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ABSTRACT

Real-world image super-resolution (SR) tasks often do not have paired datasets,
which limits the application of supervised techniques. As a result, the tasks are
usually approached by unpaired techniques based on Generative Adversarial
Networks (GANs), which yield complex training losses with several regularization
terms, e.g., content or identity losses. While GANs usually provide good practical
performance, they are used heuristically, i.e., theoretical understanding of their
behaviour is yet rather limited. We theoretically investigate optimization problems
which arise in such models and find two surprising observations. First, the learned
SR map is always an optimal transport (OT) map. Second, we theoretically prove
and empirically show that the learned map is biased, i.e., it does not actually trans-
form the distribution of low-resolution images to high-resolution ones. Inspired
by these findings, we investigate recent advances in neural OT field to resolve the
bias issue. We establish an intriguing connection between regularized GANs and
neural OT approaches. We show that unlike the existing GAN-based alternatives,
these algorithms aim to learn an unbiased OT map. We empirically demonstrate
our findings via a series of synthetic and real-world unpaired SR experiments.

1 INTRODUCTION

Figure 1: Super-resolution of a squirrel using
Bicubic upsample, OTS and DASR (Wei

et al., 2021) methods (4×4 upsample,
370×800 crops).

The problem of image super-resolution (SR) is to
reconstruct a high-resolution (HR) image from its
low-resolution (LR) counterpart. In many modern
deep learning approaches, SR networks are trained in
a supervised manner by using synthetic datasets con-
taining LR-HR pairs (Lim et al., 2017, M4.1); (Zhang
et al., 2018b, M4.1). For example, it is common to
create LR images from HR with a simple downscal-
ing, e.g., bicubic (Ledig et al., 2017, M3.2). However,
such an artificial setup barely represents the practical
setting, in which the degradation is more sophisti-
cated and unknown (Maeda, 2020). This obstacle
suggests the necessity of developing methods capa-
ble of learning SR maps from unpaired data without
considering prescribed degradations.

Contributions. We study the unpaired image SR task and its solutions based on Generative Adversar-
ial Networks (Goodfellow et al., 2014, GANs) and analyse them from the Optimal Transport (Villani,
2008, OT) perspective.

1. Theory I. We investigate the GAN optimization objectives regularized with content losses, which
are common in unpaired image SR methods (M4). We prove that the solution to such objectives
is always an optimal transport map which is, in general, biased.
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2. Theory II. We explain the ideas that stand behind recent algorithms from the field of neural OT
(Korotin et al., 2023b; Fan et al., 2023) which aim to recover the true (unbiased) OT map. To do this,
we show that their algorithms’ optimization objective can be viewed as a certain particular case of
GAN-based objectives regularized with content losses (M5). We also establish connections between
these algorithms and regularized GANs that use integral probability metrics (IPMs) as a loss (M5.1).

3. Practice. We empirically show that oppositely to neural OT methods GANs’ maps are biased
(M6.1), i.e., they do not transform the LR image distribution to the true HR image distribution.
We demonstrate the findings on the synthetic (M6.1) and real-world (MD) super-resolution task.

Notation. We use X = RDx ,Y = RDy to denote data spaces and P(X ),P(Y) to denote the
respective sets of probability distributions on them. We denote by Π(P,Q) the set of probability
distributions on X × Y with marginals P and Q. For a measurable map T : X → Y , we denote the
associated push-forward operator by T#. The expression ∥ · ∥ denotes the usual Euclidean norm if
not stated otherwise. We denote the space of Q-integrable functions on Y by L1(Q).

2 UNPAIRED IMAGE SUPER-RESOLUTION TASK

In this section, we formalize the unpaired image super-resolution task that we consider (Figure 2).

Figure 2: The task of super-resolution we consider.

Let P and Q be two distributions of LR
and HR images, respectively, on spaces
X and Y , respectively. We assume that
P is obtained from Q via some unknown
degradation. The learner has access to un-
paired random samples from P and Q. The
task is to fit a map T : X → Y satisfying
T#P = Q which inverts the degradation.

We highlight that the image SR task is theoretically ill-posed for two reasons.

1. Non-existence. The degradation filter may be non-injective and, consequently, non-invertible.
This is a theoretical obstacle to learn one-to-one SR maps T .

2. Ambiguity. There might exist multiple maps satisfying T#P = Q but only one inverting the
degradation. With no prior knowledge about the correspondence between P and Q, it is unclear
how to pick this particular map.

The first issue is usually not taken into account in practice. Most existing paired and unpaired SR
methods learn one-to-one SR maps T , see (Ledig et al., 2017; Lai et al., 2017; Wei et al., 2021).

The second issue is typically softened by regularizing the model with the content loss. In the
real-world, it is reasonable to assume that HR and the corresponding LR images are close. Thus, the
fitted SR map T is expected to only slightly change the input image. Formally, one may require the
learned map T to have the small value of

Rc(T )
def
=

∫
Y
c
(
x, T (x)

)
dP(x), (1)

where c : X × Y → R+ is a function estimating how different the inputs are. The most popular
example is the ℓ1 identity loss, i.e, formulation (1) for X = Y = RD and c(x, y) = ∥x− y∥1.

More broadly, lossesRc(T ) are typically called content losses and incorporated into training objec-
tives of methods for SR (Lugmayr et al., 2019a, M3.4), (Kim et al., 2020, M3) and other unpaired
tasks beside SR (Taigman et al., 2016, M4), (Zhu et al., 2017, M5.2) as regularizers. They stimulate
the learned map T to minimally change the image content.

A common approach to solve the unpaired SR via GANs is to define a loss function D : P(Y) ×
P(Y)→ R+ and train a generative neural network T via minimizing

inf
T :X 7→Y

[
D(T#P,Q) + λRc(T )

]
. (2)

The term D(T#P,Q) ensures that the generated distribution T#P of SR images is close to the true
HR distribution Q. For convenience, we assume that D(Q,Q) = 0 for all Q ∈ P(Y). Two most
popular examples of D are the Jensen–Shannon divergence (Goodfellow et al., 2014), i.e., the vanilla
GAN loss, and the Wasserstein-1 loss (Arjovsky & Bottou, 2017).
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In unpaired SR methods, the optimization objectives are typically more complex than (2). In addition
to the content or identity loss (1), several other regularizations are usually introduced. Existing
approaches to unpaired image SR mainly solve the problem in two steps. One group of approaches
learn the degradation operation at the first step and then train a super-resolution model in a supervised
manner using generated pseudo-pairs, see (Bulat et al., 2018; Fritsche et al., 2019). Another group of
approaches (Yuan et al., 2018; Maeda, 2020) firstly learn a mapping from real-world LR images to
“clean“ LR images, i.e., HR images, downscaled using predetermined (e.g., bicubic) operation, and
then a mapping from “clean“ LR to HR images. Most methods are based on CycleGAN (Zhu et al.,
2017), initially designed for the domain transfer task, and utilize cycle-consistency loss. Methods
are also usually endowed with several other losses, e.g. content (Kim et al., 2020, M3), identity
(Wang et al., 2021, M3.2) or perceptual (Lugmayr et al., 2019a, M3.4). However, we emphasize that
all methods have unpaired learning step which corresponds to the optimization objective (2). In
Appendix E, we show that the learning objectives of popular SR methods can be represented as (2).

3 BACKGROUND ON OPTIMAL TRANSPORT

In this section, we give the key concepts of the OT theory (Villani, 2008) that we use in our paper.

Primal form. For two distributions P ∈ P(X ) and Q ∈ P(Y) and a transport cost c : X × Y → R,
Monge’s primal formulation of the optimal transport cost is as follows:

Cost(P,Q)
def
= inf

T#P=Q

∫
X
c
(
x, T (x)

)
dP(x), (3)

where the minimum is taken over the measurable functions (transport maps) T : X → Y that map P
to Q, see Figure 3a. The optimal T ∗ is called the optimal transport map.

Note that (3) is not symmetric, and this formulation does not allow mass splitting, i.e., for some P,Q
there may be no map T that satisfies T#P = Q. Thus, (Kantorovitch, 1958) proposed the relaxation:

Cost(P,Q)
def
= inf

π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y), (4)

where the minimum is taken over the transport plans π, i.e., the measures on X ×Y whose marginals
are P and Q (Figure 3b). The optimal π∗ ∈ Π(P,Q) is called the optimal transport plan.

With mild assumptions on the transport cost c(x, y) and distributions P, Q, the minimizer π∗ of
(4) always exists (Villani, 2008, Theorem 4.1) but might not be unique. If π∗ is of the form
[id, T ∗]#P ∈ Π(P,Q) for some T ∗, then T ∗ is an optimal transport map that minimizes (3).

(a) Monge’s formulation of OT. (b) Kantorovich’s formulation of OT.

Figure 3: Monge’s and Kantorovich’s formulations of Optimal Transport.

Dual form. The dual form (Villani, 2003) of OT cost (4) is as follows:

Cost(P,Q) = sup
f

[ ∫
X
f c(x)dP(x) +

∫
Y
f(y)dQ(y)

]
; (5)

here sup is taken over all f ∈L1(Q), and f c(x)= inf
y∈Y

[
c(x, y)−f(y)

]
is the c-transform of f .

Optimal Transport in Generative Models. The majority of existing OT-based generative models
employ OT cost as the loss function to update the generative network, e.g., see (Arjovsky et al., 2017).
These methods are out of scope of the present paper, since they do not compute OT maps. Existing
methods to compute the OT map approach the primal (3), (4) or dual form (5). Primal-form methods
(Lu et al., 2020; Xie et al., 2019; Bousquet et al., 2017; Balaji et al., 2020) optimize complex GAN
objectives such as (2) and provide biased solutions (M4, M6.1). For a comprehensive overview of
dual-form methods, we refer to (Korotin et al., 2021). The authors conduct an evaluation of OT
methods for the quadratic cost c(x, y) = ∥x− y∥2. According to them, the best performing method
is ⌊MM:R⌉. Extensions of ⌊MM:R⌉ appear in (Rout et al., 2022; Fan et al., 2023).
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4 BIASED OT IN GANS

In this section, we establish connections between GAN methods regularized by content losses (1) and
OT. Such GANs are popular in a variety of tasks beside SR, e.g., style transfer (Huang et al., 2018).
The theoretical analysis in this section holds for these tasks as well. However, since we empirically
demonstrate the findings on the SR problem, we keep the corresponding notation in M4.

For a theoretical analysis, we stick to the basic formulation regularized with generic content loss
(2). It represents the simplest and straightforward SR setup. We prove the following lemma, which
connects the solution Tλ of (2) and OT maps.
Lemma 1 (The solution of the regularized GAN is an OT map). Assume that λ > 0 and the minimizer
Tλ of (2) exists. Then Tλ is an OT map between P and Qλ def

= Tλ
#P for cost c(x, y), i.e., it minimizes

inf
T#P=Qλ

Rc(T ) = inf
T#P=Qλ

∫
X
c
(
x, T (x)

)
dP(x).

Figure 4: Illustration of Lemma 1. The
solution Tλ of (2) is an OT map from P to
Tλ
#P. In general, Tλ

#P ̸= Q (Thm. 1).

Our Lemma 1 states that the minimizer Tλ of a regu-
larized GAN problem is always an OT map between
P and the distribution Qλ generated by the same Tλ

from P. However, below we prove that Qλ ̸= Q, i.e.,
Tλ does not actually produce the distribution of HR
images (Figure 4). To begin with, we state and prove
the following auxiliary result.
Lemma 2 (Reformulation of the regularized GAN
via distributions). Under the assumptions of Lemma
1, let X = Y be a compact subset of RD with negligible boundary. Let P ∈ P(X ) be absolutely
continuous, Q∈P(Y) and c(x, y)=∥x− y∥p with p > 1. Then (2) is equivalent to

inf
Q′∈P(Y)

F(Q′)
def
= inf

Q′∈P(Y)

[
D(Q′,Q) + λ · Cost(P,Q′)

]
, (6)

and the solutions of (2) and (6) are related as Qλ = Tλ
#P, where Qλ is the minimizer of (6).

In the following Theorem, we prove that, in general, Qλ ̸= Q for the minimizer Qλ of (6).
Theorem 1 (The distribution solving the regularized GAN problem is always biased). Under the
assumptions of Lemma 2, assume that the first variation (Santambrogio, 2015, Definition 7.12) of
the functional Q′ 7→ D(Q′,Q) at the point Q′ = Q exists and is equal to zero. This means that
D(Q+ ϵ∆Q,Q) = D(Q,Q) + o(ϵ) for every signed measure ∆Q of zero total mass and ϵ ≥ 0 such
that Q+ ϵ∆Q ∈ P(Y). Then, if P ̸= Q, then Q′ = Q does not deliver the minimum to F .

Before proving Theorem 1, we highlight that the assumption about the vanishing first variation of
Q′ 7→ D(Q′,Q) at Q′ = Q is reasonable. In Appendix B, we prove that this assumption holds for
the popular GAN discrepancies D(Q′,Q), e.g., f -divergences (Nowozin et al., 2016) and certain
Wasserstein distances (Arjovsky et al., 2017).

Corollary 1. Under the assumptions of Theorem 1, the solution Tλ of regularized GAN (2) is biased,
i.e., it does not satisfy Tλ

#P = Q and does not transform LR images to true HR ones.

Additionally, we provide a toy example that further illustrates the issue with the bias.
Example 1. Consider X = Y = R1. Let P = 1

2δ0 + 1
2δ2, Q = 1

2δ1 + 1
2δ3 be distributions

concentrated at {0, 2} and {1, 3}, respectively. Put c(x, y) = |x− y| to be the content loss. Also, let
D to be the OT cost for |x− y|2. Then for λ = 0 there exist two maps between P and Q that deliver
the same minimal value for (2), namely T (0) = 1, T (2) = 3 and T (0) = 3, T (2) = 1. For λ > 0,
the optimal solution of the problem (2) is unique, biased and given by T (0) = 1− λ

2 , T (2) = 3− λ
2 .

In Example 1, Tλ
#P = Qλ never matches Q exactly for λ > 0. In M6.1, we conduct an evaluation of

maps obtained via minimizing objective (2) on the synthetic benchmark by (Korotin et al., 2021). We
empirically demonstrate that the bias exists and it is indeed a notable practical issue.

Remarks. Throughout this section, we enforce additional assumptions on (2), e.g., we restrict our
analysis to content losses c(·, ·), which are powers of Euclidean norms ∥ · ∥p. This is needed to make
the derivations concise and to be able to exploit the available results in OT. We think that the provided
results hold under more general assumptions and leave this question open for future studies.
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5 RELATION BETWEEN GANS AND NEURAL OPTIMAL TRANSPORT SOLVERS

In this section, we analyze recent neural algorithms to compute OT maps (Fan et al., 2023; Korotin
et al., 2023b; Rout et al., 2022) and show their connection with regularized GANs. Below we show
that their loss can be viewed as a particular (in a certain sense) GAN objective regularized with the
content loss. To begin with, we recall that typical OT optimization objective is minimax and given by

[Cost(P,Q) =] sup
f

inf
T :X 7→Y

[ ∫
Y
f(y)dQ(y) +

∫
X

{
c
(
x, T (x)

)
− f(T (x))

}
dP(x)

]
, (7)

where supf is taken w.r.t. all potentials f ∈ L1(Q). Under mild assumptions1, by solving (7) one
may recover the true (unbiased) OT map T ∗, see (Korotin et al., 2023b, Lemma 4), (Fan et al., 2023,
M3,4). In practice, T, f are replaced with neural networks; as in GANs, they are optimized with the
stochastic gradient descent-ascent techniques using the empirical samples from P,Q.

Now let us get back to GANs. In M4, we show that solutions of (2) are, in general, biased OT maps.
Note, that this bias is related to the trade-off between components of GANs optimization objective
(2), i.e., the quality of generated image and its similarity to the input. In order to resolve the bias
issue, one can consider the loss D(T#P,Q) ≡ I(T#P,Q) where I is the indicator function which
takes two values: zero if its inputs coincide and +∞ when they differ. Then we can rewrite (2) as

λ · inf
T :X 7→Y

[ 1
λ
I(T#P,Q) +Rc(T )

]
= λ · inf

T :X 7→Y

[
I(T#P,Q) +Rc(T )

]
. (8)

Here we used the fact that λ · I(·, ·) = I(·, ·). Note that the solution T̂ (if it exists) of (8) satisfies
T̂#P = Q. Otherwise, the objective yields the value +∞. Therefore, problem (8) is equivalent to the
optimization of the functionalRc(T ) with the constraint T#P = Q. As a result, (8) turns to be just
the Monge OT problem (3) multiplied by λ > 0 and with the constraint incorporated directly to the
loss via the indicator function I. We conclude that its solution is an OT map, i.e., T̂ = T ∗, and the
optimal value of (8) is exactly λ · Cost(T#P,Q).

Unfortunately, optimizing objective (8) in practice is non-trivial: even testing the condition T#P = Q
(i.e., computing I) is hard, which makes it challenging to compute the loss. Note that

I(T#P,Q) = sup
f

[
−

∫
X
f(T (x))dP(x) +

∫
Y
f(y)dQ(y)

]
, (9)

where f skims through all integrable w.r.t. Q and T#P functions. Indeed, if T#P = Q, the two
integrals always coincide. Otherwise, there always exists a measurable function f whose integrals
over distributions differ. One may then multiply it by an arbitrary number to get any value of the
expression, i.e., in this case, sup equals +∞. We substitute (9) to (8) multiplied by 1

λ and get

Cost(P,Q) = inf
T :X 7→Y

I(T#P,Q) +Rc(T ) =

inf
T :X 7→Y

sup
f

[ ∫
y∈Y

f(y)dQ(y) +

∫
x∈X

{
c
(
x, T (x)

)
− f(T (x))

}
dP(x)

]
(10)

which almost coincides with (7); the only difference is the order of inf and sup. At this point, a
natural question arises: what is the conceptual difference between (7) and (10), and why neural
OT works typically consider (7) rather than (10)? We believe that this is simply because the loss
for the Neural OT methods is usually derived from the conventional dual formulation of OT (5) by
expressing the c-transform, which yields the additional inner problem. In fact, when it comes to the
practical optimization of (7) or (10), the actual order of optimization does not matter too much. The
overall performance depends more on a proper choice of hyperparameters of the optimization.

5.1 REGULARIZED GANS VS. OPTIMAL TRANSPORT SOLVER

In this subsection, we discuss similarities and differences between neural OT optimization objective
(7) and the objective of regularized GANs (2). We establish an intriguing connection between GANs
that use integral probability metrics (IPMs) asD. A discrepancyD :P(Y)×P(Y)→R+ is an IPM if

1In certain cases among the solutions in such a problem may be so-called fake solutions which are not the OT
maps. We refer to Korotin et al. (2023a) for a fruitful discussion of this phenomena.
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D(Q1,Q2)= sup
f∈F

[∫
Y
f(y)dQ2(y)−

∫
Y
f(y)dQ1(y)

]
, (11)

where the maximization is performed over some certain class F of functions (discriminators)
f : Y → R. The most popular example of D is the Wasserstein-1 loss (Arjovsky & Bottou, 2017),
where F is a class of 1-Lipschitz functions. For other IPMs, see (Mroueh et al., 2017, Table 1).

Substituting (11) to (2) yields the saddle-point optimization problem for the regularized IPM GAN:

inf
T :X→Y

[
sup
f∈F

{∫
Y
f(y)dQ(y)−

∫
X
f
(
T (x)

)
dP(x)

}
+ λ

∫
X
c
(
x, T (x)

)
dP(x)}

]
= inf

T :X→Y
sup
f∈F

[ ∫
Y
f(y)dQ(y) +

∫
X

{
λ · c

(
x, T (x)

)
− f

(
T (x)

)}
dP(x)

]
. (12)

We emphasize that the expression inside (12) for λ = 1 is similar to the expression in OTS optimiza-
tion (7). Below we highlight the key differences between (7) and (12).

First, in OTS the optimization over potential f is unconstrained, while in IPM GAN it must belong
to F , some certain restricted class of functions. For example, when D is the Wasserstein-1 (W1)
IPM, one has to use an additional penalization, e.g., the gradient penalty (Gulrajani et al., 2017). This
further complicates the optimization and adds hyperparameters which have to be carefully selected.

Second, the optimization of IPM GAN requires selecting a parameter λ that balances the content loss
Rc and the discrepancy D. In OTS for all costs λ · c(x, y) with λ > 0, the OT map T ∗ is the same.

To conclude, even for λ = 1, the IPM GAN problem generally does not match that of OTS. Table 1
summarizes the differences and the similarities between OTS and regularized IPM GANs.

Optimal Transport Solver (OTS) Regularized IPM GAN

Minimax
optimization

objective

sup
f

inf
T :X→Y

[ ∫
Y f(y)dQ(y)+∫

X
{
c
(
x, T (x)

)
− f

(
T (x)

)}
dP(x)

] inf
T :X→Y

sup
f∈F

[ ∫
Y f(y)dQ(y)+∫

X
{
λ · c

(
x, T (x)

)
− f

(
T (x)

)}
dP(x)

]
Potential f

(discriminator) Unconstrained f ∈ L1(Q)
Constrained f ∈ F ⊂ L1(Q)

A method to impose
the constraint is needed.

Regularization
weight λ N/A Hyperparameter choice required

Table 1: Comparison of the optimization objectives of OTS and regularized IPM GAN.

6 EXPERIMENTAL ILLUSTRATION

In M6.1, we assess the bias of regularized IPM GANs by using the Wasserstein-2 benchmark (Korotin
et al., 2021). In M6.2, we evaluate OTS on the large-scale unpaired AIM-19 dataset from (Lugmayr
et al., 2019b) and compare it with popular GAN-based solutions for unpaired image SR. The code is
written in PyTorch. We list the hyperparameters for Algorithm 1 in Table 4 of Appendix C.

Neural network architectures. We use WGAN-QC’s (Liu et al., 2019) ResNet (He et al., 2016)
architecture for the potential fω . In M6.1, where input and output images have the same size, we use
UNet2 (Ronneberger et al., 2015) as a transport map Tθ. In M6.2, the LR input images are 4× 4 times
smaller than HR, so we use EDSR network (Lim et al., 2017).

Transport costs. In M6.1, we use the mean squared error (MSE), i.e., c(x, y) = ∥x−y∥2

dim(Y) . It is
equivalent to the quadratic cost but is more convenient due to the normalization. In M6.2, we consider
c(x, y) = b(Up(x), y), where b is a cost between the bicubically upsampled LR image xup = Up(x)
and HR image y. We test b defined as MSE and the perceptual cost using features of a pre-trained
VGG-16 network (Simonyan & Zisserman, 2014), see Appendix C for details.

6.1 ASSESSING THE BIAS IN REGULARIZED GANS

In this section, we empirically confirm the insight of M4 that the solution Tλ of (2) may not satisfy
Tλ
#P = Q. Notably, if Tλ

#P = Q, then from our Lemma 1 it follows that Tλ ≡ T ∗, where T ∗ is an

2github.com/milesial/Pytorch-UNet
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Figure 5: Comparison of OTS, regularized IPM GAN on the Wasserstein-2 benchmark. The 1st line
shows blurry faces x ∼ P, the 2nd line, clean faces y = T ∗(x), where T ∗ is the OT map from P to Q.

Next lines show maps from P to Q fitted by the methods.

Metrics/
Method

Regularized IPM GAN (WGAN-GP, λGP = 10) OTS
λ = 0 λ = 10−1 λ = 100 λ = 101 λ = 102 λ = 103 λ = 104 λ = 105

L2-UVP ↓ 25.2% 16.7% 17.7% 12.0% 4.0% 14.0% 28.5% 30.5% 1.4%
FID↓ 57.24 46.23 40.04 42.89 24.25 187.95 332.7 334.7 15.65

PSNR↑ 17.90 19.76 19.34 20.81 25.58 19.91 16.90 16.52 30.02
SSIM↑ 0.565 0.655 0.656 0.689 0.859 0.702 0.520 0.498 0.933
LPIPS↓ 0.135 0.093 0.099 0.081 0.031 0.172 0.429 0.446 0.013

Table 2: Quantitative evaluation of restoration maps fitted by the regularized IPM GAN,
OTS using the Wasserstein-2 images benchmark (Korotin et al., 2021).

OT map from P to Q for c(x, y). Thus, to access the bias, it is reasonable to compare the learned
map Tλ with the ground truth OT map T ∗ for P, Q.

For evaluation, we use the Wasserstein-2 benchmark (Korotin et al., 2021). It provides high-
dimensional continuous pairs P, Q with an analytically known OT map T ∗ for the quadratic cost
c(x, y) = ∥x− y∥2. We use their “Early" images benchmark pair. It simulates the image deblurring
setup, i.e., X = Y is the space of 64× 64 RGB images, P is blurry faces, Q is clean faces satisfying
Q = T ∗

#P, where T ∗ is an analytically known OT map, see the 1st and 2nd lines in Figure 5.
To quantify the learned maps from P to Q, we use PSNR, SSIM, LPIPS (Zhang et al., 2018a), FID
(Heusel et al., 2017) metrics. Similar to (Wei et al., 2021), we use the AlexNet-based (Krizhevsky
et al., 2012) LPIPS. FID and LPIPS are practically the most important since they better correlate with
the human perception of the image quality. We include PSNR, SSIM as popular evaluation metrics,
but they are known to badly measure perceptual quality (Zhang et al., 2018a; Nilsson & Akenine-
Möller, 2020). Due to this, higher PSNR, SSIM values do not necessarily mean better performance.
We calculate metrics using scikit-image for SSIM and open source implementations for PSNR3,
LPIPS4 and FID5. In this section, we additionally use the L2-UVP (Korotin et al., 2021, M4.2) metric.

On the benchmark, we compare OTS (7) and IPM GAN (2). We use MSE as the content loss c(x, y).
In IPM GAN, we use the Wasserstein-1 (W1) loss with the gradient penalty λGP = 10 (Gulrajani
et al., 2017) as D. We do 10 discriminator updates per 1 generator update and train the model for
15K generator updates. For fair comparison, the rest hyperparameters match those of OTS algorithm.
We train the regularized WGAN-GP with various coefficients of content loss λ ∈ {0, 10−1, . . . , 105}
and show the learned maps Tλ and the map T̂ obtained by OTS in Figure 5.
Results. The performance of the regularized IPM GAN significantly depends on the choice of the
content loss value λ. For high values λ ≥ 103, the learned map is close to the identity as expected.
For small values λ ≤ 101, the regularization has little effect, and WGAN-GP solely struggles to fit a
good restoration map. Even for the best performing λ = 102 all metrics are notably worse than for
OTS. Importantly, OTS decreases the burden of parameter searching as there is no parameter λ.

3github.com/photosynthesis-team/piq
4github.com/richzhang/PerceptualSimilarity
5github.com/mseitzer/pytorch-fid
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Figure 6: Qualitative results of OTS, bicubic upsample, FSSR and DASR
on AIM 2019 dataset (350×350 crops).

6.2 LARGE-SCALE EVALUATION

For evaluating OTS method at a large-scale, we employ the dataset by (Lugmayr et al., 2019b) of
AIM 2019 Real-World Super-Resolution Challenge (Track 2). The train part contains 800 HR images
with up to 2040 pixels width or height and 2650 unpaired LR images of the same shape. They are
constructed using artificial, but realistic, image degradations. We quantitatively evaluate OTS method
on the validation part of AIM dataset that contains 100 pairs of LR-HR images.
Baselines. We compare OTS on AIM dataset with the bicubic upsample, FSSR (Fritsche et al., 2019)
and DASR (Wei et al., 2021) methods. FSSR method is the winner of AIM 2019 Challenge; DASR is
a current state-of-the-art method for unpaired image SR. Both methods utilize the idea of frequency
separation and solve the problem in two steps. First, they train a network to generate LR images.
Next, they train a super-resolution network using generated pseudo-pairs. Differently to FSSR, DASR
also employs real-world LR images for training SR network taking into consideration the domain gap
between generated and real-world LR images. Both methods utilize several losses, e.g., adversarial
and perceptual, either on the entire image or on its high/low frequency components. For testing FSSR
and DASR, we use their official code and pretrained models.
Implementation details. We train the networks using 128×128 HR, 32×32 LR random patches of im-
ages augmented via random flips, rotations. We conduct separate experiments using EDSR as the trans-
port map and either MSE or perceptual cost, and denote them as OTS (MSE), OTS (VGG) respectively.
Metrics. We calculate PSNR, SSIM, LPIPS, FID. FID is computed on 32×32 patches of LR test
images upsampled by the method in view w.r.t. random patches of test HR. We use 50k patches to
compute FID. The other metrics are computed on the entire upsampled LR test and HR test images.

Method FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic upsample 178.59 22.39 0.613 0.688

OTS (MSE) 139.17 19.73 0.533 0.456

OTS (VGG) 89.04 20.96 0.605 0.380

FSSR 53.92 20.83 0.514 0.390

DASR 124.09 21.79 0.577 0.346

Table 3: Comparison of OTS with FSSR, DASR on
AIM19 dataset. The 1st, 2nd, 3rd best results are

highlighted in green, blue and underlined, respectively.

Experimental results are given in Table 3,
Figure 6. The results show that the usage
perceptual cost function in OTS boosts
performance. According to FID, OTS with
perceptual cost function beats DASR. On the
other hand, it outperforms FSSR in PSNR,
SSIM and, importantly, LPIPS. Note that
bicubic upsample outperforms all the methods,
according only to PSNR and SSIM, which
have issues stated in M6.1. According to visual
analysis, OTS with the perceptual cost better
deals with noise artifacts. Additional results
are given in Appendix F. We also demonstrate the bias issue of FSSR and DASR in Appendix D.
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7 CONCLUSION
Our analysis connects content losses in GANs with OT and reveals the bias issue. Content losses are
used in a wide range of tasks besides SR, e.g., in the style transfer and domain adaptation tasks. Our
results demonstrate that GAN-based methods in all these tasks may a priori lead to biased solutions.
In certain cases it is undesirable, e.g., in medical applications (Bissoto et al., 2021). Failing to learn
true data statistics (and learning biased ones instead), e.g., in the super-resolution of MRI images,
might lead to a wrong diagnosis made by a doctor due to SR algorithm drawing inexistent details on
the scan. Thus, we think it is essential to emphasize and alleviate the bias issue.
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A PROOFS

Proof of Lemma 1. Assume that Tλ is not an optimal map between P and Tλ
#P. Then there exists a

more optimal T † satisfying T †
#P = Tλ

#P and Rc(T
†) < Rc(T

λ). We substitute this T † to (2) and
derive

D(T †
#P,Q) + λRc(T

†) = D(Tλ
#P,Q) + λRc(T

†) < D(Tλ
#P,Q) + λRc(T

λ),

which is a contradiction, since Tλ is a minimizer of (2), but T † provides the smaller value.

Proof of Lemma 2. We derive

inf
T :X 7→Y

[
D(T#P,Q) + λRc(T )

]
= inf

T :X 7→Y

[
D(T#P,Q) + λ

∫
X
c
(
x, T (x)

)
dP(x)

]
= (13)

inf
T :X 7→Y

[
D(T#P,Q) + λ · Cost(P, T#P)

]
= inf

Q′∈P(Y)

[
D(Q′,Q) + λ · Cost(P,Q′)

]
. (14)

In transition from (13) to (14), we use the definition of OT cost (3) and our Lemma 1, which states that
the minimizer Tλ of (2) is an OT map, i.e.,

∫
X c

(
x, Tλ(x)

)
dP(x) = Cost(P, Tλ

#P). The equality in
(14) follows from the fact that P is abs. cont. and c(x, y) = ∥x− y∥p: for all Q′ ∈ P(Y) there exists
a (unique) solution T to the Monge OT problem (3) for P,Q′ (Santambrogio, 2015, Thm. 1.17).

Proof of Theorem 1. Let ∆Q = P−Q denote the difference measure of P and Q. It has zero total
mass and ∀ϵ ∈ [0, 1] it holds that Q+ ϵ∆Q = ϵP+ (1− ϵ)Q is a mixture distribution of probability
distributions P and Q. As a result, for all ϵ ∈ [0, 1], we have

F(Q+ ϵ∆Q) = D(Q+ ϵ∆Q,Q) + λ · Cost(P,Q+ ϵ∆Q) =

D(Q,Q) + o(ϵ) + λ · Cost(P, ϵP+ (1− ϵ)Q) ≤ (15)
o(ϵ) + λ · ϵ · Cost(P,P) + λ · (1− ϵ) · Cost(P,Q) = o(ϵ) + λ · (1− ϵ) · Cost(P,Q) = (16)

λ · Cost(P,Q)︸ ︷︷ ︸
=F(Q)

−λ · ϵ · Cost(P,Q)︸ ︷︷ ︸
>0

+o(ϵ),

where in transition from (15) to (16), we use D(Q,Q) = 0 and exploit the convexity of the OT cost
(Villani, 2003, Theorem 4.8). In (16), we use Cost(P,P) = 0. We see that F(Q+ϵ∆Q) is smaller
then F(Q) for sufficiently small ϵ > 0, i.e., Q′=Q does not minimize F .

Proof of Example 1. Let T (0) = t0 and T (2) = t2. Then T#P = 1
2δt0 +

1
2δt2 , and now (2) becomes

min
t0,t2

[
min

{1
2
(t0 − 1)2 +

1

2
(t2 − 3)2;

1

2
(t0 − 3)2 +

1

2
(t2 − 1)2

}
+ λ

{1
2
|0− t0|+

1

2
|2− t2|

}]
,

where the second term is Rc(T ) and the first term is the OT cost D(T#P,Q) expressed as the
minimum over the transport costs of two possible transport maps t0 7→ 1; t2 7→ 3 and t0 7→ 3; t2 7→ 1.
The minimizer can be derived analytically and equals t0 = 1− λ

2 , t2 = 3− λ
2 .

B FIRST VARIATIONS OF GAN DISCREPANCIES VANISH AT THE OPTIMUM

We demonstrate that the first variation of Q′ 7→ D(Q′,Q) is equal to zero at Q′ = Q for common
GAN discrepancies D. This suggests that the corresponding assumption of our Theorem 1 is relevant.

To begin with, for a functional G : P(Y)→ R ∪ {∞}, we recall the definition of its first variation.
A measurable function δG[Q] : Y → R∪{∞} is called the first variation of G at a point Q ∈ P(Y),
if, for every measure ∆Q on Y with zero total mass (

∫
Y 1d∆Q(y) = 0),

G(Q+ ϵ∆Q) = G(Q) + ϵ

∫
Y
δG[Q](y)d∆Q(y) + o(ϵ) (17)

for all ϵ ≥ 0 such that Q + ϵ∆Q is a probability distribution. Here for the sake of simplicity we
suppressed several minor technical aspects, see (Santambrogio, 2015, Definition 7.12) for details.
Note that the first variation is defined up to an additive constant.
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Now we recall the definitions of three most popular GAN discrepancies and demonstrate that their first
variation is zero at an optimal point. We consider f -divergences (Nowozin et al., 2016), Wasserstein
distances (Arjovsky et al., 2017).

Case 1 (f -divergence). Let f : R+ → R be a convex and differentiable function satisfying f(1) = 0.
The f -divergence between Q′,Q ∈ P(Y) is defined by

Df (Q′,Q)
def
=

∫
Y
f

(
dQ′(y)

dQ(y)

)
dQ(y). (18)

The divergence takes finite value only if Q′ ≪ Q, i.e., Q′ is absolutely continuous w.r.t. Q. Vanilla
GAN loss (Goodfellow et al., 2014) is a case of f -divergence (Nowozin et al., 2016, Table 1).

We define G(Q′)
def
= Df (Q′,Q). For Q′ = Q and some ∆Q such that Q+ ϵ∆Q ∈ P(Y) we derive

G(Q+ ϵ∆Q) =

∫
Y
f

(
dQ(y)

dQ(y)
+ ϵ

d∆Q(y)

dQ(y)

)
dQ(y) =

∫
Y
f

(
1 + ϵ

d∆Q(y)

dQ(y)

)
dQ(y) (19)

=

∫
Y
f(1)dQ(y) +

∫
Y
f ′(1)

d∆Q(y)

dQ(y)
dQ(y) + o(ϵ) = G(Q) +

∫
Y
f ′(1)d∆Q(y) + o(ϵ), (20)

where in transition from (19) to (20), we consider the Taylor series w.r.t. ϵ at ϵ = 0. We see that
δG[Q](y) ≡ f ′(1) is constant, i.e., the first variation of Q′ 7→ Df (Q′,Q) vanishes at Q′ = Q.

Case 2 (Wasserstein distance). If in OT formulation (4) the cost function c(x, y) equals ∥x − y∥p

with p ≥ 1, then
[
Cost(P,Q)

]1/p
is called the Wasserstein distance (Wp). Generative models which

use Wp
p as the discrepancy are typically called the Wasserstein GANs (WGANs). The most popular

case is p = 1 (Arjovsky et al., 2017; Gulrajani et al., 2017), but more general cases appear in related
work as well, see (Liu et al., 2019; Mallasto et al., 2019).

The first variation of G(Q′)
def
= Wp

p(Q′,Q) at a point Q′ is given by G[Q′](y) = (f∗)c(y), where
f∗ is the optimal dual potential (provided it is unique up to a constant) in (5) for a pair (Q′,Q),
see (Santambrogio, 2015, M7.2). Our particular interest is to compute the optimal potential (f∗)c at
Q′ = Q. We recall (5) and use Wp

p(Q,Q) = 0 to derive

Wp
p(Q,Q) = 0 = sup

f

[ ∫
X
f c(y′)dQ′(y′) +

∫
Y
f(y)dQ(y)

]
.

One may see that f∗ ≡ 0 attains the supremum (its c-transform (f∗)c is also zero). Thus, if (f∗)c ≡ 0
is a unique potential (up to a constant), the first variation of Q′ 7→Wp

p(Q′,Q) at Q′=Q vanishes.

C TRAINING DETAILS

The practical optimization procedure of Optimal Transport Solver (OTS) is detailed in Algorithm 1.

Perceptual cost. In 6.2 we test following perceptual cost as b:

b(xup, y)=MSE(xup, y)+1/3 ·MAE(xup, y)+1/50·
∑

k∈{3,8,15,22}

MSE
(
fk(x

up), fk(y)
)
,

where fk denotes the features of the kth layer of a pre-trained VGG-16 network (Simonyan &
Zisserman, 2014), MAE is the mean absolute error MAE(x, y) = ∥x−y∥1

dim(Y) .

Dynamic transport cost. In the preliminary experiments, we used bicubic upsampling as the “Up"
operation. Later, we found that the method works better if we gradually change the upsampling. We
start from the bicubic upsampling. Every kc iterations of fω (see Table 4), we change the cost to
c(x, y) = b

(
T ′
θ(x), y

)
, where T ′

θ is a fixed frozen copy of the currently learned SR map Tθ.

Hyperparameters. For EDSR, we set the number of residual blocks to 64, the number of features to
128, and the residual scaling to 1. For UNet, we set the base factor to 64. The training details are
given in Table 4. We provide a comparison of the hyperparameters of FSSR, DASR and OTS in Table
5. In contrast to FSSR and DASR, OTS method does not contain a degradation part. This helps to
notably reduce the amount of tunable hyperparameters.

Optimizer. We employ Adam (Kingma & Ba, 2014).

Computational complexity. Training OTS with EDSR as the transport map and the perceptual
transport cost on AIM 2019 dataset takes ≈ 4 days on a single Tesla V100 GPU.
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Algorithm 1: OT solver to compute the OT map between P and Q for transport cost c(x, y).
Input :distributions P,Q accessible by samples; mapping network Tθ : X → Y;

potential fω : X → R; transport cost c : X × Y → R; number KT of inner iters;
Output :approximate OT map (Tθ)#P ≈ Q;
repeat

Sample batches X ∼ P, Y ∼Q;
Lf ← 1

|Y |
∑
y∈Y

fω(y)− 1
|X|

∑
x∈X

fω
(
Tθ(x)

)
;

Update ω by using ∂Lf

∂ω to maximize Lf ;
for kT = 1, 2, . . . ,KT do

Sample batch X ∼ P;
LT ← 1

|X|
∑
x∈X

[
c
(
x, Tθ(x)

)
− fω

(
Tθ(x)

)]
;

Update θ by using ∂LT

∂θ to minimize LT ;

until not converged;

Experiment dim(X ) dim(Y) f T kT lrf lrT
Initial
cost

Total
iters (f )

Cost
update
every

Batch
size

Benchmark
(M6.1) 3 × 64 × 64 3 × 64 × 64

ResNet

UNet 10

10−4 10−4

MSE 10K − 64

AIM-19
(M6.2)

3 × 32 × 32
(patches)

3 × 128 × 128
(patches)

EDSR 15 Bicubic +
MSE 50K 25K 8

EDSR 10 Bicubic +
VGG 50K 20K 8

Table 4: Hyperparameters that we use in the experiments with OTS Algorithm 1.

Method Degradation part Super-resolution part Total

FSSR

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

4 neural networks;
4 optimizers;
4 schedulers;

2 adversarial losses;
2 content losses (ℓ1+perceptual)

DASR

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

4 neural networks;
4 optimizers;
4 schedulers;

2 adversarial losses;
2 content losses (ℓ1+perceptual)

OTS −
2 neural networks;

2 optimizers;
1 cost (ℓ2+ℓ1+perceptual)

2 neural networks;
2 optimizers;

1 cost (ℓ2+ℓ1+perceptual)

Table 5: Comparison of hyperparameters used in FSSR, DASR and OTS methods.

D ASSESSING THE BIAS OF METHODS ON AIM19 DATASET

We additionally demonstrate the bias issue by comparing color palettes of HR images and super-
resolution results of different methods, see Figure 7. We construct palettes by choosing random image
pixels from dataset images and representing them as an RGB point cloud in [0, 1]3 ⊂ R3. Figure 7
shows that OTS (d) captures large contrast of HR (a) images (variance of its palette), while FSSR
(e), DASR (f), Bicubic Upscale (c) palettes are less contrastive and closer to LR (b). We construct
palettes 100 times to evaluate their average contrast (variance). The metric quantitatively confirms
that OTS method better captures the contrast of HR dataset, while GAN-based methods (FSSR and
DASR) are notably biased towards LR dataset statistics (low contrast).
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Dataset Test HR Test LR Bicubic OTS (VGG) FSSR DASR

Variance 0.24
±0.01

0.17
±0.01

0.15
±0.02

0.20
±0.03

0.17
±0.02

0.15
±0.02

Figure 7: Color palettes and their variance for Test HR, LR datasets and solutions of
Bicubic Upscale, OTS, FSSR, DASR methods on AIM19.

E CONNECTION BETWEEN GAN OBJECTIVES AND EQUATION (2)

Typical objectives of GAN-based approaches consist of multiple losses − usually one adversarial
and several content losses. To make the exposition simple, in our paper, we represented all the
content losses as a single loss c(·, ·). Below we provide several examples showing how the objectives
of popular GAN-based approaches to unpaired image SR could be viewed as (2). For all of these
methods, our Lemma 1 applies without any changes. We include in brackets the number of papers
citations according to Google Scholar to show that chosen methods are widely used.

FaceSR (2018, 447 citations) The paper of (Bulat et al., 2018) presents one of the first GAN-based
approaches to unpaired image SR problem. The method is composed of two steps. First, it learns
a degradation between unpaired HR and LR images. Then it employs a second GAN to learn a
supervised mapping between paired generated LR and corresponding HR images. The objective of
the unpaired step (see their Eq. (1)) is as follows:

l = αlpixel︸ ︷︷ ︸
content loss

+ βlGAN.︸ ︷︷ ︸
adversarial loss

Here lpixel is the MSE loss between the generated LR image and downsampled HR. Thus, the objective
of this method exactly follows Equation (2).

CinCGAN (2018, 780 citations) The method of (Yuan et al., 2018) is an other pioneering GAN-based
approach to unpaired image SR problem, which establishes a different to FaceSR group of two-step
methods. First, it uses one CycleGAN to learn a mapping between given noisy LR images and
downsampled HR ("clean LR") images. Then, a second CycleGAN fine-tunes a mapping between
real LR and HR images. The objective for the first GAN (see their Eq. (5)) is as follows:

LLR
total = LLR

GAN︸ ︷︷ ︸
adversarial loss

+w1LLR
cyc + w2LLR

idt + w3LLR
TV︸ ︷︷ ︸

content loss

.
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Here LLR
cyc is the cycle-consistency loss6, LLR

idt − l1 identity loss, and LLR
TV − total variation loss.

FSSR (Winner of the AIM Challenge on Real-World SR (Lugmayr et al., 2019b), 2019, 228 citations)
FSSR (Fritsche et al., 2019) method employs a similar to FaceSR strategy. It firstly learns a mapping
between downsampled HR images and given unpaired LR images, and then uses the generated pairs
to learn a supervised SR model. The objective of the unpaired step (see their Eq. (6)) is defined by:

Ld = 0.005Ltex, d︸ ︷︷ ︸
adversarial loss

+Lcol, d + 0.01Lper, d︸ ︷︷ ︸
content loss

,

where the texture (adversarial) loss Ltex, d and the color (l1 identity) loss Lcol, d are applied to low
frequencies of the images, while the perceptual loss Lper, d − to the features of the full images.

DASR (2021, 176 citations) DASR (Wei et al., 2021) structure is also based on the similar to FSSR
principles and its two-step structure. In contrast to FSSR, a SR network is trained in a partially
supervised manner using not only generated, but also real LR images. The objective of the fully
unpaired degradation learning step (see their Eq. (4)) is as follows:

LDSN = αLcon + βLper︸ ︷︷ ︸
content loss

+ γLG
adv.︸ ︷︷ ︸

adversarial loss

Here the adversarial loss LG
adv is defined on high frequencies of the image, while the content Lcon (l1

identity) and the perceptual Lper losses are defined on full images and their features respectively.

ESRGAN-FS (2020, 13 citations) ESRGAN-FS is an other two-step approach based on the principle
of learning the degradation, see (Zhou et al., 2020). The objective of its unpaired degradation learning
step (see their Eq. (4)) is as follows:

Ltotal = λt1 · Llow + λt2 · Lper︸ ︷︷ ︸
content loss

+ λt3 · Lhigh︸ ︷︷ ︸
adversarial loss

.

Here Llow (l1 identity) loss is applied to low frequencies of the images, the perceptual loss Lper − to
the features of the full images, while Lhigh (adversarial loss) − high frequencies of the images.

6LLR
cyc is defined as the MSE loss between given LR image x and G2(G1(x)), where G1 learns to map real

LR images to "clean" ones and G2 learns an opposite mapping. For a fixed G2 this loss can be considered as a
part of the content loss.
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F ADDITIONAL QUALITATIVE RESULTS ON AIM19

Figure 9: Additional qualitative results of OTS, bicubic upsample, FSSR and
DASR on AIM 2019 (800×800 crops).
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Figure 10: Additional qualitative results of OTS, bicubic upsample, FSSR and DASR on AIM 2019.
The sizes of crops on the 1st and 2nd images are 350×350 and 800×800, respectively.
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