A. Related Work

Radar-Only Perception: Learning-based methods have
advanced radar detection over traditional model-based ap-
proaches [20], benefiting from open large-scale radar point
cloud datasets like nuScenes [4], Oxford RobotCar [2], and
RADIATE [29]. Image-based and point/voxel-based back-
bones [14, 30] extract semantic features from radar de-
tection points, generate region proposals, and localize ob-
jects. High-resolution heatmaps (e.g., K-Radar [25], HI-
BER [37], MMVR [26]) and raw ADC data [39] have
also been leveraged by previously mentioned RF-Pose [43],
RFMask [37], and RETR [40]. CubeLearn [44] replaces
Fourier transforms with learnable modules for an end-
to-end radar pipeline, while RAMP-CNN [12] enhances
range-angle feature extraction via Doppler cues. More re-
cently, diffusion models have been explored for radar ap-
plications [8, 11, 24, 36, 42]. Most efforts, e.g., Radar-
Diffusion [24, 42] and DiffRadar [36], focus on reconstruct-
ing LiDAR-like point clouds from low-resolution radar
data, while mmDiff [11] estimates and refines pose key-
points from sparse radar points via diffusion process.

Diffusion-based Object Detection: Diffusion models
[28, 32-34] have shown impressive results in tasks such as
image and video generation [3, 18] and multi-view synthe-
sis [6, 41]. For perception tasks, DiffusionDet [7] first refor-
mulates object detection as a generative denoising process
and proposes to model the 2D BBoxes as random parame-
ters in the diffusion process. Diffusion-SS3D [16] proposes
a diffusion-based detector to enhance the quality of pseudo-
labels in semi-supervised 3D object detection by integrat-
ing it into a teacher-student framework. CLIFF [22] fur-
ther leverages language models to enhance diffusion-based
models for open-vocabulary object detection. Diffusion
models are also considered for 3D object detection in the
context of LIDAR-Camera fusion [38] and other tasks such
as pose estimation [35] and semantic segmentation [1, 13].

B. Multi-View Radar Heatmaps

Multi-view radar heatmaps are generated from raw data
captured by two radar arrays: a vertical linear array and a
horizontal one, as illustrated in Fig. 5. By sampling mul-
tiple reflected pulses across the array elements, a 3D raw
data cube is constructed for each array, organized along
ADC (intra-pulse) samples, pulse (inter-pulse) samples, and
array elements. A 3D fast Fourier transform (FFT) con-
verts the data cube into corresponding 3D radar spectra
across the range, Doppler velocity, and spatial angle (az-
imuth for the horizontal array and elevation for the ver-
tical one). To enhance the signal-to-noise ratio (SNR),
the 3D radar spectra are integrated along the Doppler do-
main, generating two 2D radar heatmaps (range-azimuth
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Figure 5. Generation of multi-view heatmaps from raw radar data.

and range-elevation) in the polar coordinate system. These
heatmaps are then transformed into the radar Cartesian co-
ordinate system, where Yo (m) € RW>*P represents the
horizontal-depth radar heatmap and Y e (m) € RHE*P
the vertical-depth heatmap for the m-th frame. To incor-
porate temporal information, M consecutive radar frames
are grouped together as Yy, € RM*WXD and vertical
Yver c RMXHXD_

C. Details of 3D-to-2D Projection and Neces-
sity of the Refinement Module

We present the detailed explanations for 3D-to-2D projec-
tion and necessity of the refinement module. Given a 3D
BBox which consists of its eight vertices

{wcamera € R3 | i = 1 8}7 (9)

where each x%_ . is expressed in the 3D camera coordi-
nate system, our goal is to compute the corresponding 2D
BBox biy,;; € R?, defined by its center coordinates (., y.)
and its width w and height h. To achieve this, we define a
projection function with a pinhole camera model as a con-
crete expression of (5):

PTOj imote i R° = R?: (X, Y, Z) = (pa,py) . (10)
In this model, the projection of the point x}
(X,Y, Z) onto the image plane is given by

foX Y

Pz = 7 + Cq,s Py = 7+ Yo (11)

camera

where f, and f, are the focal lengths along the = and y axes
(in pixels), and (cg,c,) represents the coordinates of the
principal point in the image. In homogeneous coordinates,
this mapping can be expressed as

Dz fm 0 cp X
Moy =10 fy ¢ Y|, (12)
1 0 0 1 A
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Figure 6. A direct projection of 3D BBoxes to the 2D image plane
results in oversized 2D BBoxes. A learnable module is used to
refine the projected BBoxes close to the 2D BBox GT.

with the scaling factor A = Z. Thus, for each vertex, the
projection onto the image plane is given by:

pt = pro_‘jp:.mhole(aciamem)7 fori=1,...,8, (13)
where p' = (pi, p;) represents the 2D coordinates of the
projected point in the image plane. Once the eight vertices

have been projected, the extreme coordinates on the image
plane are determined as:

tmin = min{py},  tmax = max{p,},  (14)

Umin = min{py b, vmax = max{p,}. (15

Using these extremes, the center coordinates, width, and
height of the 2D BBox are computed by:

Umin + Umax o Umin 1 Umax

= 1
e S 1)

Te =

W = Umax — Umin; h = Umax — Umin- (17)

Thus, the final 2D BBox can be obtained as:
binit - (xcaycvwah) . (18)

The 2D BBoxes obtained by projection, as shown by the
purple box biy;¢ in Fig. 6, are often too large. This occurs
because projecting the eight vertices =%, . . captures the
depth information from the camera, which causes both the
near and far parts of the object to be displayed in a 3D man-
ner. As a result, to accurately predict the 2D BBox bipage
on the image plane, we must use a refinement module. This
module reduces the size of the initial BBox, as illustrated

by the blue boxes in Fig. 6.
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Figure 7. IoU histogram when no image plane supervision. Al-
most all IoU values are lower than 0.5, resulting in 0 AP.
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Figure 8. 3D Proposals with RFMask3D.

To better understand the need for refinement, we calcu-
lated the Intersection over Union (IoU) between the ground-
truth (GT) 3D BBoxes (projected from the 3D space) and
the GT 2D BBoxes (defined on the image plane). The his-
togram of IoU values in Fig. 7 shows a roughly Gaussian
distribution with a peak around 0.15, and nearly all IoU val-
ues are below 0.5. In fact, in Fig. 6, the IoU is 0.17. This in-
dicates that if we do not apply refinement, even when the 3D
BBoxes are correctly predicted in the radar coordinate sys-
tem, the average precision (AP) on the image plane would
be zero. Therefore, our REXO method uses a refinement
module.

D. Baselines

RFMask, DETR, and RETR Since RFMask [37] and
DETR [5] originally compute the BBox loss only in the 2D
horizontal radar plane and the 2D image plane, respectively,
we follow the implementation of RETR and enhance both
methods with a unified bi-plane BBox loss. Furthermore,



we introduce a DETR variant with a top-K feature selec-
tion, allowing it to take features from both horizontal and
vertical heatmaps as input. For RETR [40], we set the num-
ber of object queries to 10. To ensure a fair comparison, we
also set Nyrain = 10 for REXO during training.

RFMask3D As one of the baselines in our evaluation ex-
periments, we constructed RFMask3D by extending RF-
Mask [37] to 3D. RFMask uses a region proposal network
(RPN) to extract regions of interest (Rols) from a horizontal
heatmap based on 2D anchor boxes and predicts 3D BBoxes
in the 3D radar coordinate system by combining them with
fixed heights. By designing an RPN that uses 3D anchor
boxes, we explicitly extract 3D Rols from both horizontal
and vertical heatmaps, as shown in Fig. 8, enabling the esti-
mation of 3D BBoxes. Unlike RFMask, this method allows
for the learning of height as well.

E. Hyperparameters for Performance Evalua-
tion

The hyper-parameters used in our experiments of Section 3
are shown in Table 2. The table is divided into three parts,
Data, Model, and Training, each with parameter names, no-
tations, and values for each dataset.

F. Definition of Metrics

Mean Intersection over Union: We adopt average preci-
sion on intersection over union (IoU) [10] as an evaluation
metric. IoU is the ratio of the overlap to the union of a pre-
dicted BBox A and annotated BBox B as:

_1AnB
AUB|

IoU (A, B) (19)

Average Precision: Average Precision (AP) can then be
defined as the area under the interpolated precision-recall
curve, which can be calculated using the following formula:

n—1
AP = Z (Iri-ﬁ-l - Ti)pinterp (ri-i-l) 5 (20)
=1
Pinterp (T) = ITI}E;DT(Z) (7”/) s 21

where the interpolated precision pinterp at a certain recall
level r is defined as the highest precision found for any re-
call level 7' > r. We present three variants of average pre-
cision: AP5q, AP75, and AP, where the former two represent
the loose and strict constraints of IoU, while AP is the av-
eraged score over 10 different IoU thresholds in [0.5, 0.95]
with a step size of 0.05.

Average Recall: Average recall (AR) [19] between 0.5
and 1 of IoU overlap threshold can be computed by
averaging over the overlaps of each annotation gt; with
the closest matched proposal, that is integrating over
the y recall axis of the plot instead of the z
IoU overlap threshold axis. Let o be the IoU overlap
and recall (o) the function. Let IoU (gt;) denote the IoU
between the annotation gt, and the closest detection pro-
posal:

1
AR = 2/ recall(o)do (22)
0

.5

= % > max (IoU(gt;) — 0.5,0). (23)
i=1

The following are some variations of AR:
* AR;: AR given one detection per frame;
* ARq(: AR given 10 detection per frame;
* ARq00: AR given 100 detection per frame.

G. Analysis of Failure Cases:

We provide failure cases in Fig. 9. These are all results
of “Unseen,” which means the environment that is not in-
cluded in the training data (d8). As with d8sl and d8s3,
REXO may sometimes predict inaccurate positions, al-
though less frequently than RETR and RFMask. In addi-
tion, there are cases where false negatives occur, such as
with d8s2, d8s4, d8s5, and d8s6. In particular, it is thought
to be difficult to capture the characteristics of individuals
that are far away from the radar, such as with d8s2, be-
cause the resolution becomes coarse. In addition, REXO
frequently gets false positives such as d8s2 - d8s6, so ad-
justing the threshold is important.



Table 2. Details of hyper-parameters. Fixed height for the HIBER dataset depends on the environment.

Name Notation Value
P1S1 P1S2 P2S1 P2S2
# of training - 86579 70266 190441 118280
# of validation - 10538 24398 23899 33841
# of test - 10785 13238 23458 85677
« Input radar heatmap size HxW 256128 256128 256128 256128
g Segmentation mask size HxW 240x320 240x320 240x320 240x320
Resolution of range cm 11.5 11.5 11.5 11.5
Resolution of azimuth deg. 1.3 1.3 1.3 1.3
Resolution of elevation deg. 1.3 1.3 1.3 1.3
Scale - log log log log
Backbone - ResNet18 ResNet18 ResNet18 ResNet18
# of input consecutive radar frames M 4 4 4 4
Extracted feature map size H/sx W/s 64x32 64x32 64x32 64x32
The number of BBoxes Ntrain 10 10 10 10
o Threshold for detection - 0.5 0.5 0.5 0.5
B Loss weight for GIoU on radar coordinate system AGIou 2.0 2.0 2.0 2.0
= Loss weight for GIoU on image plane AGIoU 2.0 2.0 2.0 2.0
Loss weight for L1 on radar coordinate system ALy 5.0 5.0 5.0 5.0
Loss weight for Ly on image plane ALy 5.0 5.0 5.0 5.0
Loss weight for radar Asp 1.0 1.0 1.0 1.0
Loss weight for image A2 1.0 1.0 1.0 1.0
Batch size - 32 32 32 32
Epoch for detection - 100 100 100 100
Patience for early stopping - 5 5 5 5
Check val every n epoch for early stopping - 2 2 2 2
. Optimizer - AdamW AdamW AdamW AdamW
£ Learning rate - le-4 le-4 le-4 le-4
-E Sheduler - Cosine Cosine Cosine Cosine
= Maximum number of epochs for sheduler - 100 100 100 100
Weight decay - le-3 le-3 le-3 le-3
# of workers - 8 8 8 8
GPU (NVIDIA) - A40 A40 A40 A40
# of GPUs - 1 1 1 1
Approximate training time day 1 1 2 2
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Figure 9. Visualization of failure cases. Each row indicates the segment name used from the P2S2 test dataset.
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