
Under review as a conference paper at ICLR 2024

A TECHNICAL LEMMAS

Lemma A.1. ((Zhang et al., 2020) Descent Inequality) Suppose objective function f(·) satisfies
Assumption 2, and c > 0 be a constant. For any xk and xk+1, as long as ||xk � xk+1|| 

c
L1

, we
have

f(xk+1)  f(xk) + (xk+1 � xk)
T
rf(xk) +

AL0 +BL1||rf(xk)||

2
||xk+1 � xk||

2 (1)

where A = 1 + ec � ec�1
c , B = ec�1

c . Note that A and B are monotonically increasing functions
w.r.t. c > 0.

Lemma A.2. (Lemma 3.1) For all g 2 Rd, and random vector s ⇠ R where R is the Rademacher
distribution, i.e., each element s ⇠ {+1,�1} with equal chances and Es⇠R||s||22 = d, then
Es⇠R|hg, si| � 1p

2
||g||2.

Proof.

|hg, si| = |

dX

i=1

gisi| (2)

According to Khintchine inequality (Khintchine, 1923), i.e.,

Ap(
dX

i=1

|gi|
2)

1
2  (E|

dX

i=1

gisi|
p)

1
p  Bp(

dX

i=1

|gi|
2)

1
2

where

Ap =

8
<

:

2
1
2�

1
p 0 < p < p0

2
1
2 (�((p+ 1)/2)/

p
⇡)

1
p p0 < p < 2
1 2  p < 1.

Bp =

⇢
1 0 < p  2

2
1
2 (�((p+ 1)/2)/

p
⇡)

1
p 2 < p < 1.

where p0 ⇡ 1.847 and � is the Gamma function, we have

1
p
2
||g||2  E|

dX

i=1

gisi|  ||g||2,

Combined with equation 2, we have

1
p
2
||g||2  Es⇠R|hg, si|  ||g||2.

This completes the proof.

B CONVERGENCE ANALYSIS UNDER THE GENERAL SMOOTHNESS
ASSUMPTION

B.1 PROGRESSIVE BOUND OF S2P

Lemma B.1. (Lemma 3.2) (Progressive bound) Suppose objective function f(·) satisfies Assumption 1
and ||rf(xk)||2 � ✏g . If we run algorithm 1 with step size ↵ =

p
2✏g

2Ld , we have following progressive

bound E[f(xk+1)� f(xk)|xk]  �⌦(
✏2g
Ld), where E[·|xk] denotes the conditional expectation w.r.t.

xk.

13

Under review as a conference paper at ICLR 2024

Proof. Using L-gradient Lipschitz, we have (descent lemma)

E[f(xk+1)� f(xk)|xk]

 E[rf(xk)
T (xk+1 � xk)|xk] +

L

2
E[||xk+1 � xk||

2]

= �↵E|rf(xk)
T sk|+

L↵2

2
E||sk||22 Take updating step

= �↵E|rf(xk)
T sk|+

L↵2d

2

Lemma 2 shows that Esk⇠R|rf(xk)T sk| �
1p
2
||rf(xk)||2, then

E[f(xk+1)� f(xk)|xk]  �
↵
p
2
||rf(xk)||2 +

L↵2d

2

 �
↵
p
2
✏g +

L↵2d

2

To guarantee convergence, ↵ ⇠ [0,
p
2✏g
Ld], then suppose ↵ =

p
2✏g

2Ld , we have E[f(xk+1) �

f(xk)|xk]  �
✏2g
4Ld which completes the proof.

B.2 QUERY COMPLEXITY OF S2P

Theorem B.1. (Theorem 3.1) (Query complexity) Suppose objective function f(·) satisfies Assump-
tion 1. If we run algorithm 1 with step size strategy options 1 or 2, the algorithm returns in expectation
an ✏-first-order stationary point in O(d

✏2) function evaluations.

Proof. Using L-gradient Lipschitz, we have (descent lemma)

E[f(xk+1)|xk]  f(xk) + E[rf(xk)
T (xk+1 � xk)|xk] +

L

2
E[||xk+1 � xk||

2]

= f(xk)� ↵E|rf(xk)
T sk|+

L↵2

2
E||sk||22 Take updating step

= f(xk)� ↵E|rf(xk)
T sk|+

L↵2d

2
(3)

Option 1. Stationary step size
Lemma 2 shows that Esk⇠R|rf(xk)T sk| �

1p
2
||rf(xk)||2, then inequality (3) can be reformulated

as

E[f(xk+1)|xk]  f(xk)�
↵
p
2
||rf(xk)||2 +

L↵2d

2

Taking expectations in the above inequality w.r.t. sk conditional on xk, and denoting ✓k =
E[f(xk+1)] and gk = E[||rf(xk)||2], we have

✓k+1  ✓k �
↵gk
p
2
+

L↵2d

2

gk 
p
2(

✓k � ✓k+1

↵
+

L↵d

2
)

KX

k=0

gk 
p
2(

✓0 � ✓k+1

↵
+

KL↵d

4
)

14

Under review as a conference paper at ICLR 2024

We can conclude that there exists an iteration j ⇠ [0,K] such that

gj 
p
2(

✓0 � ✓k+1

↵K
+

L↵d

2
)

gj 
p
2(

(f(x0)� f?)
p
Kd

↵0K
+

L↵0

p
d

2
p
K

) By taking ↵ =
↵0

p
Kd

gj 

p
2d

p
K

(
(f(x0)� f?)

↵0
+

L↵0

2
)

Then let
p
2dp
K
((f(x0)�f?)

↵0
+ L↵0

2)  ✏, we have

K �
2d

✏2
(
(f(x0)� f?)

↵0
+

L↵0

2
)2,

, which completes the proof for option 1.

Option 2. Dynamic step size
Taking expectations in the above inequality (3) w.r.t. sk conditional on xk, and denoting ✓k =
E[f(xk+1)], we have

✓k+1  ✓k � ↵|rf(xk)
T sk|+

L↵2d

2
(4)

We know that the best ↵opt
k = |rf(xk)

T sk|
Ld , and we can approximate the best step size with ↵k =

|f(x+⇢sk)�f(x�⇢sk)|
2⇢Ld (or ↵k = ↵0

|f(x+⇢sk)�f(x�⇢sk)|
2⇢ where ↵0 = 1

Ld) where ⇢ is a scalar.

Before continuing working on the inequality (4), we estimate the error between the best step size and
the approximated step size, |�k| := |↵k � ↵opt

k |, firstly.

|�k| =
1

2⇢Ld

��|f(x+ ⇢sk)� f(x� ⇢sk)|� 2⇢|rf(xk)
T sk|

��


1

2⇢Ld
|f(x+ ⇢sk)� f(x� ⇢sk)� 2⇢rf(xk)

T sk| (5)

=
1

2⇢Ld
|(f(x+ ⇢sk)� f(x)� ⇢rf(xk)

T sk)� (f(x� ⇢sk)� f(x) + ⇢rf(xk)
T sk)|


1

2⇢Ld
(
L

2
⇢2||sk||

2 +
L

2
⇢2||sk||

2) (6)


⇢

2
(7)

Note that inequality (5) applied reverse triangle inequality and inequality (6) applied the equivalent
definitions of L-smooth function |f(x+ ⇢sk)� f(x)� ⇢rf(xk)T sk| 

L
2 ||⇢sk||

2.

Suppose we do take ↵k = |f(x+⇢sk)�f(x�⇢sk)|
2⇢Ld and substitute ↵k = ↵opt

k + �k, inequality (4) can be
reformulated as

✓k+1  ✓k � (↵opt
k + �k)|rf(xk)

T sk|+
L(↵opt

k + �k)2d

2

= ✓k �
|rf(xk)T sk|2

Ld
� �k|rf(xk)

T sk|+
|rf(xk)T sk|2

2Ld
+ �k|rf(xk)

T sk|+
Ld�2k
2

= ✓k �
|rf(xk)T sk|2

2Ld
+

Ld�2k
2

 ✓k �
|rf(xk)T sk|2

2Ld
+

Ld⇢2

8
Apply inequality (7)

 ✓k �
||rf(xk)||2

4Ld
+

Ld⇢2

8
Apply Lemma 2 (8)

Note that it actually put requirement on ⇢ to guarantee convergence, i.e., for ⇢k in each iterations, we
need 0 < ⇢ 

p
2||rf(xk)||

Ld .

15

Under review as a conference paper at ICLR 2024

Continually, inequality (8) further can be re-formulated as

||rf(xk)||
2
 4Ld(✓k � ✓k+1) +

⇢2

2
KX

k=0

||f(xk)||
2
 4Ld(✓0 � ✓k+1) +

K⇢2

2

We can conclude that there exists an iteration j ⇠ [0,K] such that

||f(xj)||
2


4Ld(✓0 � ✓k+1)

K
+

⇢2

2


4Ld(f(x0)� f?)

K
+

⇢2

2

which further concludes that we need

K �
4Ld(f(x0)� f?)

✏2 � ⇢2

2

, (9)

iterations to reach ✏-first-order stationary point (||f(xj)||  ✏).

Meanwhile, we require that 0 < ⇢k 

p
2||rf(xk)||

Ld for ⇢k in each iterations, and it can be set to a
small value universally. E.g., 0 < ⇢ 

p
2✏

Ld , then we have K �
4Ld(f(x0)�f?)
✏2(1� 1

L2d2
)

.

Then, we can safely conclude that the algorithm returns in expectation an ✏-first-order stationary
point in O(d

✏2) function evaluations, which completes the proof for option 2.

C CONVERGENCE ANALYSIS UNDER THE RELAXED SMOOTHNESS
ASSUMPTION

C.1 PROGRESSIVE BOUND OF S2P

Lemma C.1. (Lemma 3.3) (Progressive bound) Suppose objective function f(·) satisfies Assump-
tion 2 and ||rf(xk)||2 � ✏g. If we run algorithm 1 with step size ↵ =

p
2✏g

2(AL0+BL1✏g)d
, we have

following progressive bound E[f(xk+1)� f(xk)|xk]  �⌦(
✏2g

(AL0+BL1✏g)d
), where E[·|xk] denotes

the conditional expectation w.r.t. xk, and constants A = 1.01, B = 1.01.

Proof. Give the decent lemma inequality (1), we have

E[f(xk+1)]  f(xk)� ↵E[gT
k rf(xk)] +

AL0 +BL1||rf(xk)||

2
E[↵2

||gk||
2]

= f(xk)� ↵E[|sTkrf(xk)|] +
AL0 +BL1||rf(xk)||

2
E[↵2

||sk||
2] Take updating step

 f(xk)�
↵
p
2
||rf(xk)||+ ↵2AL0 +BL1||rf(xk)||

2
d Lemma 2 (10)

Suppose ||rf(xk)|| � ✏g, and to guarantee convergence ↵ 2 [0,
p
2✏g

(AL0+BL1✏g)d
]. Let ↵ =

p
2✏g

2(AL0+BL1✏g)d
, we have

E[f(xk+1)]  f(xk)�
✏2g

4(AL0 +BL1✏g)d
.

which completes the proof.

Note that for the specific value of A and B, we have A = 1+ec� ec�1
c , B = ec�1

c and ||xk+1�xk|| =

||↵sk|| =
p
2✏g

2(AL0+BL1✏g)
p
d


c
L1

! c �

p
2L1✏g

2(AL0+BL1✏g)
p
d
! c �

1p
2dB

! ec � 1 + 1p
2d

. It is
easy to see that such c exists, we can safely consider A = 1.01, B = 1.01 for simplicity (under large
d) since A and B are expected to be small values.

16

Under review as a conference paper at ICLR 2024

C.2 QUERY COMPLEXITY OF S2P

Theorem C.1. (Theorem 3.2) (Query complexity) Suppose objective function f(·) satisfies Assump-
tion 2. If we run algorithm 1 with step size strategy options 3 or 4, the algorithm returns in expectation
an ✏-first-order stationary point in O(d

✏2) function evaluations.

Proof. Give the decent lemma inequality (1), we have

E[f(xk+1)]  f(xk)� ↵E[gT
k rf(xk)] +

AL0 +BL1||rf(xk)||

2
E[↵2

||gk||
2]

= f(xk)� ↵E[|sTkrf(xk)|] + ↵2AL0 +BL1||rf(xk)||

2
E[||sk||2] Take updating step

(11)

Option 1. Stationary step size
Lemma 2 shows that Esk⇠R|rf(xk)T sk| �

1p
2
||rf(xk)||2, then inequality (11) can be reformu-

lated as

E[f(xk+1)]  f(xk)�
↵
p
2
||rf(xk)||+ ↵2AL0 +BL1||rf(xk)||

2
d

Taking expectations in the above inequality w.r.t. sk conditional on xk, and denoting ✓k =
E[f(xk+1)] and gk = E[||rf(xk)||], we have

✓k+1  ✓k �
↵
p
2
gk + ↵2AL0 +BL1gk

2
d

gk(

p
2↵�B↵2L1d

2
)  ✓k � ✓k+1 +

A↵2L0d

2

gk 
2(✓k � ✓k+1)

p
2↵�B↵2L1d

+
A↵2L0d

p
2↵�B↵2L1d

KX

k=0

gk 
2(✓0 � ✓k+1)

p
2↵�B↵2L1d

+
KA↵2L0d

p
2↵�B↵2L1d

We can conclude that there exists an iteration j ⇠ [0,K] such that

gj 
2(✓0 � ✓K+1)

(
p
2↵�B↵2L1d)K

+
A↵2L0d

p
2↵�B↵2L1d


2(f(x0)� f?)

(
p
2↵�B↵2L1d)K

+
A↵2L0d

p
2↵�B↵2L1d

(12)

Suppose ↵ =
p
2

BL1

p
dK

, inequality (12) can be reformulated as

gj 
B(f(x0)� f?)L1

p
d

p
K �

p
d

+
AL0

p
d

BL1(
p
K �

p
d)

.

Under this setting, we can see that the gj can be continually decreased with at least K > d, which
further shows that it need

K � (
p

d+
AL0

p
d+BL1(f(x0)� f?)

p
d

✏
)2

iterations to reach ✏-first-order stationary point. Then, we can safely conclude that the algorithm
returns in expectation an ✏-first-order stationary point in O(d

✏2) function evaluations, which completes
the proof for option 1.

Note that for the specific value of A and B, we have A = 1+ec� ec�1
c , B = ec�1

c and ||xk+1�xk|| =

||↵sk|| =
p
2

BL1

p
K


c
L1

! c �
p
2

B
p
K

! ec � 1 +
q

2
K . It is easy to see that such c exists, we can

17

Under review as a conference paper at ICLR 2024

safely consider A = 1.01, B = 1.01 for simplicity (under large d) since A and B are expected to be
small values.

Option 2. Dynamic step size
Taking expectations in the above inequality (11) w.r.t. sk conditional on xk, and denoting ✓k =
E[f(xk+1)], we have

✓k+1  ✓k � ↵|sTkrf(xk)|+ ↵2AL0 +BL1||rf(xk)||

2
d

 ✓k � ↵|sTkrf(xk)|+ ↵2AL0 +
p
2BL1|sTkrf(xk)|

2
d. (13)

It is easy to know that ↵opt
k = |sTrf(xk)|

(AL0+
p
2BL1|sTrf(xk)|)d

. Let |�k| =
|f(xk+⇢sk)�f(xk�⇢sk)|

2⇢ , and we

approximate the best step size with ↵k = |�k|
(AL0+

p
2BL1|�k|)d

and denote the approximation error as

|�k| := |↵k � ↵opt
k |.

Before we continue working on the inequality (13), we derive the upper bound of |�k| for our following
analysis. Firstly, we denote |✏⇢| :=

��|sTrf(xk)|�|�k|
�� =

��|sTrf(xk)|�
|f(xk+⇢sk)�f(xk�⇢sk)|

2⇢

�� =
O(⇢2d3/2) (Taylor expansion). So that, we can define |✏⇢|  ⇠⇢2d3/2 where ⇠ is a constant associated
with third-order property of f . Note d3/2 is the compensation of normalizing s.

Specifically, we try to prove |�k|  |✏⇢|. We define a new function g(x) = x
AL0+

p
2BL1x

, then to
prove |�k|  |✏⇢| is equivalent to prove |g(|sTrf(xk)|)� g(|�k|)|  d

��|sTrf(xk)|� |�k|
��, further

it is equivalent to prove g0(x) = AL0

(AL0+
p
2BL1x)

 d when x � 0, which is obviously true. Overall,

we have approximation error |�k|  ⇠⇢2d3/2.

Then, we continue our analysis. Suppose we do take step size ↵k = |�k|
(AL0+

p
2BL1|�k|)d

and substitute

↵k = ↵opt
k + �k, then inequality (13) can be re-formulate as

✓k+1  ✓k � (↵opt
k + �k)|s

T
krf(xk)|+ (↵opt

k + �k)
2AL0 +

p
2BL1|sTkrf(xk)|

2
d

= ✓k �
||sTrf(xk)||2

(AL0 +
p
2BL1|sTrf(xk)|)d

� |sTrf(xk)|�k +
||sTrf(xk)||2

2(AL0 +
p
2BL1|sTrf(xk)|)d

+
AL0 +

p
2BL1|sTkrf(xk)|

2
d�2k + |sTrf(xk)|�k

 ✓k �
||sTrf(xk)||2

2(AL0 +
p
2BL1|sTrf(xk)|)d

+
(AL0 +

p
2BL1|sTkrf(xk)|)d

2
�2k

 ✓k �
||rf(xk)||2

4(AL0 +
p
2BL1||rf(xk)||)d

+
(AL0 +

p
2BL1||rf(xk)||)d

2
�2k Apply Lemma 2

(14)

Condition 1
Suppose 1 �

p
2BL1 � 0 and ||rf(xk)|| � AL0 +

p
2BL1||rf(xk)||, inequality (14) can be

reformulated as

✓k+1  ✓k �
||rf(xk)||

4d
+

||rf(xk)||d

2
�2k

Meanwhile, suppose |�k|  ⇠⇢2d3/2 
1
2d , we have

||rf(xk)||  8d(✓k � ✓k+1)
KX

k=0

||rf(xk)||  8d(✓0 � ✓k+1)

18

Under review as a conference paper at ICLR 2024

We can conclude that there exists an iteration j ⇠ [0,K] such that

||rf(xj)|| 
8d(✓0 � ✓k+1)

K

||rf(xj)|| 
8d(f(x0)� f?)

K
which concludes that we need

K �
8d(f(x0)� f?)

✏
(15)

iterations to reach ✏-first-order stationary point.

Condition 2
Suppose 1 �

p
2BL1 � 0 and ||rf(xk)||  AL0 +

p
2BL1||rf(xk)||, we have ||rf(xk)|| 

AL0

1�
p
2BL1

. Meanwhile, suppose |�k|  ⇠⇢2d3/2 
||rf(xk)||

2(AL0+
p
2BL1||rf(xk)||)d

, then inequality (14)
can be reformulated as

✓k+1  ✓k �
||rf(xk)||2

8(AL0 +
p
2BL1

AL0

1�
p
2BL1

)d

||rf(xk)||
2
 (✓k � ✓k+1)

8AL0d

1�
p
2BL1

KX

k=0

||rf(xk)||
2
 (✓0 � ✓k+1)

8AL0d

1�
p
2BL1

We can conclude that there exists an iteration j ⇠ [0,K] such that

||rf(xj)||
2


8AL0d(✓0 � ✓k+1)

(1�
p
2BL1)K

||rf(xj)|| 

s
8AL0d(f(x0)� f?)

(1�
p
2BL1)K

,

which concludes that we need

K �
8AL0d(f(x0)� f?)

(1�
p
2BL1)✏2

iterations to reach ✏-first-order stationary point.

Condition 3
Suppose 1�

p
2BL1  0 and ||rf(xk)||2  (AL0

1�
p
2BL1

)2. Meanwhile, suppose |�k|  ⇠⇢2d3/2 

||rf(xk)||
2(AL0+

p
2BL1||rf(xk)||)d

, then inequality (14) can be reformulated as

✓k+1  ✓k �
||rf(xk)||2

8(AL0 +
p
2BL1|

AL0

1�
p
2BL1

|)d

||rf(xk)||
2
 (✓k � ✓k+1)

8AL0d(2
p
2BL1 � 1)

p
2BL1 � 1

KX

k=0

||rf(xk)||
2
 (✓0 � ✓k+1)

8AL0d(2
p
2BL1 � 1)

p
2BL1 � 1

We can conclude that there exists an iteration j ⇠ [0,K] such that

||rf(xj)||
2


8AL0d(✓0 � ✓k+1)(2
p
2BL1 � 1)

(
p
2BL1 � 1)K

||rf(xj)|| 

s
8AL0d(f(x0)� f?)(2

p
2BL1 � 1)

(
p
2BL1 � 1)K

,

19

Under review as a conference paper at ICLR 2024

which concludes that we need

K �
8AL0d(f(x0)� f?)(2

p
2BL1 � 1)

(
p
2BL1 � 1)✏2

(16)

iterations to reach ✏-first-order stationary point.

Condition 4
Suppose 1�

p
2BL1  0 and ||rf(xk)||2 � (AL0

1�
p
2BL1

)2. Meanwhile, suppose �k  ⇠⇢2d3/2 

||rf(xk)||
2(AL0+

p
2BL1||rf(xk)||)d

, then inequality (14) can be reformulated as

✓k+1  ✓k �

(AL0

1�
p
2BL1

)2

8(AL0 +
p
2BL1||rf(xk)||)d

(17)

Since
(

AL0
1�

p
2BL1

)2

8(AL0+
p
2BL1||rf(xk)||)d

is a monotone decreasing function w.r.t. ||rf(xk)||, then we can
conclude that the loss function cannot be indicator of reaching ✏-first-order stationary points. However,
with an appropriate selection of parameters, the loss function can be minimized. I.e.,

✓k+1  ✓k �

(AL0p
2BL1�1

)2

8(AL0 +
p
2BL1

AL0p
2BL1�1

)d

✓k+1  ✓k �
AL0

8(2
p
2BL1 � 1)(

p
2BL1 � 1)d

✓k+1  ✓0 � (K + 1)
AL0

8(2
p
2BL1 � 1)(

p
2BL1 � 1)d

f(xk)� f?
 f(x0)� f?

�K
AL0

8(2
p
2BL1 � 1)(

p
2BL1 � 1)d

,

which concludes that we need

K �
8(2

p
2BL1 � 1)(

p
2BL1 � 1)(f(x0)� f?

� ✏)d

AL0

iterations to reach local ✏-optimal point.

We summarize the results over all conditions in Table 2.

Conditions[b] requirement over ⇢[a] Query complexity

L1  1p
2B

, ||rf(x)|| � AL0

1�
p
2BL1

⇢  1

d
p

2⇠
p
d

8d(f(x0)�f?)
✏

L1  1p
2B

, ||rf(x)||  AL0

1�
p
2BL1

⇢  1
d

q
✏

2⇠(AL0+
p
2BL1✏)

p
d

8AL0d(f(x0)�f?)

(1�
p
2BL1)✏2

L1 � 1p
2B

, ||rf(x)||  AL0p
2BL1�1

⇢  1
d

q
✏

2⇠(AL0+
p
2BL1✏)

p
d

8AL0d(f(x0)�f?)(2
p
2BL1�1)

(
p
2BL1�1)✏2

L1 � 1p
2B

, ||rf(x)|| � AL0p
2BL1�1

⇢  1
d

q
✏

2⇠(AL0+
p
2BL1✏)

p
d

8(2
p
2BL1�1)(

p
2BL1�1)(f(x0)�f?�✏)d
AL0

[a] ⇠ is a constant associated with third-order property of f , detailed in appendix inequality (13).
[b] For forth condition, reaching local ✏-optimal point instead of ✏-first-order stationary point, detailed in appendix in-

equality (17).

Table 2: With dynamic step size strategy, the convergence property of f under relaxed smoothness.

Note that for the specific value of A and B, we have A = 1+ec� ec�1
c , B = ec�1

c and ||xk+1�xk|| =
||↵sk|| =

�k

(AL0+
p
2BL1�k)

p
d


c
L1

! c �
1

B
p
2d

! ec � 1 + 1p
2d

. It is easy to see that such c

exists, we can safely consider A = 1.01, B = 1.01 for simplicity (under large d) since A and B are
expected to be small values.

20

Under review as a conference paper at ICLR 2024

C.3 BOUND OF GRADIENT NORM OF S2P

Theorem C.2. (Theorem 3.3) Suppose objective function f(·) satisfies Assumption 2. Then the
gradient norm ||rf(xk)|| can be bounded in expectation as

|�|� ⇢d(AL0 +BL1||rf(x)||)  ||rf(x)|| 
p
2|�|+

p
2⇢d(AL0 +BL1||rf(x)||)

where |�| = |f(x+⇢s)�f(x+⇢s)|
2⇢ . Constants A = 1.01, B = 1.01 when ⇢ 

0.001
2L1

p
d

Proof.

||rf(x)||  E[
p
2|sTrf(x)|] = E[1

p
2⇢

|2⇢sTrf(x)|] (18)

= E[1
p
2⇢

|
�
f(x+ ⇢s)� f(x� ⇢s)

�
�
�
f(x+ ⇢s)� f(x� ⇢s)� 2⇢sTrf(x)

�
|]

 E[
p
2
|f(x+ ⇢s)� f(x� ⇢s)|

2⇢
+

1
p
2⇢

|f(x+ ⇢s)� f(x� ⇢s)� 2⇢sTrf(x)
�
|]

=
p
2|�|+

1
p
2⇢

E[|f(x+ ⇢s)� f(x� ⇢s)� 2⇢sTrf(x)
�
|]


p
2|�|+

1
p
2⇢

AL0 +BL1||rf(x)||

2
E[||2⇢s||2] (19)

=
p
2|�|+

p
2⇢d(AL0 +BL1||rf(x)||).

Note inequality (18) applies Lemma A.2, inequality (19) applies Lemma A.1. And the same with the
following proof.

||rf(x)|| � E[|sTrf(x)|] = E[1
2⇢

|2⇢sTrf(x)|]

= E[1
2⇢

|
�
f(x+ ⇢s)� f(x� ⇢s)

�
�
�
f(x+ ⇢s)� f(x� ⇢s)� 2⇢sTrf(x)

�
|]

� E[|f(x+ ⇢s)� f(x� ⇢s)|

2⇢
�

1

2⇢
|f(x+ ⇢s)� f(x� ⇢s)� 2⇢sTrf(x)

�
|]

= |�|�
1

2⇢
E[|f(x+ ⇢s)� f(x� ⇢s)� 2⇢sTrf(x)

�
|]

� |�|�
1

2⇢

AL0 +BL1||rf(x)||

2
E[||2⇢s||2]

� |�|� ⇢d(AL0 +BL1||rf(x)||).

Note that for the specific value of A and B, we have A = 1+ec� ec�1
c , B = ec�1

c and ||xk+1�xk|| =

||(x + ⇢s) � (x � ⇢s)|| = ||2⇢s|| = 2⇢
p
d 

c
L1

! c � 2⇢L1

p
d. It is easy to see that such c

exists, we can safely consider ⇢ 
1

2L1d
, then we have c � 1p

d
. It is easy to see such c exists, we set

A = 1.01, B = 1.01 for simplicity.

21

Under review as a conference paper at ICLR 2024

D EXPERIMENTS

D.1 SETUP

For experiment over common deep models and datasets, we do grid search for initial learning rate ↵0

over list {2e-4, 1e-4, 8e-5, 5e-5, 2e-5, 1e-5} and for smoothing parameter ⇢0 over list {1e-3, 5e-4,
1e-4, 5e-5, 1e-5} with all methods. We average the results across 5 random seeds.

Note the selected hyper-parameters directly apply to sign variants. The tunable hyper-parameters are
summarized in Table 3.

Hyper-parameter Arc.&Dataset Method
GA AS2P STP

↵0

ResNet18&CIFAR10 2.0e-5 - 2.0e-4
ResNet50&CIFAR10 1.0e-5 - 2.0e-4

ResNet101&CIFAR100 2.0e-5 - 1.0e-4
ResNet152&CIFAR100 2.0e-5 - 1.0e-4

LR scheduler All Cosine decay

⇢0

ResNet18&CIFAR10 1e-3 1e-3 -
ResNet50&CIFAR10 1e-3 5e-4 -

ResNet101&CIFAR100 5e-4 5e-4 -
ResNet152&CIFAR100 5e-4 5e-4 -

⇢end All - ⇢0/10 -

⌘a All - 5 -

⌘b

ResNet18&CIFAR10 - 5 -
ResNet50&CIFAR10 - 5 -

ResNet101&CIFAR100 - 3 -
ResNet152&CIFAR100 - 5 -

Std Dev(�recent) All - 10% -

Table 3: Summary of hyper-parameters used in experiments over common deep models and datasets.
It shows that AS2P has extra hyper-parameters ⇢end, ⌘a, ⌘b, and Std Dev(�recent). Basically, those
hyper-parameters are unnecessary to tune within above deep models and datasets.

For the experiment over LLM, the six text tasks follow the original settings exactly (Malladi et al.,
2023), which randomly samples 1,000 examples and 500 examples for training and validation
respectively for each task. We get the results with a fixed random seed. Specifically, for the learning
rate and smoothing parameter, we apply the best values mentioned in Malladi et al. (2023) for GA.
Then, AS2P directly applies the value of smoothing parameter ⇢0 from GA and only needs to tune
one hyper-parameter ⌘b. For STP method, we search the best ↵0 from list {5e-5, 2e-5, 1e-5, 5e-6
,1e-6, 1e-7}. The details of hyper-parameters are summarized in Table 4, which shows that only ⌘b is
necessary to update among all four extra hyper-parameters ⇢end, ⌘a, ⌘b, and Std Dev(�recent) of AS2P
compared with experiments about common deep models&datasets.

Hyper-parameter Task Method
GA GA constant AS2P STP

↵0

SST-2

1e-7 1e-7 - 2e-5

RTE
Copa

ReCoRD
SQuAD
DROP

LR scheduler All Cosine decay Constant value Cosine decay Cosine decay

⇢0 All 1e-3 1e-3 1e-3 -
⇢end All - - ⇢0/10 -
⌘a All - - 5 -
⌘b All - - 50 -

Std Dev(�recent) All - - 10% -

Table 4: Summary of hyper-parameters used in experiments over LLM. Basically, AS2P needs to
tune ⌘b, and the selected values are robust across varying tasks.

22

Under review as a conference paper at ICLR 2024

D.2 ADDITIONAL EXPERIMENTS

Table version of Figure 1(a) and Figure 2(a). The base of training cost ratio, e.g., {1, 0.8, 0.6, 0.4,
0.2}, normalizes the number of function queries when base method GA reaches {500, 400, 300, 200,
100} epochs with some specific loss values. Then, the training cost ratio aligns with the ratio between
the number of function queries of the base method and other methods reaching the same loss values.

Task Method Training cost ratio

ResNet18&CIFAR10
GA 1 0.80 0.60 0.40 0.20
STP 1 1 0.80 0.43 0.17

AS2P 0.56 0.52 0.39 0.24 0.10

ResNet50&CIFAR10
GA 1 0.80 0.60 0.40 0.20
STP 0.98 0.87 0.54 0.14 0.05

AS2P 0.40 0.36 0.27 0.14 0.05

ResNet101&CIFAR100
GA 1 0.80 0.60 0.40 0.20
STP 0.93 0.85 0.61 0.37 0.14

AS2P 0.39 0.36 0.28 0.17 0.07

ResNet152&CIFAR100
GA 1 0.80 0.60 0.40 0.20
STP 0.63 0.59 0.45 0.25 0.10

AS2P 0.32 0.31 0.24 0.14 0.06

Table 5: Training cost ratio of reaching specific loss values under common deep models&datasets.

Task Method Training cost ratio

SST-2

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.47 0.50 0.38 0.23

STP cosine decay LR 0.38 0.38 0.30 0.19
AS2P cosine decay LR 0.17 0.17 0.15 0.10

RTE

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.35 0.35 0.30 0.12

STP cosine decay LR 0.03 0.03 0.03 0.03
AS2P cosine decay LR 0.03 0.03 0.03 0.03

Copa

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.47 0.47 0.40 0.23

STP cosine decay LR 0.26 0.26 0.23 0.11
AS2P cosine decay LR 0.10 0.10 0.07 0.05

ReCoRD

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.42 0.42 0.42 0.23

STP cosine decay LR 0.23 0.23 0.19 0.07
AS2P cosine decay LR 0.05 0.05 0.05 0.03

SQuAD

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.65 0.65 0.53 0.30

STP cosine decay LR 0.23 0.23 0.23 0.15
AS2P cosine decay LR 0.15 0.15 0.12 0.07

DROP

GA cosine decay LR 1 0.75 0.50 0.25
GA constant LR 0.42 0.47 0.40 0.23

STP cosine decay LR 0.34 0.34 0.30 0.19
AS2P cosine decay LR 0.15 0.17 0.15 0.10

Table 6: Training cost ratio of reaching specific loss values when fully fine-tuning OPT-13B model
under various tasks.

Figure 4: Performance comparison between applying different noise distributions such as Normal
distribution, Rademacher distribution, and Uniform distribution.

(a) Under pre-trained
ResNet18&CIFAR10

(b) Under pre-trained
ResNet50&CIFAR10

(c) Under pre-trained
ResNet101&CIFAR100

(d) Under pre-trained
ResNet152&CIFAR100

23

Under review as a conference paper at ICLR 2024

Figure 5: Convergence rate of pre-trained ResNet18&CIFAR100 and pre-trained
ResNet50&CIFAR100.

(a) pre-trained ResNet18&CIFAR100 (b) pre-trained ResNet50&CIFAR100

Figure 6: Verification of effectiveness of proposed method under pre-trained ResNet101&CIFAR100.
Left-side figure demonstrated the convergence rate of AS2P without (W.O.) automatic learning rate
and without progressive �-clipping. Right-side two figures demonstrate the dynamics of learning rate
and �;

(a) Convergence rate comparison (b) Learning rate comparison

24

Under review as a conference paper at ICLR 2024

Figure 7: Under ResNet18 and CIFAR10, the performance of GA with the different number of
symmetric perturbations for each update. The left-side figure shows performance under the varying
number of symmetric random perturbation per update where the number of function query for each
setting are the same. The right-side figure demonstrates that under varying training settings, the
convergence of GA with 10 symmetric random perturbations for gradient approximation per update.
Basically, we can conclude that one symmetric symmetric random perturbation per update converges
to smaller loss values under the same number of function queries.

(a) Same initial LR and LR scheduler (b) Varying ↵ and ⇢ under GA 10.

Figure 8: Performance comparison under VGG11 and CIFAR10. The left-side figure demonstrates
the dynamics of training loss; The right-side figure demonstrates the training cost ratio of reaching the
same specific loss values. The proposed method AS2P converges faster than other baseline methods
and nearly requires 0.5⇥ number of queries to reach the same specific loss values. Note that the
hyper-parameters directly follow the setting of ReSNet18&CIFAR10 in Table 3.

Figure 9: Performance comparison with various baselines under common deep models&datasets
where the x-axis is the number of function queries. This figure is adopted from Figure 1.

25

Under review as a conference paper at ICLR 2024

(b) Training loss (c) Evaluation loss

Figure 10: Performance comparison with full fine-tuning OPT-13B model where the x-axis is the
number of function queries. This figure is adopted from Figure 2.

Figure 11: Corresponding validation performance of Figure 1(b) under setting ResNet18&CIFAR10
and ResNet101&CIFAR100. Using one seed only.

26

	Introduction
	Related work
	Accelerated Stochastic Two-Point Search
	Stochastic Two-Point Search (S2P)
	S2P under General Smoothness Assumption
	S2P under Relaxed Smoothness Assumption
	Accelerated Stochastic Two-Point Search (AS2P)

	Experiments
	Performance comparison with standard methods
	Effectiveness of components in AS2P

	Conclusion and Discussions
	Technical lemmas
	Convergence analysis under the general smoothness assumption
	Progressive bound of S2P
	Query complexity of S2P

	Convergence analysis under the relaxed smoothness assumption
	Progressive bound of S2P
	Query complexity of S2P
	Bound of gradient norm of S2P

	Experiments
	Setup
	Additional Experiments

