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SUPPLEMENTARY MATERIAL FOR
Federated Learning with Heterogeneous Label Noise: A Dual Structure Approach

A DETAIL OF FIGURE[

We have tested the loss of clean samples and noisy label samples in FedAvg on the CIFAR10 dataset
with symmetric label noise, where data heterogeneity is increasing from #class=10 (IID) to #class=2
(extermely non-1ID), as shown Figure [T] of Section [} In this section, we further compare the the
performance of FedAvg with the centralized training on the CIFAR10 dataset with noise rate 0.8.

In the Figure [6] (a), we show the prediction accuracy of the model trained in IID distribution and
non-IID distribution (# class=2) by FedAvg, and the prediction accuracy of the model trained by
centralized. On the one hand, the performance of the model trained by FedAvg on the dataset with
IID distribution is similar with the model trained by centralized. On the other hand, the performance
of the model trained by FedAvg is broken and worse than random guess on the dataset with high
noise rate and non-IID distribution (# class=2).

Figure [6] displays the loss of clean samples and noisy samples in centralized training, FedAvg with
IID distribution, and FedAvg with non-IID distribution (# class=2) on dataset with noise rate 0.8.
At the same noise rate, both centralized training, and FedAvg with IID distribution show the memo-
rization effect but FedAvg with non-IID distribution (# class=2). It shows that non-1ID distribution
will will break the memory effect in extreme cases (for example, non-IID distribution (# class=2),
noise rate = 0.8).
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Figure 6: The performance of FedAvg and the centralized training on the CIFAR10 dataset with
noise rate 0.8.

B DATA PARTITION MECHANISM

Given a dataset D with a sample size of NV and L class labels. The number of samples corresponding
to each class of labels are { N', N2, ..., N}. Denote by h the data partition mechanism, where we
partition data to IID distribution by shuffling into K clients and each receiving | N/K | examples,
and we partition data to non-IID distribution by a distribution matrix M, where M;; is the
proportion of the samples labeled as 7 on the i-th client to the j-th class samples, and satisfies the

Eqn. ().

0<M;<1,i=12.,K,j=1,2..,L

K )
S My <1,j=1,..,L.

Let u; be the number of categories in ith client, p; be a vector of length L that sums to u;. For

each 0 < ¢ < K, p; can be generated by by sampling randomly without replacement in range (0,
L-1). Let g; be a vector of length K which represents the proportion of j class samples on every
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client. For each 0 < j < L, g; can be generated by sampling from the Dirichlet distribution, where
q;(i) = M;;. For example, we visualize the distribution matrix of generated IID distribution and
non-IID distribution in Figure
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(a) IID distribution. (b) non-IID distribution (#class=5).

Figure 7: Heat-map for client data distribution with class label. In Figure (b), non-IID distribution
(#class=5) is the non-IID distribution of clients with 5 class labels.

C IMPLEMENTATION DETAILS

Dataset CIFAR100 CIFARI10 MNIST
Feature size 32 %32 32 %32 28 #28
Training instances 60,000 50,000 60,000
classes 100 10 10
clients 50 100 100
Rounds 450 450 300

Model Architecture  ResNet34 ResNet-18  LetNet-5

Table 3: Summary of the datasets.

Implementation details of CORES For PCORES, FedCORES, and FedTwinCORES on CI-
FAR10 and CIFAR100, we first train network on the dataset for 2 warm-up rounds with only CE
(Cross Entropy) loss and the data selection is performed at the 3 round. Then § is linearly increased
from O to 1 for 10 local epochs in every client and kept as 1 for the rest of the local epochs. For
PKNN, FedKNNpretrain, FedKNN, and FedTwinKNN on MNIST, we first train network on the
dataset for 10 warm-up rounds with only CE (Cross Entropy) loss and the data selection is per-
formed at the 11 round. Then £ is linearly increased from O to 0.1 for 50 local epochs in every client
and kept as 0.1 for the rest of the local epochs.

Implementation details of KNN-based method For PKNN, FedKNNpretrain, FedKNN and
FedTwinKNN on CIFAR10 and CIFAR100, we set £k = 10. For PKNN, FedKNNpretrain, Fed-
KNN and FedTwinKNN on CIFAR10 and CIFAR100, we set &k = 5.

D COMPARISON WITH STATE-OF-THE-ART METHODS

The accuracies of various methods on MNIST and CIFAR100 with homogeneous and heterogeneous
label noise at different noise levels. Both two label noise generation model (ANDC and DCAN) are
displayed.
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Table 4: The accuracies of various methods on CIFAR100 with homogeneous label noise and het-
erogeneous label noise at different noise levels. Both two label noise generation model (ANDC and

DCAN) are tested.

11D non-IID
Method Symmetric Pairflip Symmetric Pairflip
0.0 0.2 0.5 0.2 0.4 0.0 0.2 0.5 0.2 0.4
FedAvg 67.60 48.06 2598 5299 37776 | 66.64 47.62 2391 52.09 36.09
FedCorAvg 29.01 2372 17.80 24.84 18.66 | 28.08 23.11 17.07 23.56 18.43
ANDC | FedProx 65.78 4937 2776 53.63 38.72 | 63.09 4691 2595 51.88 36.34
FedPCORES 4230 31.16 1735 3327 25.83 | 40.17 2994 16.16 32.89 26.68
FedPKNN 66.88 5248 27.14 56.19 3949 | 6466 5151 28.09 53.15 3694
FedCORES 70.83 5992 30.72 56.65 42.15 | 66.89 52.69 2440 5145 3738
FedTwinCORES 69.26 5523 27.81 5847 429 | 66.00 52.19 2440 5449 39.55
FedKNN 68.69 59.68 29.87 60.78 44.02 | 66.75 5850 31.73 57.83 40.37
FedTwinKNN 68.60 5432 26.54 57.18 39.66 | 66.49 53.68 27.59 5444 37.43
FedTwinKNNpretrain || 67.36 4997 2546 52.73 3691 | 6649 4775 24.18 5097 37.19
FedAvg 67.60 52774 26.66 52.56 3590 | 66.64 47.00 22.57 47.69 37.56
FedCorAvg 29.01 2447 1697 2438 1641 | 28.08 24.12 17.25 2370 1892
FedProx 65.78 52.06 2993 52.86 37.17 | 63.09 4851 2420 5051 39.00
DCAN FedPCORES 4230 3235 17.16 32.82 2551 | 40.17 29.52 14.77 31.37 24.40
FedPKNN 66.88 56.05 30.59 5457 37.83 | 64.66 5231 26.16 5223 36.89
FedCORES 70.83 57.88 29.71 56.96 41.16 | 66.80 5443 20.48 53.16 35.66
FedTwinCORES 69.26 55.06 31.27 5499 4057 | 66.00 49.88 2195 53.73 40.08
FedKNN 68.69 6123 36.73 60.56 41.75 | 66.75 61.27 31.71 5871 44.25
FedTwinKNN 68.60 5793 2994 5549 3944 | 6649 56.03 2594 5515 39.94
FedTwinKNNpretrain || 67.36 53.22 29.15 52.13 37.54 | 6649 47.85 2246 50.79 38.84

Table 5: The accuracies of various methods on MNIST with homogeneous label noise and hetero-
geneous label noise at different noise levels. Both two label noise generation model (ANDC and

DCAN) are tested.
11D non-I1ID
Method Symmetric Pairflip Symmetric Pairflip
0.0 0.2 0.5 0.2 0.4 0.0 0.2 0.5 0.2 0.4

FedAvg 99.03 9632 80.68 91.64 66.51 | 98.74 87.82 66.04 8372 65.93
FedCorAvg 97.47 7625 9348 96.66 8441 | 80.95 77.78 8331 82.16 61.23

ANDC | FedProx 98.71 9825 9724 97.67 8521 | 98.29 9697 91.64 9029 71.39
FedPCORES 62.02 57.42 50.82 52.05 4534 | 61.76 5391 4292 4985 42.13
FedPKNN 98.11 97.79 9279 97.69 80.71 | 98.10 95.6 84.24 89.75 68.95
FedCORES 99.0 97.38 70.08 91.8 68.56 | 98.97 89.96 70.34 81.58 66.59
FedTwinCORES || 99.07 96.55 5095 92.12 69.57 | 99.01 89.29 6424 814 66.86
FedKNN 98.21 98.08 93.57 97.78 80.27 | 98.16 954 84.63 89.55 69.97
FedTwinKNN 98.09 9792 93.14 97.68 78.99 | 98.09 9593 8248 91.52 68.71
FedKNNpretrain || 98.99 9626 81.24 91.82 66.54 | 98.71 88.92 67.03 8237 64.56
FedAvg 99.04 96.03 79.97 9341 6794 | 9848 91.72 7593 9639 91.33
FedCorAvg 9747 96.63 93.82 9649 85.17 | 82.58 81.24 3785 92.68 56.87
FedProx 98.63 98.17 9738 97.71 8844 | 98.03 9238 85.03 96.10 92.14

DCAN FedPCORES 61.85 57.53 50.15 55.62 46.79 | 6298 56.58 46.89 57.68 55.17
FedPKNN 98.23 98.01 9328 97.71 77.83 | 98.07 9478 8434 95.62 88.12
FedCORES 99.03 97.87 79.15 932 6693 | 98.74 9593 66.84 9629 93.37
FedTwinCORES || 98.96 96.65 64.89 939 67.11 | 98.84 9349 68.81 96.35 9247
FedKNN 98.19 982 9351 97.89 81.82 | 98.07 97.72 86.57 97.52 92.29
FedTwinKNN 98.08 98.06 935 98.02 825 |98.12 97.79 8885 9749 90.44
FedKNNpretrain || 99.02 9599 80.92 93.03 66.6 | 98.70 95.18 88.13 96.48 88.81
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