approach, the paper1035

does not address, how much padding tokens are still present. Assuming, it is around 40%, their1036

correction in batch sizes for each step would result in a significant increase in training steps for the1037

“DOC-SENTENCES” approach. It is well known that BERT performance increases with longer1038

pretraining time. Our results indicate that NSP loss might be still relevant, depending on the dataset1039

generation process. With our approach, we can get the acceleration benefits of T5 and RoBERTa1040

while keeping the predictive performance by avoiding cross-contamination.1041

27

https://github.com/tensorflow/tensor2tensor/blob/5623deb79cfcd28f8f8c5463b58b5bd76a81fd0d/tensor2tensor/data_generators/generator_utils.py#L1086

J Wikipedia with Longer Sequence Length1042

The histogram raw data for Wikipedia with different maximum sequence length is provided in1043

Listing 6 and visualized in Figure 9. We can see that with increasing maximum sequence length, long1044

sequences become more and more rare and the resulting benefits from packing drastically increase.1045

Keeping in mind that the BERT dataset generation process decreases the size of a maximum of1046

50% of the sequences, we can infer that having a different dataset generator that truncates any short1047

sequence, would result in significant loss of data (> 25% for length 512).1048

Figure 9: Sequence length distributions for different sequence lengths in Wikipedia BERT pre-training
dataset and according theoretical speed-up.

Due to the length distribution, it is not anymore sufficient to concatenate only 3 sequences to obtain1049

perfect packing for maximum sequence length 1024 or 2048. Instead, around 6 and 12 sequences are1050

required. This cannot be solved by NNLSHP anymore due to search space complexity but requires1051

an online heuristics like SPFHP or the slightly better LPFHP, introduced in Section R that is based on1052

Best-Fit and splitting counts in the histogram in contrast to the rather simple First-Fit descending.1053

Figure 10 shows the achieved speed-ups with LPFHP depending on the maximum number of allowed1054

sequences.1055

Figure 10: Speed-ups achieved by LPFHP for different maximum sequence length and maximum
number of packed sequences.

28

K Packing SQuAD 1.11056

We tokenized SQuAD [25] for BERT [6] with maximum sequence length 384 and visualized the1057

histogram over the sequence length (Figure 11). The distribution looks similar to the Wikipedia1058

dataset but is slightly less skewed. However, the maximum sequence length only had an occurrence1059

of 1.2% compared to 23.5%. Hence, the theoretical un-padding speedup is 2.232. In Table 5, we can1060

see that SPFHP does not concatenate more than 3 samples and obtains 97.54% efficiency in contrast1061

to a maximally used depth of 16 with 99.60% efficiency on Wikipedia, because of the less skewed1062

distribution. Note that we have less than 900000 samples. Hence, NNLSHP is less efficient because1063

the rounding in the residuals has a much larger impact compared to more than 16 million sequences1064

in the Wikipedia dataset.1065

Figure 11: SQuAD 1.1 BERT pre-training dataset sequence length histogram for maximum sequence
length of 384.

Table 5: Performance results of proposed packing algorithms for SQuAD 1.1 BERT pre-training.

packing packing # strategies # packs # tokens # padding efficiency packing
depth algorithm used tokens (%) factor
1 none 348 88641 34038144 18788665 44.801 1.000
2 SPFHP 348 45335 17408640 2159161 87.597 1.955
3 NNLSHP 398 40808 15670272 420793 97.310 2.172
3/max SPFHP 344 40711 15633024 383545 97.547 2.177

29

L Packing GLUE1066

To explore a variety of datasets and emphasize that skewed distributions are common, we explored all1067

datasets in the GLUE benchmark [31, 30] that came with training data. We loaded the datasets using1068

the HuggingFace dataset loading API [47]. For preprocessing, we followed the implementation in the1069

HuggingFace transformers repository [32] 3 and extracted the respective data processing snippets1070

to obtain tokenized data with a maximum sequence length of 128. The histogram of the sequence1071

length for each of the included datasets is displayed in Figure 12 and the packing results are given in1072

Table 6. Each dataset benefits from packing. The lower the mean, the higher the packing factors are1073

that can be reached but with a higher packing depth.1074

Figure 12: GLUE dataset sequence length histograms for maximum sequence length of 128.

Table 6: Performance results of proposed packing algorithms for the GLUE dataset. Only the baseline
and the SPFHP packing results without limiting the packing depth are displayed.

data packing # strategies # packs # tokens # padding efficiency packing
name depth used tokens (%) factor
cola 1 34 8551 1094528 997669 8.849 1.000
cola 13/max 29 913 116864 20005 82.882 9.366
sst2 1 64 67349 8620672 7723633 10.406 1.000
sst2 15/max 64 7691 984448 87409 91.121 8.757
mrpc 1 77 3668 469504 274214 41.595 1.000
mrpc 4/max 74 1606 205568 10278 95.000 2.284
qqp 1 123 363846 46572288 35448844 23.884 1.000
qqp 5/max 123 97204 12442112 1318668 89.402 3.743
stsb 1 85 5749 735872 575993 21.726 1.000
stsb 6/max 83 1367 174976 15097 91.372 4.206
mnli 1 124 392702 50265856 34636487 31.093 1.000
mnli 8/max 124 123980 15869440 240071 98.487 3.167
rte 1 112 2490 318720 152980 52.002 1.000
rte 4/max 108 1330 170240 4500 97.357 1.872
wnli 1 72 635 81280 57741 28.960 1.000
wnli 6/max 63 192 24576 1037 95.780 3.307

3https://github.com/huggingface/transformers/blob/master/examples/
text-classification/run_glue.py

30

https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py

M Packing Audio Data (LibriSpeech)1075

In this section, we show that packing can benefit other domains than NLP like ASR. We use the1076

LibiSpeech dataset [23] and preprocess it as described at a reference implementation.4 The resulting1077

histograms for the subsampled audio sample lengths and respective text labels are provided in1078

Figure 131079

Figure 13: LibriSpeech sequence length histograms of preprocessed audio data [top] as well as target
text data [bottom].

It can be seen that the audio sequence length is dominated by long sequences with 38% of required1080

padding to meet the max sequence length of 330. Thus the theoretical optimal speed-up of 1.6x1081

cannot be reached. However, 80% efficiency are possible with any of the proposed packing algorithms1082

to achieve 1.3x speed-up. This can be already achieved by combining up to 2 sequences. To achieve1083

almost perfect packing efficiency, a sequence length around 457 and concatenating up to 8 sequences1084

is required. Due to the quadratic increased computational load that usually comes with longer1085

sequence length, increasing the sequence length is not practical.1086

If processing and packing the text data independently of the audio, 99.99% efficiency could be1087

achieved with a speed-up of 2.24x.1088

4https://github.com/mlcommons/training/tree/master/rnn_speech_recognition/pytorch

31

https://github.com/mlcommons/training/tree/master/rnn_speech_recognition/pytorch

N Packing Paper Abstracts (PubMed)1089

This section analyses the length of abstracts to give an intuition about how different documents1090

can be in length. Figure 14 depicts the length of abstracts in characters extracted from PubMed.51091

If these abstracts were directly used as sequences, a character length of 1000 could result in 1.9x1092

speed-up from packing. The potential speed-ups for length 2000, 3000, 4000 would be 2x, 3x, and1093

4x, respectively. Note that, document clean-up procedures would usually eliminate documents that1094

are too short or too long for data sanitizing purposes.1095

Figure 14: Abstract length distribution in PubMed.

Note that for the processing in BlueBERT [45], paper titles and abstracts get separated into sequences,1096

tokenized, and then combined with the BERT sequence combination approach for a maximum1097

sequence length of 128 tokens. Thus, it results in a different distribution.1098

5https://huggingface.co/datasets/pubmed

32

https://huggingface.co/datasets/pubmed

O MLPerf™ phase 2 learning curves1099

This section provides further learning curves related to Section 4.2.1100

Figure 15: Comparison of learning curves for packed and unpacked processing with reduced batch
size for the packed approach.

Figure 16: Comparison of learning curves for packed and unpacked processing with heuristics
applied.

Figure 17: Comparison of learning curves for packed and unpacked processing in the optimized
setup.

33

P Full pretraining of BERT base and large learning curves1101

This section provides further learning curves related to Section 4.3.1102

Figure 18: Comparison of learning curves for BERT base phase 1 (sequence length 128) with
packed and unpacked processing.

Figure 19: Comparison of learning curves for BERT base phase 2 (sequence length 384) with
packed and unpacked processing.

34

Figure 20: Comparison of learning curves for BERT large phase 1 (sequence length 128) with
packed and unpacked processing.

Figure 21: Comparison of learning curves for BERT large phase 2 (sequence length 384) with
packed and unpacked processing.

35

Q Note on changing the sequence length for optimal packing1103

An interesting aspect of packing is that the maximum sequence length for packing could be larger1104

than the maximum sequence length in the underlying dataset that gets packed.1105

For the QM9 dataset, this means that by setting the maximum sequence length to 36 instead of 27 an1106

optimal 1.6x speed-up can be easily achieved.1107

Note that the choice of maximum sequence length depends on the underlying machine learning1108

algorithm. Due to the squared computational and memory complexity of self-attention in BERT1109

and other transformers, the maximum sequence length is usually kept as small as possible for these1110

models. So an increase for packing alone is not practical. For algorithms with linear complexity as1111

for example Graph Neural Networks, implemented in PyG, larger maximum sequence length can be1112

chosen to ensure, optimal packing is always possible.1113

R Fine-tuned longest-pack-first histogram-packing1114

In the main paper, we focused on SPFHP due its simplicity. In this section, we analyse the effect of1115

applying the “Best-Fit” algorithm [12]. Here, the longest pack that still fits the sequence is chosen1116

instead of the shortest one. In contrast to SPFHP, we additionally consider splitting the histogram1117

count, if it can fit multiple times. A simple example is sequence length 256, where we divide the1118

respective histogram count by 2 to create the optimal pack with strategy [256, 256] instead of the1119

strategy [256]. This latter strategy would be complemented by other sequences but would probably1120

not result in an optimal packing. The implementation of this approach is much more complex than1121

the SPFHP implementation. The code is provided in Listing 8 and the results in Table 7.1122

pack. # strat. # packs # tokens # padding efficiency pack.
depth used tokens (%) factor
1 508 16279552 8335130624 4170334451 49.967 1.000
2 634 10099081 5170729472 1005933299 80.546 1.612
3 648 9090154 4654158848 489362675 89.485 1.791
4 671 8657119 4432444928 267648755 93.962 1.880
8 670 8207569 4202275328 37479155 99.108 1.983
16 670 8140006 4167683072 2886899 99.931 2.000
29/max 670 8138483 4166903296 2107123 99.949 2.000

Table 7: Performance results of longest-pack-first histogram-packing for Wikipedia BERT pre-training
with maximum sequence length 512.

We can see that longest-pack-first histogram-packing (LPFHP) uses a much higher packing depth1123

when no limit is set (29 instead of 16). Splitting the histogram counts results in slightly higher1124

numbers of used strategies compared to SPFHP where the number of used strategies is limited by the1125

maximum sequence length. The best efficiency of LPFHP is 99.949% with packing factor of 2 which1126

is slightly higher than the 99.75% (1.996 packing factor) for NNLSHP and 99.6% for SPFHP (1.9931127

packing factor). All algorithms are very close to the upper limit.1128

Note that for NNLSHP, we only fill up the unpacked samples with padding. Applying best-fit on1129

the remains, similar results can be expected. Although the benefits of the improved algorithm are1130

negligible, we share the concept and code below in case packing is applied to other data with a1131

different distribution that would benefit more from it, or for applications where only perfectly packed1132

sequences without padding are of interest.1133

36

S Extended NNLS with padding token weighting1134

In Section F.4.4, we defined the residual as1135

r = b�A · round(x) (21)

and discovered that a positive residual corresponds to sequences that we did not pack at all and1136

should be avoided. Negative residuals correspond to padding and should be minimized. Due to1137

this discrepancy, we decided to set small weights for very short sequences (that don’t occur in the1138

data). However, it was not possible to directly optimize the amount of padding. A negative residual1139

component for length i, ri, results in |ri| · i padding tokens, however a positive residual actually1140

results into (512� ri) · i padding tokens. This cannot be addressed by our weighting approach in1141

min
x2Rm

k(wA) · x� (wb)k2

s.t. x � 0
(22)

Working within the NNLS approach, we can strictly enforce a non-positive residual r (before rounding1142

to integer). To that end, we define a new auxiliary variable r ⇡ �(b�Ax) which is the negative of1143

the residual, r. This will allow us to reformulate the objective r 0 to the non-negative constraint:1144

r � 0.1145

min
x2Rm

k(wA) · x� (wb)k2 + kw ·A · x� w · b� w · rk2

s.t. x � 0

r � 0

(23)

This will enforce r = Ax� b � 0 due to the large weight, w := 106, and no upper limits on r. Now,1146

we can set wi := i to optimize for the padding tokens. Due to the use of the squared error, we would1147

however optimize the squared sum of padding tokens instead of the preferred sum of padding tokens.1148

To accomplish the latter, we would have to replace the L2-norm problem by an L1-norm problem1149

which would be too complex to solve. Note that due to rounding, the unwanted positive residuals r1150

(r < 0) might still occur. This could be avoided by rounding up x instead of normal rounding of x.1151

To put the new formulation into a solver, we replace1152

b by
✓
b

b

◆
, x by

✓
x

r

◆
, w by

✓
w

w

◆
, and A by

✓
A 0m
A �Dm

◆
, (24)

where 0m is an m⇥m matrix with m being the maximum sequence length, 512, and Dm is a unit1153

matrix of the same dimensions as 0m. Since, we are already close to optimum especially on the1154

Wikipedia dataset, the results are only a little bit better. The processing time however increases from1155

30 to 415 seconds without considering the increased time for constructing the processing matrix.1156

Since the slightly improved algorithm might be nevertheless relevant for other applications, we share1157

it in Listing 9.1158

37

T Packing source code1159

Listing 2: Non-negative least squares histogram-packing
import time
import numpy as np
from scipy import optimize, stats
from functools import lru_cache
def get_packing_matrix(strategy_set, max_sequence_length):
 num_strategies = len(strategy_set)
 A = np.zeros((max_sequence_length, num_strategies), dtype=np.int32)
 for i, strategy in enumerate(strategy_set):
 for seq_len in strategy:
 A[seq_len - 1, i] += 1
 return A
@lru_cache(maxsize=None)
def get_packing_strategies(start_length, minimum_increment, target_length, depth):
 gap = target_length - start_length
 strategies = []
 # Complete the packing with exactly 1 number
 if depth == 1:
 if gap >= minimum_increment:
 strategies.append([gap])
 # Complete the sample in "depth" steps, recursively
 else:
 for new in range(minimum_increment, gap + 1):
 new_gap = target_length - start_length - new
 if new_gap == 0:
 strategies.append([new])
 else:
 options = get_packing_strategies(start_length + new, new, target_length, depth - 1)
 for option in options:
 if len(option) > 0:
 strategies.append([new] + option)
 return strategies
def pack_using_nnlshp(histogram, max_sequence_length, max_sequences_per_pack):
 # List all unique ways of packing to the desired maximum sequence length
 strategy_set = get_packing_strategies(0, 1, max_sequence_length, max_sequences_per_pack)
 print(f"Packing will involve {len(strategy_set)} unique packing strategies.")
 # Get the packing matrix corresponding to this list of packing strategies
 A = get_packing_matrix(strategy_set, max_sequence_length)
 # Weights that penalize the residual on short sequences less.
 penalization_cutoff = 8
 w0 = np.ones([max_sequence_length])
 w0[:penalization_cutoff] = 0.09
 # Solve the packing problem
 print(f"Sequences to pack: ", histogram.sum())
 start = time.time()
 strategy_repeat_count, rnorm = optimize.nnls(np.expand_dims(w0, -1) * A, w0 * histogram)
 print(f"Solving non-negative least squares took {time.time() - start:3.2f} seconds.")
 # Round the floating point solution to nearest integer
 strategy_repeat_count = np.rint(strategy_repeat_count).astype(np.int64)
 # Compute the residuals, shape: [max_sequence_length]
 residual = histogram - A @ strategy_repeat_count
 # Handle the left-over sequences i.e. positive part of residual
 unpacked_seqlen = np.arange(1, max_sequence_length + 1)[residual > 0]
 for l in unpacked_seqlen:
 strategy = sorted([l, max_sequence_length - l]) # the depth 1 strategy
 strategy_index = strategy_set.index(strategy)
 strategy_repeat_count[strategy_index] += residual[l-1]
 # Re-compute the residual with the updated strategy_repeat_count
 # This should now be strictly < 0
 residual = histogram - A @ strategy_repeat_count
 # Add padding based on deficit (negative residual portion of residual)
 padding = np.where(residual < 0, -residual, 0)
 # Calculate some basic statistics
 sequence_lengths = np.arange(1, max_sequence_length + 1)
 old_number_of_samples = histogram.sum()
 new_number_of_samples = int(strategy_repeat_count.sum())
 speedup_upper_bound = 1.0/(1 - (histogram*(1 - sequence_lengths / max_sequence_length)).sum()/old_number_of_samples)
 num_padding_tokens_packed = (sequence_lengths * padding).sum()
 efficiency = 1 - num_padding_tokens_packed/(new_number_of_samples*max_sequence_length)
 print(f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
 f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
 f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}")
 return strategy_set, strategy_repeat_count

38

Listing 3: Shortest-pack-first histogram-packing
from collections import defaultdict
import numpy as np
def add_pack(pack, count, tmp, final, limit, offset):
 """Filter out packs that reached maximum length or number of sequences."""
 if len(pack) == limit or offset == 0:
 final[offset].append((count, pack))
 else:
 tmp[offset].append((count, pack))
def pack_using_spfhp(histogram, max_sequence_length, max_sequences_per_pack):
 """Shortest-pack-first histogram-packing algorithm."""
 reversed_histogram = np.flip(histogram)
 # Initialize main strategy data dictionary.
 # The key indicates how many tokens are left for full length.
 # The value is a list of tuples, consisting of counts and respective packs.
 # A pack is a (sorted) list of sequence length values that get concatenated.
 tmp_strategies_per_length = defaultdict(list)
 strategies_per_length = defaultdict(list)
 # Index i indicates here, how much space is left, due to reversed histogram
 for i in range(max_sequence_length):
 n_sequences_to_bin = reversed_histogram[i]
 length_to_bin = max_sequence_length - i
 offset = i + 1 # largest possible offset
 while n_sequences_to_bin > 0:
 if (length_to_bin + offset) in tmp_strategies_per_length:
 # extract shortest pack that will get modified
 n_sequences_to_pack, pack = tmp_strategies_per_length[
 length_to_bin + offset].pop()
 new_pack = pack + [length_to_bin]
 count = min(n_sequences_to_pack, n_sequences_to_bin)
 if n_sequences_to_pack > n_sequences_to_bin:
 # old pack gets reduced
 n_sequences_to_pack -= n_sequences_to_bin
 tmp_strategies_per_length[length_to_bin + offset].append(
 (n_sequences_to_pack, pack))
 n_sequences_to_bin = 0
 else:
 n_sequences_to_bin -= n_sequences_to_pack
 add_pack(new_pack, count,
 tmp_strategies_per_length, strategies_per_length,
 max_sequences_per_pack, offset)
 # clean up to speed up main key search
 if not tmp_strategies_per_length[length_to_bin + offset]:
 tmp_strategies_per_length.pop(length_to_bin + offset)
 else:
 offset -= 1
 # Does not fit anywhere. Create new pack.
 if offset < 0:
 add_pack([length_to_bin], n_sequences_to_bin,
 tmp_strategies_per_length, strategies_per_length,
 max_sequences_per_pack, i)
 n_sequences_to_bin = 0
 # merge all strategies
 for key in tmp_strategies_per_length:
 strategies_per_length[key].extend(tmp_strategies_per_length[key])
 # flatten strategies dictionary
 strategy_set = []
 strategy_repeat_count = []
 for key in strategies_per_length:
 for count, pack in strategies_per_length[key]:
 pack.reverse()
 strategy_set.append(pack)
 strategy_repeat_count.append(count)
 return strategy_set, np.array(strategy_repeat_count)

39

Listing 4: Evaluation function of shortest-pack-first histogram-packing
"""Max depth analysis of shortest-pack-first histogram-packing."""
from collections import defaultdict
import tabulate
import time
import numpy as np
def evaluate_spfhp(histogram, max_sequence_length):
 """Evaluate shortest-pack-first histogram-packing algorithm."""
 stats_data = [["pack. depth", "# strat. used", "# packs", "# tokens",
 "# padding tok.", "efficiency (%)", "pack.factor", "time"]]
 for max_sequences_per_pack in [1, 2, 3, 4, 8, 16, "max"]:
 start = time.time()
 strategy_set, strategy_repeat_count = pack_using_spfhp(
 histogram, max_sequence_length, max_sequences_per_pack)
 duration = time.time() - start
 # Performance Evaluation of packing approach
 n_strategies = int(len(strategy_set))
 packs = int(sum(strategy_repeat_count))
 sequences = sum([count*len(pack) for count, pack in
 zip(strategy_repeat_count, strategy_set)])
 total_tokens = int(max_sequence_length * packs)
 empty_tokens = int(sum([
 count*(max_sequence_length-sum(pack)) for count, pack in
 zip(strategy_repeat_count, strategy_set)]))
 token_efficiency = 100 - empty_tokens / total_tokens * 100
 if max_sequences_per_pack == "max":
 m_length = max([len(pack) for pack in strategy_set])
 max_sequences_per_pack = "max ({})".format(m_length)
 stats_data.append([
 max_sequences_per_pack, n_strategies, packs, total_tokens,
 empty_tokens, token_efficiency, sequences / packs, duration])
 print(tabulate.tabulate(stats_data, headers="firstrow", floatfmt=".3f"))

Listing 5: Loss calculation
The number of sequences in each batch may vary
sequences_in_batch = tf.reduce_sum(tf.reduce_max(masked_lm_weight, -1))
sequences_in_batch = tf.cast(sequences_in_batch, tf.float32)
Create the 0/1 mask that will be used to un-packed sequences
masked_lm_weight = tf.reshape(masked_lm_weight, [B, 1, -1])
sequence_selection = tf.reshape(tf.range(1, max_sequences_per_pack + 1), [1, -1, 1])
sequence_selection = tf.cast(masked_lm_weight == sequence_selection, tf.float32)
Apply the mask to un-pack the loss per sequence
nll_per_token = tf.reshape(nll_per_token, [B, 1, -1])
nll_per_sequence = sequence_selection * nll_per_token
Normalize the per-sequence loss by the number of mlm-tokens in the sequence (as is standard)
attempted = tf.reduce_sum(sequence_selection, -1, keepdims=True)
attempted = attempted + tf.cast(attempted == 0, tf.float32) # prevent NaNs when dividing by attempted
nll_per_sequence = nll_per_sequence/attempted
Average per-batch loss (so contributions from different batches are comparable)
lm_loss = tf.reduce_sum(nll_per_sequence)/sequences_in_batch

40

Listing 6: Wikipedia and SQuAD 1.1 histograms
"""Wikipedia and SQUaD 1.1 histograms.
For sequence length 128 to 512, we use the Wikipedia article dump from October 1st 2020.
For sequence length 1024 and 2048, we use the Wikipedia article dump from February 8th 2021.
Duplication factors slightly differ.
"""
import numpy as np
wikipedia_histogram = np.array([
 0, 0, 0, 0, 1821, 1226, 1969, 1315, 1794, 1953, 3082, 3446, 4166, 5062,
 9554, 16475, 19173, 17589, 17957, 19060, 21555, 23524, 26954, 30661, 33470, 36614, 40134, 43256,
 46094, 49350, 52153, 55428, 58109, 60624, 63263, 64527, 65421, 66983, 68123, 68830, 70230, 70486,
 72467, 72954, 73955, 74311, 74836, 74489, 74990, 75377, 74954, 75096, 74784, 74698, 74337, 74638,
 74370, 73537, 73597, 73153, 72358, 71580, 71082, 70085, 69733, 69445, 67818, 67177, 66641, 65709,
 64698, 63841, 63218, 62799, 61458, 60848, 60148, 59858, 58809, 58023, 56920, 55999, 55245, 55051,
 53979, 53689, 52819, 52162, 51752, 51172, 50469, 49907, 49201, 49060, 47948, 47724, 46990, 46544,
 46011, 45269, 44792, 44332, 43878, 43984, 42968, 42365, 42391, 42219, 41668, 41072, 40616, 40587,
 39999, 40169, 39340, 38906, 38438, 38142, 37757, 37818, 37535, 37217, 36757, 36589, 36151, 35953,
 35531, 35496, 35089, 35053, 34567, 34789, 34009, 33952, 33753, 33656, 33227, 32954, 32686, 32880,
 32709, 31886, 32126, 31657, 31466, 31142, 31106, 30650, 30316, 30494, 30328, 30157, 29611, 29754,
 29445, 28921, 29271, 29078, 28934, 28764, 28445, 28319, 28141, 28282, 27779, 27522, 27333, 27470,
 27289, 27102, 27018, 27066, 26925, 26384, 26188, 26385, 26392, 26082, 26062, 25660, 25682, 25547,
 25425, 25072, 25079, 25346, 24659, 24702, 24862, 24479, 24288, 24127, 24268, 24097, 23798, 23878,
 23893, 23817, 23398, 23382, 23280, 22993, 23018, 23242, 22987, 22894, 22470, 22612, 22452, 21996,
 21843, 22094, 21916, 21756, 21955, 21444, 21436, 21484, 21528, 21597, 21301, 21197, 21281, 21066,
 20933, 21023, 20888, 20575, 20574, 20511, 20419, 20312, 20174, 20023, 20087, 19955, 19946, 19846,
 19562, 19710, 19556, 19477, 19487, 19387, 19225, 19069, 19360, 18655, 19034, 18763, 18800, 19012,
 18893, 18714, 18645, 18577, 18317, 18458, 18374, 18152, 17822, 18102, 17735, 17940, 17805, 17711,
 17690, 17703, 17669, 17410, 17583, 17331, 17313, 16892, 16967, 16870, 16926, 17233, 16845, 16861,
 16576, 16685, 16455, 16687, 16747, 16524, 16473, 16349, 16273, 16255, 16228, 16219, 16021, 16111,
 15867, 15751, 16081, 15703, 15751, 15854, 15665, 15469, 15431, 15428, 15464, 15517, 15335, 15461,
 15237, 15292, 15305, 15351, 15078, 14810, 15119, 14780, 14664, 14869, 14722, 14890, 14672, 14439,
 14685, 14706, 14840, 14373, 14286, 14596, 14615, 14168, 14299, 13987, 14167, 14107, 14096, 14202,
 13985, 14118, 14094, 14127, 13896, 13864, 13597, 13572, 13717, 13669, 13782, 13617, 13284, 13333,
 13425, 13457, 13256, 13404, 13318, 13425, 13317, 13179, 13193, 13257, 13160, 12813, 13149, 13010,
 12867, 12958, 12818, 12801, 12749, 12810, 12575, 12673, 12514, 12735, 12523, 12677, 12298, 12469,
 12341, 12445, 12477, 12326, 12110, 12087, 12305, 12156, 12032, 12190, 12150, 11980, 12022, 11825,
 11969, 11831, 11997, 11924, 11739, 11685, 11702, 11783, 11783, 11659, 11647, 11610, 11526, 11577,
 11538, 11536, 11497, 11480, 11374, 11234, 11433, 11466, 11475, 11147, 11376, 11217, 11002, 11245,
 11124, 11000, 11129, 10923, 10966, 11071, 11029, 11036, 10972, 11012, 10800, 10936, 10904, 10750,
 10669, 10766, 10780, 10675, 10905, 10511, 10598, 10583, 10658, 10471, 10667, 10601, 10430, 10440,
 10510, 10148, 10468, 10346, 10257, 10286, 10235, 10351, 10182, 10182, 10095, 10192, 9866, 10070,
 10148, 9956, 10132, 10043, 9741, 10003, 10056, 9920, 10021, 9838, 9854, 9740, 9782, 9799,
 9798, 9788, 9840, 9747, 9797, 9893, 9593, 9535, 9658, 9554, 9593, 9530, 9523, 9488,
 9548, 9418, 9418, 9508, 9638, 9521, 9277, 9289, 9255, 9322, 9281, 9351, 9259, 9255,
 9225, 9098, 9268, 9227, 9224, 9106, 9239, 3815044], dtype=np.int64)
wikipedia_max_sequence_length = 512
wikipedia_128_histogram = np.array([
 0, 0, 0, 0, 3101, 1980, 3129, 1999, 2921, 3125, 4830, 5364, 6732, 8047,
 13409, 21166, 25207, 25106, 27446, 30336, 35090, 39592, 45885, 52030, 57859, 64301, 71861, 78013,
 84925, 91873, 98489, 104534, 112174, 117841, 124085, 129462, 133240, 138870, 143228, 146717, 151324,
 154822, 158681, 162508, 165513, 168386, 170678, 172157, 174582, 174811, 177932, 177775, 179075, 178718,
 179454, 179142, 179395, 178585, 178799, 177238, 176319, 174648, 173217, 174185, 172356, 170476, 168799,
 166638, 166251, 163258, 161835, 160796, 158675, 157306, 156076, 154365, 153016, 151754, 150507, 148666,
 146567, 144652, 143753, 141893, 140452, 139608, 138186, 136564, 135683, 134562, 132625, 132270, 129838,
 130280, 128484, 127725, 126559, 125192, 124847, 124314, 123023, 122125, 121434, 120822, 119386, 119410,
 117987, 118109, 116432, 116579, 114937, 114728, 114064, 114111, 113091, 112457, 111797, 111032, 111055,
 109929, 110613, 109024, 109634, 109102, 108301, 107099, 106661, 21454463], dtype=np.int64)
wikipedia_128_max_sequence_length = 128
wikipedia_384_histogram = np.array([
 0, 0, 0, 0, 1996, 1380, 2227, 1385, 1908, 2065, 3221, 3673, 4581, 5391,
 9975, 16932, 19431, 18385, 19107, 20129, 23118, 24966, 29088, 32889, 35695, 38943, 43618, 46724,
 50553, 53774, 57470, 60695, 63903, 67021, 69559, 71609, 72274, 73630, 75620, 76946, 78870, 79774,
 81019, 82236, 83350, 84128, 84939, 84585, 85703, 85151, 85245, 85923, 85869, 85748, 85704, 85459,
 84822, 84487, 83940, 84322, 82652, 82371, 81509, 80958, 80255, 79266, 77896, 76827, 76356, 75703,
 74378, 73639, 72827, 71460, 70859, 69590, 69009, 67987, 66779, 65626, 65372, 63939, 63290, 62662,
 61334, 61194, 60371, 59318, 58753, 57841, 57492, 56965, 55816, 55709, 54678, 54572, 53805, 53126,
 52578, 51656, 51337, 50926, 50590, 50018, 49860, 48821, 48788, 48365, 47776, 47225, 46417, 46438,
 45922, 45626, 45021, 44818, 44293, 44338, 43474, 43547, 42987, 42685, 42425, 42256, 41729, 41583,
 41194, 40717, 40565, 40238, 39761, 39557, 39285, 39009, 38955, 38841, 38212, 37846, 37808, 37609,
 37852, 37513, 36960, 36903, 36265, 36026, 36135, 35781, 35531, 35381, 34939, 35241, 34523, 34547,
 34106, 34106, 33687, 34008, 33531, 33630, 33335, 32980, 32756, 32666, 32421, 32135, 32290, 32395,
 31661, 31958, 31580, 31290, 31074, 31199, 30740, 30577, 30244, 30305, 30238, 30171, 29987, 29783,
 29765, 29162, 29584, 29470, 29137, 29254, 29018, 28646, 28788, 28470, 28295, 28465, 28114, 28241,
 28001, 27736, 27501, 27677, 27724, 27415, 27378, 27397, 27194, 26876, 26929, 26597, 26475, 26326,
 26278, 26246, 25962, 25901, 25916, 25540, 25514, 25701, 25954, 25284, 25452, 24888, 25051, 24975,
 24900, 24736, 24554, 24605, 24558, 24828, 24273, 23974, 24305, 24229, 23824, 24006, 23606, 23748,
 23496, 23262, 23477, 23510, 23089, 23185, 23289, 22947, 22999, 22879, 22846, 22564, 22942, 22512,
 22245, 22468, 22453, 22454, 22073, 22081, 21918, 21799, 21721, 21641, 21994, 21542, 21441, 21438,
 21370, 21634, 21360, 21237, 21327, 20946, 20841, 20701, 21044, 20797, 20810, 20758, 20616, 20717,
 20370, 20444, 20365, 20420, 20263, 20046, 19942, 20301, 20086, 19971, 19798, 19579, 19720, 19676,
 19526, 19330, 19325, 19385, 19095, 19333, 19286, 18955, 19190, 19149, 18929, 18867, 18912, 18954,
 18975, 18773, 18808, 18896, 18648, 18540, 18461, 18551, 18367, 18474, 18366, 18407, 18304, 18071,
 18276, 18302, 18367, 18223, 18077, 17848, 18055, 17895, 17757, 17755, 17534, 17617, 17292, 17452,
 17367, 17484, 17480, 17456, 17212, 17454, 17548, 17296, 17000, 17289, 17032, 17151, 17113, 16942,
 16955, 16744, 16922, 17037, 16971, 16736, 16945, 16637, 16703, 16328, 16587, 16339, 16404, 16492,
 16525, 16309, 16374, 16262, 16180, 16202, 16021, 16042, 16129, 16101, 15986, 16197, 15792, 15935,
 15914, 15915, 15902, 15688, 15717, 5676254]

41

, dtype=np.int64)
wikipedia_384_max_sequence_length = 384
wikipedia_1024_histogram = np.array([
 0, 0, 0, 0, 7363, 4744, 8434, 5610, 13205, 6932, 10664, 13887,
 16118, 24347, 31871, 66246, 77082, 65887, 66852, 69969, 79068, 86941, 99807, 111153,
 123160, 137381, 154228, 166304, 180331, 192040, 206214, 215316, 227387, 238863, 247444, 253057,
 258237, 262474, 266124, 269895, 275211, 277955, 280852, 283614, 286648, 287714, 291932, 292063,
 292252, 292122, 291963, 291950, 290741, 289930, 289635, 288843, 289106, 285626, 283735, 283763,
 279961, 277485, 275528, 274559, 271725, 269530, 266926, 263998, 262027, 259506, 256157, 253231,
 251842, 249295, 246119, 243579, 240920, 239550, 236008, 232477, 228900, 226724, 222639, 220947,
 217754, 215699, 213277, 209415, 209497, 206063, 202650, 201057, 199017, 196767, 194504, 192778,
 190108, 188113, 186489, 184212, 182828, 181271, 179863, 177707, 174891, 173822, 172668, 171383,
 168696, 167579, 165974, 164577, 163931, 161678, 160632, 158468, 157537, 155880, 154696, 154374,
 152753, 151583, 150617, 149261, 148185, 146336, 145928, 143589, 142916, 141994, 140233, 140480,
 139865, 138102, 137013, 136298, 135120, 133563, 133063, 131795, 131001, 130944, 129157, 128813,
 127434, 127698, 126006, 124766, 123580, 123936, 122788, 121985, 121212, 119757, 118557, 118198,
 117536, 117253, 116175, 116240, 115372, 114303, 113935, 113271, 112221, 111883, 110628, 110057,
 109411, 109347, 108960, 108049, 107465, 106268, 105262, 105826, 105049, 103570, 104051, 103013,
 101732, 101998, 101922, 100885, 100328, 99803, 99771, 99120, 98958, 98036, 97766, 97099,
 95960, 95916, 94781, 94124, 94467, 93805, 92947, 93067, 92161, 91783, 91722, 91620,
 90588, 90104, 89736, 89196, 88915, 88424, 87636, 87356, 87247, 86421, 86743, 86135,
 85400, 85421, 84616, 84760, 84117, 84004, 83306, 82563, 82220, 81649, 81791, 81767,
 81101, 80423, 80860, 79756, 79404, 78844, 78655, 78712, 77841, 77453, 77561, 76647,
 76480, 76123, 76217, 76223, 76105, 75057, 74794, 74204, 73918, 74153, 74136, 73317,
 73022, 72178, 71935, 71819, 71835, 70887, 70521, 70501, 69927, 70242, 70127, 68686,
 69069, 68544, 68655, 68127, 68341, 67440, 67554, 67010, 66569, 66745, 66429, 66271,
 65694, 65858, 64893, 64461, 64710, 64451, 64060, 64068, 63082, 63415, 63325, 62978,
 63069, 62079, 62130, 62529, 61961, 61093, 61260, 60825, 60348, 60187, 60726, 60106,
 59547, 59172, 60090, 59104, 58742, 58683, 58425, 58537, 58229, 57599, 57673, 57604,
 57433, 56886, 56289, 56343, 56168, 56058, 56437, 55851, 55882, 55346, 55218, 55496,
 55359, 54481, 54448, 54634, 54026, 53694, 54213, 53115, 53392, 53114, 53451, 52686,
 51918, 52538, 52225, 51882, 51453, 51946, 51433, 51036, 51706, 51381, 51154, 50810,
 50705, 50615, 49501, 49823, 49730, 49855, 49268, 49119, 48979, 48909, 48687, 48603,
 48227, 47873, 48152, 48029, 48530, 47844, 47209, 47368, 46891, 46944, 46450, 46501,
 46729, 46052, 46148, 45931, 46702, 46161, 45322, 45557, 45583, 45433, 45154, 44824,
 44827, 44354, 44175, 44192, 44053, 43849, 43935, 43927, 43549, 43493, 43250, 43172,
 42918, 42648, 42747, 42936, 42206, 42169, 41825, 42190, 41973, 42001, 41717, 41141,
 41118, 41419, 41234, 41084, 41170, 41027, 40836, 40740, 40454, 40242, 40343, 39910,
 39512, 39971, 39321, 39238, 39143, 39453, 39048, 38997, 38995, 38984, 38588, 39064,
 38165, 38726, 38215, 37930, 37995, 37974, 38212, 37397, 37367, 37573, 37331, 37215,
 36850, 36864, 36801, 36822, 36686, 36479, 36390, 36341, 36355, 35850, 36282, 35294,
 35433, 35698, 35534, 35105, 35066, 35092, 34855, 35046, 34559, 34548, 34376, 34918,
 34782, 34416, 34643, 34643, 34022, 34078, 33797, 33601, 33636, 33455, 33513, 33516,
 33222, 33694, 33371, 32986, 33058, 32760, 32795, 32638, 33060, 32696, 32659, 32522,
 32400, 32230, 31852, 31913, 32168, 31532, 31490, 31728, 31518, 31333, 31496, 31117,
 31206, 31317, 31273, 30896, 30977, 31021, 30815, 30858, 30618, 30313, 30219, 30504,
 30113, 30292, 30073, 30073, 29820, 29749, 29319, 29727, 29824, 29448, 29068, 29252,
 28837, 29217, 29361, 28997, 28648, 29087, 29048, 28700, 28716, 28636, 28346, 28442,
 28575, 28541, 28255, 28145, 27853, 28094, 27706, 27422, 28158, 27347, 27292, 27993,
 27487, 27375, 27503, 27508, 27200, 27160, 27336, 26888, 26960, 26876, 26422, 26896,
 26592, 26752, 26713, 26290, 26289, 26379, 26003, 26044, 26407, 25659, 26243, 25573,
 25477, 25590, 25717, 25333, 25555, 25537, 25303, 25326, 25035, 25290, 25129, 25184,
 24704, 24886, 24818, 24895, 24793, 24598, 24644, 24837, 24761, 24576, 24419, 24304,
 24285, 23889, 24080, 23894, 23900, 23916, 23891, 23838, 23704, 23632, 23503, 23316,
 23646, 23490, 23438, 23541, 22810, 23053, 23151, 22921, 22966, 23220, 22938, 22880,
 22871, 23104, 22819, 22737, 22806, 22293, 22722, 22652, 22288, 22068, 22119, 22244,
 21987, 22228, 21901, 21529, 21973, 21807, 21748, 21729, 21713, 21548, 21501, 21695,
 21691, 21408, 21589, 21341, 21576, 21349, 21247, 21217, 21294, 21083, 21479, 21414,
 21021, 21200, 21057, 20713, 20708, 20994, 20569, 20643, 20621, 20649, 20672, 20438,
 20550, 20299, 20323, 20269, 20529, 20150, 20371, 20306, 20331, 20453, 20064, 20243,
 20080, 20010, 20082, 19786, 19631, 19588, 19450, 19764, 19690, 19757, 19768, 19456,
 19312, 19364, 19347, 19194, 19244, 19027, 19303, 19117, 19070, 19019, 18888, 18706,
 18802, 18690, 18827, 18507, 18431, 18523, 18582, 18389, 18624, 18446, 18506, 18615,
 18559, 18049, 18322, 18004, 18211, 18341, 18348, 18462, 17997, 18105, 18038, 17843,
 17788, 18096, 17998, 18100, 17634, 17881, 17808, 17655, 17622, 17589, 17609, 17403,
 17727, 17569, 17443, 17382, 17526, 17521, 17602, 17079, 17547, 17027, 17338, 17052,
 17674, 16956, 17100, 16919, 17032, 16887, 16924, 16730, 16828, 16828, 16831, 16926,
 16588, 16463, 16655, 16723, 16658, 16414, 16808, 16506, 16465, 16579, 16287, 16365,
 16158, 16268, 16330, 16304, 16578, 16288, 16207, 16257, 16007, 15787, 15981, 15994,
 15842, 15995, 15946, 15877, 15682, 15788, 15691, 15981, 15714, 15521, 15576, 15716,
 15573, 15558, 15673, 15422, 15266, 15369, 15288, 15612, 15327, 15325, 15182, 15177,
 15186, 15257, 15354, 15283, 15152, 15220, 14798, 14938, 15041, 14849, 15315, 14860,
 14903, 14759, 14883, 14678, 14862, 14816, 14581, 14905, 14843, 14595, 14903, 14687,
 14437, 14416, 14561, 14263, 14321, 14534, 14571, 14353, 14188, 14097, 14306, 14413,
 14141, 14363, 14199, 14102, 14091, 14263, 14145, 14080, 14058, 13890, 14070, 13861,
 14216, 13963, 13852, 13952, 13890, 13679, 13932, 13856, 13672, 13723, 13660, 13822,
 13891, 13699, 13534, 13495, 13875, 13617, 13649, 13567, 13585, 13306, 13290, 13271,
 13199, 13577, 13185, 13174, 13258, 13153, 13392, 13266, 13022, 13096, 12898, 13160,
 13177, 13244, 12622, 12964, 13011, 12995, 13161, 12716, 12891, 12805, 12817, 13046,
 13093, 12673, 12827, 12725, 12517, 12613, 12658, 12720, 12517, 12926, 12604, 12597,
 12628, 12393, 12757, 12745, 12543, 12775, 12448, 12314, 12284, 12441, 12114, 12493,
 12463, 12195, 12129, 12111, 11949, 12306, 12118, 12351, 12332, 12168, 12141, 12169,
 12000, 11986, 12013, 12142, 12110, 12011, 12265, 11905, 11907, 11792, 12037, 11774,
 11771, 11874, 11840, 12046, 11773, 11636, 11751, 11652, 11786, 11521, 11574, 11619,
 11598, 12056, 11546, 11554, 11867, 11332, 11384, 11535, 11548, 11398, 11517, 11424,
 11398, 11385, 11609, 11297, 11588, 11222, 11452, 11390, 11072, 11121, 11215, 11122,
 10992, 10948, 11319, 11001, 11223, 11348, 10749, 11281, 11036, 10987, 11185, 10986,
 10921, 11003, 10942, 11047, 10876, 10757, 11116, 10654, 10921, 10784, 10846, 10680,
 10653, 10859, 10535, 6965652], dtype=np.int64)

42

wikipedia_1024_max_sequence_length = 1024
wikipedia_2048_histogram = np.array([
 0, 0, 0, 0, 2477, 1876, 3242, 2262, 7312, 2795, 4079, 5706,
 6488, 10440, 11572, 18367, 19043, 17166, 18433, 20247, 22804, 24700, 27419, 30059,
 32627, 35840, 39700, 42465, 45913, 48281, 50135, 53069, 55707, 57654, 60733, 63289,
 65678, 67824, 70064, 72022, 74546, 75868, 77463, 78728, 80340, 80598, 81369, 82172,
 82161, 83038, 82645, 82620, 81833, 81836, 80906, 81093, 81594, 80329, 81265, 81015,
 79730, 79043, 78811, 80007, 78575, 78209, 78174, 77714, 76950, 76864, 75966, 76074,
 74945, 75533, 74347, 73401, 72540, 72503, 71834, 70761, 70221, 68597, 68371, 67307,
 66927, 66421, 65566, 64768, 64117, 63245, 62774, 62196, 61666, 61419, 60865, 59983,
 59731, 58935, 58353, 58432, 57617, 57372, 57232, 56518, 55999, 55816, 55627, 55505,
 54940, 54207, 53537, 53462, 53342, 52812, 52522, 52094, 51834, 51047, 50868, 50703,
 50178, 50507, 50081, 50183, 48968, 49051, 48651, 48129, 47735, 47660, 47069, 47101,
 46740, 46577, 46858, 46588, 46340, 45488, 45065, 45149, 45238, 44779, 45004, 44332,
 43872, 43926, 43603, 43376, 42703, 43093, 42671, 42189, 42130, 41791, 41566, 41341,
 41309, 41411, 40457, 41006, 40225, 40108, 39568, 40082, 39498, 39557, 39608, 39236,
 38730, 38549, 39364, 38165, 38267, 38112, 37755, 37777, 37449, 37474, 37799, 36787,
 36650, 36437, 37130, 36613, 36214, 36071, 36418, 36246, 35613, 35805, 35826, 35031,
 34758, 34993, 34890, 34458, 34690, 34282, 33928, 34027, 34037, 34079, 33932, 33961,
 33894, 33497, 33642, 33634, 33393, 33305, 32561, 33038, 32708, 32127, 32435, 32092,
 32203, 32239, 31599, 32348, 31303, 31696, 31438, 31155, 30889, 30825, 31209, 30380,
 30619, 30494, 30875, 29938, 30435, 29785, 30119, 29787, 29785, 29481, 29369, 29160,
 29134, 29033, 29317, 29069, 28934, 28961, 28603, 28319, 28568, 28798, 28318, 28095,
 28397, 28244, 27782, 27889, 27584, 27322, 27299, 27665, 27066, 26982, 27232, 26753,
 26673, 27066, 26812, 26270, 26036, 26053, 26415, 26086, 25782, 25645, 25719, 25757,
 25630, 25920, 25268, 25639, 25350, 25564, 25032, 25018, 25226, 25065, 24904, 24619,
 24696, 24732, 24269, 24633, 24565, 24257, 24304, 24427, 24043, 23844, 23872, 23869,
 23439, 23613, 23434, 23735, 23325, 23362, 23119, 23373, 23561, 23088, 23213, 23074,
 22859, 22651, 22644, 22570, 22813, 22739, 22704, 22380, 22568, 21998, 22210, 21782,
 22120, 22003, 22079, 22104, 21610, 21464, 21687, 21587, 21167, 21427, 21670, 21336,
 21382, 21465, 21291, 20896, 21016, 20776, 21016, 20613, 20666, 20795, 20830, 20680,
 20213, 20221, 19983, 20175, 20136, 20361, 19928, 19803, 20031, 19887, 19899, 20007,
 19746, 19429, 19800, 19353, 19597, 19708, 19247, 19181, 19396, 19301, 19071, 19292,
 19370, 18672, 18626, 19062, 18839, 19238, 18705, 18741, 18611, 18673, 18649, 18607,
 18288, 18492, 18250, 18295, 18043, 18118, 18065, 18015, 18046, 17872, 18000, 17777,
 17812, 17899, 17832, 17604, 17389, 17259, 17594, 17654, 17632, 17437, 17571, 17444,
 17221, 17363, 17137, 17013, 17228, 16846, 16678, 16901, 17003, 17015, 16700, 16471,
 16574, 16531, 16556, 16363, 16267, 16498, 16513, 16469, 16352, 16434, 16283, 16636,
 16059, 16047, 16299, 15739, 16200, 15832, 16017, 15751, 15870, 15851, 15796, 15845,
 15618, 15675, 15504, 15608, 15358, 15712, 15423, 15366, 15539, 15175, 15122, 15092,
 15435, 15376, 15097, 15012, 14764, 15224, 14700, 14831, 14973, 14906, 14667, 14639,
 14901, 14918, 14416, 14724, 14525, 14643, 14837, 14175, 14598, 14481, 14416, 14192,
 14185, 14256, 14249, 14096, 14393, 14043, 14080, 14034, 14113, 14249, 14066, 14003,
 14089, 13892, 13609, 13920, 13896, 13642, 13703, 13896, 13711, 13631, 13807, 13704,
 13447, 13687, 13535, 13467, 13657, 13624, 13735, 13463, 13257, 13162, 13490, 13377,
 13194, 12986, 13308, 13407, 13192, 12968, 13076, 12980, 13011, 12946, 12851, 12931,
 12768, 12772, 12885, 12939, 12707, 12787, 12675, 12616, 12525, 12386, 12486, 12479,
 12776, 12431, 12297, 12294, 12252, 12404, 12387, 12421, 12540, 12010, 12297, 12285,
 12252, 12021, 12042, 11944, 12016, 11910, 11914, 11931, 12013, 11687, 11610, 11493,
 12047, 11580, 11890, 11661, 11707, 11683, 11551, 11449, 11450, 11127, 11488, 11366,
 11109, 11150, 11363, 11258, 11165, 11156, 11097, 11304, 11144, 11264, 11243, 11068,
 11027, 11066, 11078, 11035, 10973, 10845, 11028, 10871, 10822, 10974, 10817, 10619,
 10532, 10617, 10635, 10513, 10625, 10725, 10434, 10293, 10630, 10616, 10607, 10293,
 10603, 10244, 10304, 10439, 10228, 10325, 10331, 9887, 9972, 10385, 10159, 10089,
 10112, 10180, 10213, 10078, 10138, 9937, 9914, 10042, 9899, 9845, 9716, 10107,
 9889, 9861, 9703, 9578, 9722, 9757, 9713, 9483, 9572, 9676, 9911, 9636,
 9429, 9723, 9657, 9613, 9581, 9546, 9432, 9247, 9398, 9384, 9392, 9558,
 9428, 9302, 9269, 9287, 9215, 9296, 9316, 9361, 9265, 9159, 9117, 9127,
 8953, 8952, 9313, 9017, 9087, 8864, 9129, 8895, 9127, 8863, 8791, 8972,
 8686, 8998, 9047, 8895, 8797, 8832, 8752, 8644, 8644, 8755, 8766, 8752,
 8529, 8637, 8476, 8515, 8595, 8407, 8506, 8600, 8572, 8566, 8521, 8514,
 8430, 8272, 8322, 8147, 8112, 8172, 8208, 8233, 8403, 8145, 8153, 8327,
 8233, 8226, 8158, 8207, 8155, 8290, 8200, 8215, 7933, 7882, 8198, 8086,
 7958, 7994, 8204, 8064, 8010, 7944, 7959, 7854, 7768, 7788, 7863, 7766,
 7983, 7895, 7801, 7896, 7811, 7794, 7718, 7670, 7657, 7702, 7602, 7694,
 7877, 7581, 7640, 7599, 7691, 7570, 7484, 7719, 7326, 7551, 7495, 7555,
 7447, 7367, 7345, 7423, 7359, 7357, 7690, 7451, 7369, 7310, 7372, 7301,
 7219, 7374, 7242, 7140, 7381, 7216, 7179, 7042, 7172, 7122, 7170, 7176,
 7165, 7284, 7140, 7074, 7026, 7141, 7016, 7087, 7069, 6851, 6961, 6866,
 6788, 6892, 6990, 6810, 6911, 6850, 6917, 7124, 7012, 6825, 6878, 6719,
 6860, 6842, 6785, 6895, 6929, 6935, 6679, 6625, 6672, 6682, 6818, 6517,
 6768, 6704, 6690, 6651, 6477, 6465, 6530, 6708, 6521, 6634, 6597, 6622,
 6594, 6361, 6337, 6509, 6548, 6393, 6515, 6188, 6347, 6321, 6408, 6407,
 6230, 6310, 6112, 6294, 6297, 6110, 6284, 6340, 6202, 6147, 6213, 6236,
 6259, 6260, 6160, 6276, 6002, 6096, 6166, 6239, 5964, 6007, 6042, 6173,
 6242, 6279, 6004, 6297, 6035, 6039, 5945, 5859, 6062, 6017, 5894, 6016,
 5958, 6012, 6110, 5839, 5836, 5794, 5858, 5947, 5753, 5829, 5633, 5920,
 5834, 5885, 5649, 5744, 5696, 5854, 5698, 5761, 5742, 5972, 5736, 5747,
 5777, 5720, 5739, 5648, 5620, 5565, 5459, 5592, 5655, 5577, 5674, 5562,
 5696, 5645, 5566, 5626, 5342, 5838, 5606, 5461, 5474, 5484, 5332, 5429,
 5560, 5476, 5466, 5262, 5270, 5457, 5389, 5459, 5449, 5307, 5334, 5289,
 5324, 5335, 5314, 5222, 5223, 5462, 5392, 5255, 5306, 5139, 5196, 5194,
 5367, 5287, 5224, 5218, 5229, 5234, 5107, 5241, 5077, 5049, 5173, 5157,
 5084, 5070, 5171, 5057, 5065, 5046, 4988, 5045, 5016, 4988, 5043, 5086,
 4982, 5013, 4932, 4938, 4965, 4942, 5004, 4887, 4896, 4783, 4991, 4984,
 4875, 4805, 4995, 4865, 4866, 4890, 4627, 4921, 4745, 4734, 4781, 4970,
 4696, 4759, 4639, 4791, 4805, 4896, 4852, 4671, 4937, 4739, 4584, 4671,
 4662, 4678, 4770, 4702, 4605, 4751, 4626, 4604, 4603, 4631, 4798, 4599,
 4658, 4744, 4571, 4493, 4609, 4480, 4632, 4641, 4625, 4440, 4512, 4491,
 4401, 4562, 4661, 4542, 4597, 4663, 4494, 4553, 4553, 4504, 4349, 4425,
 4456, 4366, 4405, 4300, 4329, 4501, 4508, 4415, 4333, 4348, 4290, 4360,

43

 4356, 4202, 4337, 4254, 4262, 4323, 4176, 4374, 4436, 4300, 4415, 4316,
 4342, 4316, 4329, 4189, 4177, 4206, 4387, 4266, 4103, 4227, 4227, 4214,
 4238, 4126, 4193, 4159, 4089, 4115, 4215, 4087, 4099, 4064, 4139, 4085,
 4160, 4074, 4130, 4031, 4099, 4143, 4129, 4021, 4152, 4048, 4025, 4117,
 3966, 3833, 4059, 4044, 4081, 4051, 3990, 3979, 3987, 3924, 4025, 3934,
 3961, 3911, 3993, 3927, 4055, 3865, 3935, 4005, 3894, 3852, 3997, 3990,
 3869, 3898, 3853, 3866, 3888, 3992, 3764, 3812, 3886, 3676, 3794, 3904,
 3957, 3852, 3848, 3746, 3832, 3834, 3751, 3797, 3750, 3656, 3853, 3776,
 3764, 3680, 3632, 3695, 3635, 3715, 3677, 3610, 3818, 3619, 3675, 3652,
 3806, 3787, 3738, 3620, 3677, 3575, 3736, 3679, 3724, 3754, 3609, 3613,
 3643, 3701, 3558, 3698, 3660, 3651, 3586, 3437, 3513, 3623, 3551, 3580,
 3532, 3506, 3528, 3614, 3508, 3483, 3405, 3514, 3590, 3451, 3516, 3405,
 3417, 3554, 3454, 3595, 3410, 3411, 3496, 3550, 3586, 3498, 3518, 3438,
 3407, 3446, 3589, 3343, 3420, 3195, 3455, 3329, 3368, 3356, 3502, 3482,
 3349, 3456, 3348, 3388, 3362, 3371, 3316, 3251, 3349, 3441, 3419, 3311,
 3430, 3306, 3359, 3236, 3151, 3232, 3285, 3295, 3252, 3126, 3236, 3323,
 3331, 3203, 3190, 3180, 3303, 3203, 3137, 3155, 3256, 3206, 3155, 3096,
 3162, 3160, 3223, 3140, 3262, 3176, 3189, 3247, 3208, 3242, 3217, 3131,
 3113, 3235, 3119, 3196, 3130, 3052, 3150, 3093, 3234, 3115, 3059, 3376,
 3171, 3195, 3082, 3051, 3106, 3026, 2983, 3125, 3062, 3049, 3205, 3001,
 2948, 3110, 2881, 2987, 2950, 3091, 2994, 2965, 3099, 3069, 2984, 2977,
 2967, 2988, 2928, 3071, 2986, 2999, 2937, 3089, 2883, 2991, 2927, 3060,
 2806, 3004, 2856, 2876, 2935, 2944, 2864, 2880, 2903, 2782, 2747, 2916,
 3015, 2928, 3012, 2857, 2909, 2806, 2863, 2883, 2806, 2878, 2928, 2803,
 2850, 2846, 2746, 2814, 2865, 2815, 2788, 2906, 2810, 2789, 2787, 2705,
 2825, 2803, 2926, 2807, 2765, 2797, 2747, 2796, 2683, 2780, 2844, 2848,
 2809, 2825, 2611, 2739, 2717, 2642, 2664, 2757, 2807, 2704, 2809, 2689,
 2684, 2828, 2637, 2722, 2647, 2745, 2714, 2717, 2784, 2732, 2570, 2687,
 2677, 2653, 2796, 2619, 2647, 2568, 2727, 2642, 2672, 2603, 2578, 2807,
 2815, 2665, 2623, 2661, 2605, 2685, 2562, 2573, 2616, 2594, 2625, 2515,
 2658, 2464, 2624, 2564, 2637, 2698, 2572, 2631, 2527, 2622, 2586, 2535,
 2502, 2574, 2554, 2584, 2565, 2542, 2547, 2520, 2398, 2593, 2699, 2474,
 2355, 2496, 2492, 2533, 2558, 2582, 2424, 2465, 2540, 2470, 2531, 2566,
 2391, 2540, 2556, 2405, 2519, 2495, 2557, 2544, 2561, 2414, 2528, 2536,
 2521, 2468, 2458, 2408, 2524, 2397, 2477, 2286, 2278, 2503, 2469, 2385,
 2400, 2435, 2376, 2416, 2346, 2425, 2393, 2364, 2373, 2314, 2359, 2384,
 2397, 2409, 2372, 2491, 2296, 2412, 2236, 2413, 2420, 2400, 2379, 2471,
 2403, 2421, 2270, 2389, 2290, 2371, 2284, 2363, 2381, 2409, 2245, 2228,
 2391, 2304, 2248, 2270, 2367, 2282, 2236, 2361, 2168, 2305, 2353, 2260,
 2244, 2323, 2255, 2409, 2219, 2293, 2324, 2262, 2303, 2301, 2195, 2302,
 2293, 2188, 2189, 2255, 2173, 2254, 2094, 2225, 2165, 2276, 2283, 2317,
 2217, 2136, 2299, 2270, 2288, 2112, 2266, 2118, 2270, 2204, 2110, 2278,
 2215, 2227, 2131, 2215, 2255, 2238, 2129, 2141, 2203, 2054, 2171, 2170,
 2132, 2162, 2069, 2290, 2221, 2122, 2208, 2121, 2134, 2120, 2137, 2172,
 2165, 2195, 2100, 2044, 1985, 2058, 2104, 2037, 2126, 2121, 2043, 1994,
 2102, 2114, 2003, 2069, 2055, 2120, 2080, 2098, 2058, 2021, 2049, 2097,
 2162, 2195, 2022, 2146, 2084, 2047, 2006, 2009, 2181, 2039, 2059, 2053,
 1987, 1995, 2105, 2006, 1967, 2046, 2005, 2049, 2050, 2139, 2068, 1968,
 1929, 2058, 1997, 2050, 2092, 1922, 1976, 2023, 2065, 2003, 1976, 2027,
 1978, 2052, 1978, 2005, 1997, 1972, 1990, 2033, 2035, 1931, 2012, 2009,
 1890, 1900, 1879, 1946, 2078, 1976, 2011, 1916, 1963, 2058, 1998, 1906,
 1964, 1937, 1884, 1970, 1967, 1913, 1853, 1843, 1985, 1912, 1931, 1932,
 1903, 1878, 1915, 1886, 1941, 1899, 1840, 1767, 1889, 1862, 1986, 1923,
 1908, 1868, 1913, 1797, 1773, 1871, 1780, 1815, 1951, 1840, 1787, 1920,
 1909, 1835, 1932, 1826, 1944, 1819, 1831, 1865, 1818, 1829, 1837, 1889,
 1809, 1834, 1845, 1824, 1911, 1910, 1842, 1760, 1837, 1875, 1838, 1804,
 1713, 1801, 1779, 1713, 1864, 1899, 1802, 1799, 1859, 1772, 1884, 1797,
 1827, 1751, 1738, 1683, 1725, 1816, 1733, 1775, 1761, 1771, 1824, 1860,
 1775, 1827, 1808, 1760, 1691, 1694, 1753, 1759, 1744, 1750, 1742, 1801,
 1783, 1832, 1737, 1764, 1755, 1788, 1764, 1730, 1777, 1761, 1724, 1707,
 1796, 1726, 1739, 1717, 1754, 1789, 1719, 1694, 1651, 1762, 1693, 1717,
 1717, 1750, 1697, 1685, 1681, 1684, 1709, 1745, 1707, 1641, 1649, 1710,
 1638, 1670, 1728, 1662, 1625, 1731, 1657, 1620, 1746, 1746, 1726, 1659,
 1686, 1637, 1653, 1615, 1650, 1712, 1616, 1621, 1581, 1649, 1646, 1687,
 1748, 1749, 1614, 1629, 1636, 1729, 1568, 1661, 1638, 1614, 1545, 1660,
 1642, 1677, 1614, 1627, 1572, 1675, 1725, 1694, 1638, 1613, 1570, 1540,
 1644, 1527, 1622, 1584, 1646, 1512, 1619, 1534, 1644, 1613, 1584, 1488,
 1612, 1469, 1624, 1550, 1487, 1524, 1569, 1570, 1563, 1552, 1572, 1526,
 1574, 1511, 1673, 1557, 1521, 1495, 1502, 1658, 1547, 1602, 1541, 1617,
 1440, 1545, 1528, 1610, 1483, 1583, 1511, 1601, 1564, 1527, 1501, 1451,
 1588, 1485, 1555, 1541, 1468, 1430, 1464, 1517, 1569, 1541, 1521, 1538,
 1417, 1502, 1491, 1522, 1518, 1486, 1537, 1413, 1572, 1492, 1456, 1396,
 1517, 1471, 1422, 1494, 1406, 1510, 1512, 1495, 1536, 1454, 1429, 1494,
 1485, 1489, 1525, 1529, 1562, 1461, 1500, 1450, 1409, 1428, 1509, 1509,
 1509, 1414, 1471, 1500, 1361, 1481, 1444, 1470, 1520, 1458, 1463, 1465,
 1484, 1439, 1386, 1463, 1379, 1482, 1396, 1441, 1405, 1495, 1551, 1473,
 1389, 1385, 1360, 1417, 1379, 1435, 1445, 1372, 1483, 1349, 1441, 1353,
 1538, 1370, 1401, 1421, 1414, 1493, 1418, 1363, 1372, 1303, 1397, 1411,
 1325, 1436, 1382, 1421, 1384, 1391, 1471, 1472, 1431, 1440, 1413, 1399,
 1361, 1375, 1341, 1379, 1420, 1402, 1338, 1334, 1405, 1390, 1370, 1463,
 1344, 1456, 1444, 1379, 1401, 1372, 1334, 1406, 1355, 1343, 1377, 1376,
 1382, 1341, 1337, 1385, 1322, 1380, 1286, 1503796], dtype=np.int64)
wikipedia_2048_max_sequence_length = 2048
squad_1_1_histogram = np.array([
 0,
 0, 0, 3, 2, 0, 9, 10, 16, 22, 24, 36, 35, 46, 42, 48, 57, 86, 83, 86, 87, 86, 97, 90, 99, 85, 94,
 105, 114, 110, 93, 116, 118, 114, 116, 117, 127, 115, 155, 137, 145, 157, 151, 153, 149, 163, 157,
 134, 150, 144, 132, 166, 162, 177, 160, 149, 151, 138, 156, 148, 176, 163, 182, 188, 182, 177, 199,
 182, 203, 201, 264, 250, 244, 289, 346, 327, 298, 377, 386, 444, 431, 503, 553, 532, 570, 611, 677,
 648, 673, 712, 722, 745, 692, 697, 747, 754, 741, 777, 781, 825, 813, 836, 777, 776, 756, 789, 790,

44

 765, 753, 729, 748, 772, 766, 760, 741, 725, 729, 759, 732, 730, 730, 741, 705, 708, 725, 656, 688,
 688, 677, 662, 628, 635, 618, 586, 527, 562, 619, 562, 578, 538, 558, 582, 541, 575, 526, 556, 498,
 529, 486, 528, 541, 482, 521, 483, 466, 514, 459, 447, 436, 383, 401, 408, 381, 369, 364, 381, 420,
 391, 388, 358, 365, 357, 358, 355, 297, 290, 267, 308, 329, 304, 332, 289, 282, 304, 242, 263, 288,
 238, 257, 271, 288, 277, 264, 253, 239, 217, 260, 214, 247, 237, 212, 205, 193, 200, 208, 195, 193,
 201, 187, 170, 176, 195, 156, 201, 179, 159, 183, 169, 178, 163, 153, 171, 144, 138, 181, 165, 171,
 161, 159, 166, 142, 138, 151, 155, 134, 141, 132, 123, 119, 109, 125, 123, 131, 135, 115, 108, 102,
 117, 105, 99, 84, 100, 85, 85, 85, 95, 122, 105, 114, 113, 100, 80, 96, 86, 79, 80, 87, 92, 73, 73,
 64, 76, 72, 77, 67, 60, 71, 77, 79, 72, 55, 67, 42, 59, 65, 72, 49, 43, 62, 48, 50, 54, 45, 42, 53,
 56, 45, 43, 32, 30, 36, 42, 37, 45, 28, 41, 31, 44, 35, 36, 47, 47, 48, 65, 32, 23, 35, 38, 20, 23,
 22, 21, 27, 20, 26, 18, 18, 22, 17, 17, 14, 26, 15, 20, 22, 19, 24, 17, 15, 20, 20, 22, 22, 17, 20,
 16, 21, 16, 23, 12, 14, 1054], dtype=np.int64)
squad_1_1_max_sequence_length = 384

45

Listing 7: Histogram creation for GLUE training datasets
Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""GLUE data loading and histogram creation.
Some code snippets were taken from
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py
Most is original code.
"""
from transformers import AutoTokenizer
import datasets
import numpy as np
constants
max_sequence_length = 128
task_to_keys = {
 "cola": ("sentence", None),
 "mnli": ("premise", "hypothesis"),
 "mrpc": ("sentence1", "sentence2"),
 "qnli": ("question", "sentence"),
 "qqp": ("question1", "question2"),
 "rte": ("sentence1", "sentence2"),
 "sst2": ("sentence", None),
 "stsb": ("sentence1", "sentence2"),
 "wnli": ("sentence1", "sentence2"),
}
glue_keys = [’cola’, ’sst2’, ’mrpc’, ’qqp’, ’stsb’, ’mnli’, ’rte’, ’wnli’]
unused datasets due to missing training data
unglue_keys = [’mnli_matched’, ’mnli_mismatched’, ’qnli’, ’ax’]
load data
dataset_loads = {}
for key in glue_keys:
 dataset_loads[key] = datasets.load_dataset("glue", key, split=’train’)
tokenize data
tokenizer = AutoTokenizer.from_pretrained(’bert-base-uncased’)
tokenized_data = {}
for key in dataset_loads:
 sentence1_key, sentence2_key = task_to_keys[key]
 def preprocess_function(examples):
 """Tokenize the texts"""
 args = (
 (examples[sentence1_key],) if sentence2_key is None
 else (examples[sentence1_key], examples[sentence2_key])
)
 result = tokenizer(*args, padding=False, max_length=max_sequence_length, truncation=True)
 return result
 tokenized_data[key] = dataset_loads[key].map(preprocess_function, batched=True)
extract length information (for histogram plots)
histogram_length = {}
for key in tokenized_data:
 histogram_length[key] = []
for number, key in enumerate(tokenized_data.keys()):
 for raw_record in tokenized_data[key]["input_ids"]:
 histogram_length[key].append(len([x for x in raw_record if x!=0]))
create histogram for packing
glue_histogram = {}
for data_key in histogram_length:
 glue_histogram[data_key] = np.array([0] * max_sequence_length, dtype=np.int64)
 for entry in histogram_length[data_key]:
 glue_histogram[data_key][entry-1] += 1

46

Listing 8: Longest-pack-first histogram-packing
from collections import defaultdict
import numpy as np
import time

def add_pack(pack, count, tmp, final, limit, offset, max_sequence_length=512):
 """Filter out packs that reached maximum length or number of components."""
 # sanity checks
 assert(max_sequence_length-sum(pack) == offset), "Incorrect offset."
 assert(offset >= 0), "Too small offset."
 assert(offset < max_sequence_length), "Too large offset."
 if len(pack) == limit or offset == 0:
 final[offset].append((count, pack))
 else:
 tmp[offset].append((count, pack))

def pack_using_lpfhp(histogram, max_sequence_length, max_sequences_per_pack, distribute=True):
 """Longest-pack-first histogram-packing."""
 start = time.time()
 reversed_histogram = np.flip(histogram)
 # Initialize main strategy data dictionary.
 # The key indicates how many tokens are left for full length.
 # The value is a list of tuples, consisting of counts and respective packs.
 # A pack is a (sorted) list of sequence length values that get concatenated.
 tmp_strategies_per_length = defaultdict(list)
 strategies_per_length = defaultdict(list)
 if max_sequences_per_pack is "max":
 max_sequences_per_pack = max_sequence_length
 # Index i indicates here, how much space is left, due to reversed histogram
 for i in range(max_sequence_length):
 n_sequences_to_bin = reversed_histogram[i]
 length_to_bin = max_sequence_length - i
 offset = 0 # smallest possible offset for perfect fit
 while n_sequences_to_bin > 0:
 if (length_to_bin + offset) in tmp_strategies_per_length:
 # extract worst pack that will get modified
 n_sequences_to_pack, pack = tmp_strategies_per_length[
 length_to_bin + offset].pop()
 # calculate how often the current sequence maximally fits in
 repeat = min(1 + offset // length_to_bin, max_sequences_per_pack-len(pack))
 # correct dependent on count
 while n_sequences_to_bin//repeat == 0:
 repeat -= 1
 if not distribute:
 repeat = 1
 new_pack = pack + [length_to_bin]*repeat
 count = min(n_sequences_to_pack, n_sequences_to_bin//repeat)
 if n_sequences_to_pack > count:
 # old pack gets reduced
 n_sequences_to_pack -= count
 tmp_strategies_per_length[length_to_bin + offset].append(
 (n_sequences_to_pack, pack))
 n_sequences_to_bin -= count * repeat
 else:
 n_sequences_to_bin -= n_sequences_to_pack * repeat
 add_pack(new_pack, count,
 tmp_strategies_per_length, strategies_per_length,
 max_sequences_per_pack, offset - (repeat - 1) * length_to_bin,
 max_sequence_length)
 # clean up to speed up main key search
 if not tmp_strategies_per_length[length_to_bin + offset]:
 tmp_strategies_per_length.pop(length_to_bin + offset)
 # reset offset in case best fit changed
 offset = 0
 else:
 offset += 1
 # Does not fit anywhere. Create new pack.
 if offset >= max_sequence_length - length_to_bin + 1:
 # similar repetition but no dependence on pack.
 repeat = min(max_sequence_length//length_to_bin, max_sequences_per_pack)
 while n_sequences_to_bin//repeat == 0:
 repeat -= 1
 if not distribute:
 repeat = 1
 add_pack([length_to_bin]*repeat, n_sequences_to_bin//repeat,
 tmp_strategies_per_length, strategies_per_length,
 max_sequences_per_pack, max_sequence_length-length_to_bin*repeat,
 max_sequence_length)
 n_sequences_to_bin -= n_sequences_to_bin//repeat * repeat

47

 # merge all strategies
 for key in tmp_strategies_per_length:
 strategies_per_length[key].extend(tmp_strategies_per_length[key])
 # flatten strategies dictionary
 strategy_set = []
 strategy_repeat_count = []
 for key in strategies_per_length:
 for count, pack in strategies_per_length[key]:
 pack.reverse()
 strategy_set.append(pack)
 strategy_repeat_count.append(count)
 # Summarize efficiency of solution
 duration = time.time() - start
 sequence_lengths = np.arange(1, max_sequence_length + 1)
 strategy_repeat_count = np.array(strategy_repeat_count)
 n_strategies = len(strategy_set)
 old_number_of_samples = histogram.sum()
 new_number_of_samples = strategy_repeat_count.sum()
 sequences = sum([count*len(pack) for count, pack in
 zip(strategy_repeat_count, strategy_set)])
 total_tokens = max_sequence_length * new_number_of_samples
 empty_tokens = sum([count*(max_sequence_length-sum(pack)) for count, pack
 in zip(strategy_repeat_count, strategy_set)])
 efficiency = 100 - empty_tokens / total_tokens * 100
 speedup_upper_bound = 1.0/(1 - (histogram*(
 1 - sequence_lengths / max_sequence_length)).sum() / old_number_of_samples)
 print(f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
 f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
 f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}",
 f"Runtime: Packed {old_number_of_samples} sequences in {duration:3.3f} seconds.")
 return strategy_set, strategy_repeat_count

48

Listing 9: Extended non-negative least squares histogram-packing
import time
import numpy as np
from scipy import optimize, stats
from functools import lru_cache
def get_packing_matrix(strategy_set, max_sequence_length):
 num_strategies = len(strategy_set)
 A = np.zeros((max_sequence_length, num_strategies), dtype=np.int32)
 for i, strategy in enumerate(strategy_set):
 for seq_len in strategy:
 A[seq_len - 1, i] += 1
 return A
@lru_cache(maxsize=None)
def get_packing_strategies(start_length, minimum_increment, target_length, depth):
 gap = target_length - start_length
 strategies = []
 # Complete the packing with exactly 1 number
 if depth == 1:
 if gap >= minimum_increment:
 strategies.append([gap])
 # Complete the sample in "depth" steps, recursively
 else:
 for new in range(minimum_increment, gap + 1):
 new_gap = target_length - start_length - new
 if new_gap == 0:
 strategies.append([new])
 else:
 options = get_packing_strategies(start_length + new, new, target_length, depth - 1)
 for option in options:
 if len(option) > 0:
 strategies.append([new] + option)
 return strategies
def pack_using_ennlshp(histogram, max_sequence_length, max_sequences_per_pack):
 # List all unique ways of packing to the desired maximum sequence length
 strategy_set = get_packing_strategies(0, 1, max_sequence_length, max_sequences_per_pack)
 print(f"Packing will involve {len(strategy_set)} unique packing strategies.")
 # Get the packing matrix corresponding to this list of packing strategies
 A = get_packing_matrix(strategy_set, max_sequence_length)
 # Weights that penalize the residual by the number of resulting padding tokens.
 w0 = np.array([x+1 for x in range(max_sequence_length)])
 # construct the packing matrix
 A_bar = np.zeros((2*max_sequence_length, len(strategy_set) + max_sequence_length), ’d’)
 # Base weighted matrix
 A_bar[:max_sequence_length, :len(strategy_set)] = np.expand_dims(w0, -1) * A
 # Higher weight to avoid positive residual
 A_bar[max_sequence_length:, :len(strategy_set)] = np.expand_dims(
 10**6*np.ones([max_sequence_length]), -1) * A
 # negative diagonal unity matrix for mapping to residual
 A_bar[max_sequence_length:, len(strategy_set):] = np.expand_dims(
 10**6*np.ones([max_sequence_length]), -1)*np.ones((max_sequence_length,max_sequence_length))
 b_bar = np.zeros(2*max_sequence_length)
 # Apply weighting to histogram vector
 b_bar[:max_sequence_length] = w0 * histogram
 b_bar[max_sequence_length:] = 10**6*np.ones([max_sequence_length]) * histogram
 # Solve the packing problem
 print(f"Sequences to pack: ", histogram.sum())
 start = time.time()
 strategy_residual, rnorm = optimize.nnls(A_bar, b_bar)
 strategy_repeat_count = strategy_residual[:len(strategy_set)]
 print(f"Solving non-negative least squares took {time.time() - start:3.2f} seconds.")
 # Round the floating point solution to nearest integer
 strategy_repeat_count = np.rint(strategy_repeat_count).astype(np.int64)
 # Compute the residuals, shape: [max_sequence_length]
 residual = histogram - A @ strategy_repeat_count
 # Handle the left-over sequences i.e. positive part of residual
 unpacked_seqlen = np.arange(1, max_sequence_length + 1)[residual > 0]
 for l in unpacked_seqlen:
 strategy = sorted([l, max_sequence_length - l]) # the depth 1 strategy
 strategy_index = strategy_set.index(strategy)
 strategy_repeat_count[strategy_index] += residual[l-1]
 # Re-compute the residual with the updated strategy_repeat_count
 # This should now be strictly < 0
 residual = histogram - A @ strategy_repeat_count
 # Add padding based on deficit (negative residual portion of residual)
 padding = np.where(residual < 0, -residual, 0)
 # Calculate some basic statistics
 sequence_lengths = np.arange(1, max_sequence_length + 1)
 old_number_of_samples = histogram.sum()
 new_number_of_samples = int(strategy_repeat_count.sum())
 speedup_upper_bound = 1.0/(1 - (histogram*(
 1 - sequence_lengths / max_sequence_length)).sum()/old_number_of_samples)
 num_padding_tokens_packed = (sequence_lengths * padding).sum()
 efficiency = 1 - num_padding_tokens_packed/(new_number_of_samples*max_sequence_length)
 print(f"Packing efficiency (fraction of real tokens): {efficiency:3.4f}\n",
 f"Speed-up theoretical limit: {speedup_upper_bound:3.4f}\n",
 f"Achieved speed-up over un-packed dataset: {old_number_of_samples/new_number_of_samples:3.5f}")
 return strategy_set, strategy_repeat_count

49

Appendix References
[37] BELOV, G., AND SCHEITHAUER, G. A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. European Journal of Opera-
tional Research 171, 1 (may 2006), 85–106.

[38] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., USA, 1990.

[39] GUILLÉN, G., DIAZ-CAMINO, C., LOYOLA-TORRES, C., APARICIO-FABRE, R.,
HERNÁNDEZ-LÓPEZ, A., DÍAZ-SÁNCHEZ, M., AND SANCHEZ, F. Detailed analysis of
putative genes encoding small proteins in legume genomes. Frontiers in Plant Science 4 (2013),
208.

[40] HANSEN, H. B., DAMGAARD, P. B., MARGARYAN, A., STENDERUP, J., LYNNERUP, N.,
WILLERSLEV, E., AND ALLENTOFT, M. E. Comparing ancient dna preservation in petrous
bone and tooth cementum. PLOS ONE 12, 1 (01 2017), 1–18.

[41] KOTZ, S., AND NADARAJAH, S. Extreme Value Distributions. World Scientific Publishing
Company, 2000.

[42] LAWSON, C. L., AND HANSON, R. J. Solving Least Squares Problems. Society for Industrial
and Applied Mathematics, jan 1995.

[43] LUO, Y., AND DURAISWAMI, R. Efficient parallel non-negative least squares on multi-core
architectures. SIAM Journal on Scientific Computing 33 (2011), 2848 – 2863.

[44] NVIDIA. Performance catalogue for BERT on Pytorch. https://ngc.nvidia.com/
catalog/resources/nvidia:bert_for_pytorch/performance, 2021.

[45] PENG, Y., YAN, S., AND LU, Z. Transfer Learning in Biomedical Natural Language Processing:
An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. In Proceedings of the 2019
Workshop on Biomedical Natural Language Processing (BioNLP 2019) (2019), pp. 58–65.

[46] VIRTANEN, P., GOMMERS, R., OLIPHANT, T. E., HABERLAND, M., REDDY, T., COURNA-
PEAU, D., BUROVSKI, E., PETERSON, P., WECKESSER, W., BRIGHT, J., VAN DER WALT,
S. J., BRETT, M., WILSON, J., MILLMAN, K. J., MAYOROV, N., NELSON, A. R. J., JONES,
E., KERN, R., LARSON, E., CAREY, C. J., POLAT, İ., FENG, Y., MOORE, E. W., VANDER-
PLAS, J., LAXALDE, D., PERKTOLD, J., CIMRMAN, R., HENRIKSEN, I., QUINTERO, E. A.,
HARRIS, C. R., ARCHIBALD, A. M., RIBEIRO, A. H., PEDREGOSA, F., VAN MULBREGT,
P., AND SCIPY 1.0 CONTRIBUTORS. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods 17 (2020), 261–272.

[47] WOLF, T., LHOEST, Q., VON PLATEN, P., JERNITE, Y., DRAME, M., PLU, J., CHAU-
MOND, J., DELANGUE, C., MA, C., THAKUR, A., PATIL, S., DAVISON, J., SCAO, T. L.,
SANH, V., XU, C., PATRY, N., MCMILLAN-MAJOR, A., BRANDEIS, S., GUGGER, S.,
LAGUNAS, F., DEBUT, L., FUNTOWICZ, M., MOI, A., RUSH, S., SCHMIDD, P., CIS-
TAC, P., MUŠTAR, V., BOUDIER, J., AND TORDJMANN, A. Datasets. GitHub. Note:
https://github.com/huggingface/datasets 1 (2020).

[48] WOLFRAM RESEARCH INC. Mathematica, Version 12.2. Champaign, IL, 2020.

50

https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance
https://ngc.nvidia.com/catalog/resources/nvidia:bert_for_pytorch/performance

	Introduction
	Sequence length distributions
	Methods
	Packing algorithms
	packedBERT: model changes
	Adjust hyperparameters

	Experiments
	Bin packing algorithm comparison
	MLPerf™ phase 2 pretraining setup: learning curves and hyperparameter adjustment
	Full pretraining and SQuAD finetuning
	Scaling analysis: Impact of accelerators count

	Conclusion
	Broader impact
	Reproducibility Statement
	Related work
	Theorem on LAMB hyperparameter correction heuristic
	Un-padding scaling estimate
	Technical background on packing
	Canonical packing problem
	Approximate bin packing problem
	Definitions
	Non-negative least squares histogram-packing
	Discussion of residual weight choice

	Complexity analysis of the proposed packing approaches
	Complexity Analysis of non-negative least-squares histogram-packing
	Complexity Analysis of shortest-pack-first histogram-packing

	Performance Comparison to GREEDY Packing in T5
	Impact of NSP loss
	Wikipedia with Longer Sequence Length
	Packing SQuAD 1.1
	Packing GLUE
	Packing Audio Data (LibriSpeech)
	Packing Paper Abstracts (PubMed)
	MLPerf™ phase 2 learning curves
	Full pretraining of BERT base and large learning curves
	Note on changing the sequence length for optimal packing
	Fine-tuned longest-pack-first histogram-packing
	Extended NNLS with padding token weighting
	Packing source code

