A  EXAMPLES OF K

We provide a list of examples of I and the corresponding VX and /C*. It is useful to define the
following indicator functions of set {z = 0}:

0 ifz=0 0 ifz=0
3(z) = I(z) =
(=) {+oo ifz40. ) {1 itz 40,
Note that § is the conjugate function of f(z) = z, as §(z) = sup, = ' 2.
fpmorm  When K(x) = ||zf|, = (3, |2;|P)*/P for p > 1, we can take

K(z) ™

_ sign(x) |x
=
[

9

and
K*(z) =supzz — ||z]|, = sup ||z]|, ¢ — ¢ = §(||z||, < 1),
z c>0

where ¢ is the conjugate number of p, satisfying 1%4—% = 1. Hence, Lion-XC with £, norm correspond

to solving
min f(z) st [lzf, <1/A
xT

Group /, norm Assume z is partitioned into a number of groups: = = [zg,]¥ ;. Consider the
group £, norm: K(zx) = Zf:l |zg,|l,- Then, we can take

. p—1 k
sign(xg, ) |rg,
v;qx):[g(g)'pgl ]
i=1

H‘,I:gz P

The conjugate function is

k k
K*(x) =sup ¥ w426, — llza.l, = > 6(llzg,ll,
Z =1 i=1

Hence, Lion-X with grouped £,, norm corresponds to solving
S/ Vi

IN
=

min f(z) s.t. |zg,
x

Lower Truncated ¢; Norm Consider K(z) = Z?=1 max(|x;| — e,0) where e > 0. We can take
VK(z) =1(Jz| > e)sign(z), (16)
which uses sign(x) as Lion, but zeros out the gradient on the elements with absolute values smaller

than e. The conjugate is
d

K*(z) = sup Z(gﬂzzZ —max(|z|, —e,0))

Z =1
d

= sup Z(ﬂmzZ —¢) st. ¢ >0, c>|z|—e
z,C i=1

d

= supz || (ci +e) — ¢
€20,

d
= |zl < 1) + el
i=1

=0(flelle < 1) +ellzl; -
Hence, Lion-K corresponds to solving
minaf(z)+eylz|;, st |zl <1/ (17)

Hence, truncating the small gradients in Lion induces an ¢; penalty, which encourages the sparsity
of the final solution.
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Lower (Vector-wise) Truncated £, Norm Consider K(z) = max(|[z|,, — e,0). We have

"

VK(2) = I(Jall, — e > 0) 222 T

1 )
Il
in which the gradient is zeroed out when |[z||, < e. The conjugate is
K*(a) = sup(z" » — max(||z], — ¢,0))
z

=sup(z'z—¢) st ¢>0, ¢> 121l —

z,c
= iggllwllq (c+e)—
=o(llzll, <1) +ellxll, -

Hence, Lion-K corresponds to solving

mgnaf(x)—i—e'nyHq st lzfl, < 1/A

Sorting Norm For z = [z1,...,24), let }x(l)’ > ‘.13(2)‘ ... be the sorting of the elements by
absolute values. Define

Sorting norm:  K(z) = Z ¢i |z,

where ¢y > co > ... > 0 is a descending non-negative sequence. The sorting norm is convex
because it can be represented as the supreme of a set of convex functions, by the rearrangement
inequality, as follows

d
v) =g oo loil,
where I" denotes the set of permutations on {1, ...,n}. One subgradient of K is
VIC(IZT)Z = crank(i,w)Sign(xi)a
where rank(i, z) denotes the rank of |z;| in .

K*(x) = sup {xTz - Z ci ’z(i)’}

i

Z ‘x(l ’ X 2(3) — Z CiZ(i) } //by rearrangement inequality

w20 J>i J>i

ZZ(’$(2)| - Ci) X W;j //let 2(i) = ij’ w >0

j i<y j>i

= sup {Z EXY ij Net z;y = Z wj, wi >0

=2 0 lewm| < e)

7 i<j 71<i

Hence, Lion-/C corresponds to imposing a sequence of bounds on the cumsum of the sorted x:

min f(z) s.t. Z |z(i)| <(C;, where C; = Z ¢

J<i J<i
An interesting special case is when ¢; = (i < i“?) for some integer i““* € {1,...,d}, so that
K@) =Y |zwl, VK(z) = I(Jz| > @ (jeur))sign(z),

i<jcut
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in which we zero out the updates of the elements whose absolute values are smaller than the i€“*-th
largest element. It is useful to compare this with (16) which applies the truncation based on a fixed
number ¢, rather than the percentile.

The conjugate is
K@) = Y 8(|eg| < 1) +6(lz]l, < i)

j<Z‘cut

Then, Lion-/C in this case corresponds to solving

min f(z) st. |zf, <Nzl < /A,

in which the percentile-based truncation effectively imposes a constraint on the ¢; norm of z. It is
different from (17) in which the ¢; norm appears as a regularization term in the objective, rather
than as a hard constraint.

Entropy Consider K(z) = 0, 1 log (1 (exp(az;) + exp(—az;))), where a > 0. We have

i=1 a
VK(z) = xplax) = exp(—az) = tanh(ax).
xp(ax) + exp(—ax)
Taking the inverse, we have VK*(z) = Qi log 132, with domain in |||, < 1. by integration, the

conjugate function is hence,

d
1 1
; o (z; + 1) log(z; + 1) + %(1 — ;) log(1 — ;) +6(||z]|, < 1).

Lion-K correspond to solving an entropy-regularized optimization:

min af(z) + }E(Ax) st |zl < 1/,
where E(z) = Zle o (z; + 1) log(z; + 1)n + 2= (1 — 2;) log(1 — ;).

Huber Loss For a > 0, define the Huber loss:

1
= ZHubera(xi) where  Huber,(x;) = I(|z;] > a) x |z;] + I(Jz;] < a) x 2—33?,
; a

We have
z; ifx € la,b]
VK(z) = Clip(z, —a,a)/a, with Clip(z;,a,b) =< b ifz>b
a ifzr<a.

The conjugate is
* a 2
K (2) = 5 llzllz +é(llello < 1),

d
K*( E max( sup xz;z; — |z;|, sup x;z; — 2—212)
i—1 |z|>a |zi|<a a

1
- Zmax( (i < 1)+ all] - 1), gos? )

d

= o(lz| < 1)+ %am?

i=1
a 2
7 lzllz +8([l2ll < 1)-
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Relativistic Consider KC(z) = 7| \/22 + €2, then VK (z) =

d
(r) = sup (Z Tz — /22 + e2>
# \i=1
d

\/ﬁ’ and

A related case is

K(z) = |z| — elog(|z] /e + 1), with VK(z) = TTe

whose conjugate function is

T \i=1

d
K*(x) = sup (Z 22— |2) + elog(|24] e + 1))

d
= Z lzi e/ (1 — |z:]) — |@s] e/ (1 — |2i]) + elog(1/(1 — |a;|))  //Solution: z =

Z (lze] +1og (1 — |2])) + (x| . < 1)

=1
B PROOFS

B.1 CONVEX FUNCTION PRELIMINARIES

Lemma 2.1 Assume IC, K* is a closed convex conjugate pair and VIC, VI are their subgradients,
we have

(VK(z) = VK(y)) " (z —y) 20, (VK(z) —y) " (z = VK*(y)) 2 0. (18)

Proof. 1) By definition of subgradient, we have
K(y) — K(x) > V()" (y — x)
K(z) - K(y) > VE(y) " (z —y).
Summing them together yields (VK (z) — VK(y)) " (x —y) > 0.
2) Because VK*(y) € OK*(y), we have
K*(VE(x)) = K*(y) = VK* (y) T (VK(2) - y),

Because VI (z) € OK(x), by the property of conjugate functions, we have x € OK*(VK(x)), and
hence

K*(y) = K*(VK(2)) 2 2" (y — VK(z)).

Summing the two inequalities above yields

(VK(z) =) (VK" (y) — 2) < (K*(VK(2)) = K*(y)) + (K*(y) - K*(VK(x))) = 0.

18
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B.2 CONNECTION WITH NESTEROV MOMENTUM

Lemma B.1. The Lion-K ODE is
iy = VE(my —e(aV f(z) +yme)) — Az
my = —aV f(xy) — ymy.
is equivalent to
V2K* (& + M) (& + Aiy) + eaV2 f(ay)dy + YV (& 4+ Axy) + aV f(x,) = 0, (19)
if K* and f are second order differentiable.
In particular, if K(x) = ||x|\; /2, we have
B+ N+ )dy +eaV2 f(x) i + v v + aV f(2) = 0. (20)

This ODE minimizes F(z) = af(x) + vA Hx||§ /2.

Remark We have the following observations from (21):
1) The role of the weight decay A and momentum damping coefficient vy is symmetric in (21).

2) When either the weight decay or momentum damping is turned off, i.e., YA = 0, the ¢ regular-
ization in F'(z) is turned off, and we have

B4+ (A +7)d +eaVP fx)i + aV f(x) =0, 1)

which coincides with the high-resolution ODE [35] that serves as a continuous-time modeling of
Nesterov momentum for minimizing f(z).

3) The Hessian-dependent damping term V2 f (z; ), arises to due the gradient enhancement (¢ > 0),
and it is known to play a key role in Nesterov momentum and acceleration [1, 35]. When we turn
off the gradient enhancement (¢ = 0), we get

E+ A+ )3+ aVf(r) =0,
which is the ODE for Polayk momentum, the equation of motion of a ball with unit mass moving in
a potential field o f () with a friction coefficient (A + 7).
Proof. We want to cancel out m;. The first equation yields
(1 —ey)my = (VK* (& + Azy) +eaV f(xy)) . (22)
Plugging it into the second equation yields

(1 —ey)me = —a(l —ey)Vf(zt) — v (VK" (&1 + Awy) + eaV f(z1))

23
= —aVf(x) — YVK* (& + Azy). (23)
Combining (22) and (23) yields
d
= (VK™ (&1 + Awy) + eaV f(ay)) = —aV f(z) = yVE" (& + Aay).
Or
V2K (& 4 Ay) (& 4+ M) + eaV2 f(2)d + YVEK* (& + Axy) + aVf(z) = 0.
O
B.3 DISCRETE-TIME SCHEMES OF LION-K
In the most general form, the Euler approximation of the Lion-/C ODE with step size ¢ is
Tip1 = a1t + (VK (my — e(aV f(ze) +ymy)) — Axy) (24)

miy1 = my — e(aV f(xg) +ymy),
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The discrete Lion-K scheme in (2) is recovered when oo = v, 81 = 1 — &7, B2 = 1 — €. By scaling
f(z) by a positive multiplicative ratio, (2) in fact covers all cases of (24) when ~y # 0.

When v = 0, however, (24) reduces to a momentum-undamped variant of Lion-K:

Tep1 = 2 + (VK(me — 1V f(x1)) — Axy)

M1 = my — B2V f(xy),

which is the Euler approximation of Lion-XC ODE v = 0, step size €, and 81 = €, and 82 = ea.

Due to v = 0, the undamped Lion-K amounts to solving min, f(x), without the regularization
K*(Az).

The connection to Polyak and Nesterov momentum discussed in Section extends to discrete-time
forms. From the first equation (24), we have

]_ —
my = <v1¢* (M + Axt> + san(Q:t)> .
1—ey €

Undamped Lion-:

Plugging it into the second equation of (24), we get
(v;c* <7z”2 ;zt“ + ,\m+1> + san(zt-H)) =(1-ey) (wc* (L*l; Saa Am) + saW(m)) — (1 —ey)eaVf(zy).

Hence,

_ (M N >\$t+1> — —eaV (@) (1—ey) VK <xt+1€xt + )\;z:t)+(se)onf(:1?t).

When VK*(x) = x, we have
Tiyo = (1 — eN)wiy1 — eeaV f(zp1) + (1 — €9)(Te41 — 20) + €Axy) + €(e — €)aV f ().
It is simplified into
Ty = (1=EXY)zip1—aV f(@r401) +H(1—ey) (1—eX) (@141 —3) —€(e—€)a(V f (2441) =V f (1))

When € > € (corresponding to $; < 2 in Lion-KC (2)), this can be shown to be identical to

the Nesterov momentum algorithm for minimizing F(z) = af(z) + Ay Hx||§ /2. Whene = ¢
(corresponding to 81 = f2 in (2)), it is identical to Polyak momentum.

B.4 FRANK-WOLFE AND MIRROR DESCENT

Frank-Wolfe When v = 1, Lion-X reduces to
Tt = VK:(—Vf(l‘t)) - )\.Z’t, (25)

where we also set ca = 1 without loss of generality. In this case, the ODE monotonically decreases
the objective

F(z)= f(z)+ %K*()\m),

without resorting to an additional Lyapunov function. This can be seen from

d
S F(@) = (V1(@) + V" ()T (VK(=V f(2)) = o) <0,
where the inequality follows Lemma 2.1.

The Euler discretization of (25) is
Tir1 = ¢ + € (VK(=V f(z1)) — Axy) (26)

This can also be derived from conditional gradient descent, or Frank—Wolfe. To see this, recall that
the conditional gradient descent update for the F'(x) above is

. 1 *
Yt+1 = argmin {Vf(%‘t)T(JU —a)+ XK ()\a:)}
x
Tip1 = T+ €0(Ye1 — Tt),
Solving y;1 1 yields

1
yeo1 = yVK(=Vf(a),  andhence  @ppr=(1—co)ri + %OVIC(—Vf(xt)).
Taking € = e\ yields (26).
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Dual Space Preconditioning and Mirror Descent When we further set A = 0 in (26), Lion-X
reduces to

Ti41 = T + 6V’C(—Vf($t)), (27)

When VK(0) = 0, Eq. (27) is dual space preconditioning [23], which is closely related to mirror
descent [26], for minimizing f(x). To see the connection with mirror descent, note that (27) is
equivalent to

Tyl = Ty + €0y, with d; = arg min {Vf(xt)—ré + IC*((F)} .
P

Because IC* and KC are differentiable, then VX(0) = 0 implies V/IC*(0) = 0, and hence C* achieves
the minimum at zero. In this case, X*(§) — K*(0) can be viewed as a Bregman divergence, and
hence justifying the connection of (27) with mirror descent. Recall that the Bregman divergence
By (x || y) is the Bregman divergence associated with a convex function i: R? — R is defined as

By(x || y) = h(z) — h(y) — Vh(y) T (x —y).
With VK*(0) = 0, it is then easy to show
K*(6) = K*(0) = Bi+ (6 || 0) = Bicx (z¢ + €0 || z¢),
where K = K* (£=2).

€
B.5 LION-X WITHOUT GRADIENT ENHANCEMENT (¢ = 0)

Theorem B.2. Consider the ODE of Lion-K-W without gradient correction:
iy = VK - A
l:t (mt) Tt (28)
my = —aV f(xy) — ymy,

with A\, a,,y > 0. Its fixed point is the minimum of
mTin af(x) + %K*(Am).
It yields the following Lyapunov functi(';n.'
H(z,m) = af(z) + }/c*(m;) + (K*(A\x) + K(m) — Az m).

Proof. Observe that
VeH(z,m)=aVf(zx)+ (y+A)VK*(Az) — Am
Vi H(z,m) = VK(m) — Az,
and (28) can be written into
Ty = Vy(xg,my) = Vi H(zg, my)
1y = Vi (g, my) = =V H(xy,my) — Hyp (20, my),
with H,, (z;,m;) = (v + A)(my — VK*(Azy)). By Lemma 2.1, we have
H (V,,H) = (m —VK*(\z))" (VK(m) — \z) > 0.
Then

d
3 H (e, me) = V.H"V, +V,,H "V,
=V,H" (V,H)+VH"(-V,H — H,)=—-V,,H"H,, <0.
In fact, this ODE has a Hamiltonian + descent structure [22], as it can viewed as a Hamiltonian
system damped with a descending force:

"tt +va(fEt,mt)
Ty
Hamiltonian Descent

_V:I:H(xh mt)
where the Hamiltonian component is orthogonal to the gradient [V,H,V,, H] of H(x,m) and
preserves the total energy H(x,m), and the descent component introduces a damping like effect
to decrease the energy H (z,m). O

0
(v 4+ A)(my — VE*(A\xy)) 7
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B.6 LI1ON-X WITHOUT WEIGHT DECAY — A HAMILTONIAN + DESCENT DERIVATION

When the weight decay in Lion-K is turned off (A = 0), there is an alternative way to analyze it that
is amendable to the Hamiltonian + descent structure in (12).

Recall that the Lion-/C ODE is of the following form when A = 0:
{I.Jt = V’C(mt>, ’I’ht = m; — E(Oév‘f(l't) —+ 'Ymt)

: 29
e = —aVf(xy) —ymy (29)
Assume v < 1. Define K(m) = 1—157K ((1 — e7y)m), and the following Lyapunov function:
. 1
H(z,m)=af(x) + K(m) =af(z)+ T E,le((l —evy)m). (30)

Note that V,H (z,m) = oV f(z) and V,,, H(x,m) = VE((1 — £)m). One can decompose (29)
into the following Hamiltonian + descent decomposition:

Ty
o

+Vo H (e, my) VK(m?) — VK (1)

)

*VzH(SEt,mt) ymy
Hamiltonian Descent
=0 _ = =0 _
where we define my = (1 — ey)m; and hence m; — m; = —eaV f(x).

Using the monotonicity of subgradient (Lemma 2.1), one can show that the second component in
the decomposition above is a descent direction of H(x,m) in (30):

1) Let V H; == —VK()) + VK (1), then it is a descent direction of H(x,m), because

Vo H(ze,my) "V H, = aV f(2,) " Vo H,y
1 - - -
= =0 =) (VK (mE) = V(i) <0,
where we used the monotonicity of V().

2) If m = 0 is the minimum of /K, then @mHt = —vymy is a descent direction of H (x,m) because,

v

VonH (2, m) "V Hy = —yVEK((1 — ey)my) "my < T

(K(0) = K((1 = ev)my)) < 0.

Hence, we have

d . .
g H (@ me) = Vo H (i, my) Vo Hy + Vo H (v, mye) TV Hy
Lo T ~0 ~ T
= =2 (g =) (VK@) = VK(me)) = yVE((1 = ey)me) “me < 0.
Moreover, if m = 0 is the unique minimum of X, and ey < 1, then VK ((1 — ey)m¢) "my = 0
implies that m; = 0, and one can show that the equilibrium points of (29) are stationary points of
H (xz, m) using LaSalle’s invariance principle.

B.7 MAIN RESULT OF LION-K ODE

Theorem B.3. Assume K is convex with conjugate KC*. Assume f,IC, K* are continuously differen-
tiable. Assume (xy,my) is the solution of the following ODE:

Ty = VK:(’ﬁ’lt) — /\J?t, with my = my — e(’ymt + OéVf(.%'t)),

my = —aVf(xy) — ymy,
where a,,y, A, > 0 and ey < 1. Let
1—ey

Y (K*(\x) + K(m) — Am " z).

H(z,m) = af(z) + }/c*(m +
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Then H yields a Lyapunov function in that

d
—&H(thmt) = A(mt7mt) = —

where
Ay (z,m) = (m — VK*(\z)) T (VK(m) — Az),

Ao(m, i) = é(m — )T (VK () — VK (m)).

Moreover, the accumulation points of all trajectories are stationary points of F(x) = af(x) +
LI (Ax).
X

Proof. 1t is not obvious how to construct the Lyapunov function directly from the ODE. The fol-
lowing proof describes the process of discovering H (x, m). We start by examing what inequalities
we can write down using the monotonicity of V/C and VIC* via Lemma 2.1, and then work out the
Lyapunov function backward.

Write m = m — e(ym + oV f(x)). Because VK is a monotonic mapping, we have by Lemma 2.1
the following key inequalities:

(=1 + VK*(\2)) T (VK(m) — A\z) <0,
(m —m) " (VK1) — VK(m)) <0,
or equivalently
(eaVf(z) — (1 —ey)m + VK*(\z)) T (VK(m) — Az) <0 (31
e(aVf(z)+ym)T (VK(m) — Az) — (VK(m) — Az)) <0 (32)

Write V,, = VK(m) — Az, and V,;, = —aV f(z) — ym. So the ODE is & = V,, and i = V};,. The
inequalities can be rewritten into

(eaVf(x) — (1 —ey)m + VK*(\x)) 'V, <0 (33)
— eV, (Ve — (VK(m) — Az)) <0 (34)

Taking m(Eq (33) + 1 x Eq. (34)) for any > 0, we get

1—ey(1+mn) 1 ' ne T
\Y% — V(A Vo + —"— (VK - A Vi <0
(v sto) - Gy V0 et s Ot =) TV <
Define
- 1 1—ey(l+n)1 1—ev(1+n) +
H = —K*(A —-K - .
(z,m) = af(x) + e(1+n)A (Az) + el+mn) A (m) e(1+mn) e
Then the inequality was reduced to
F EnA 7 T
wH TV;E T 1, N mH 5 Vm <0.
V.H(x,m) +1_€7(1+n)v (z,m) <
If we take 7 such that
enA
— =1, 35
1—ey(1+n) G
then we have when following & = V, and m = V,,,
d - . .
&H(x,m) =V, H(zx,m)" "V, +V,,H(z,m) V,, <0.
Furthermore, when (35) holds, we have
_ l—ey I Aty 1—ey(l1+n) (1—ey)A 36)
K eA+7)’ e(l+n) 14X e(l1+n) 1+ex ’
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and hence
A+ 1l-ey
(I4+e)N  14ex

1_57 * . T
Y (K*(Az) + K(m) — Am " z)

) K*(\z) + 1 ; 3 (K*(Ax) + K(m) — xm " x)

Fi(eom) = af@) + (

=af(z) + %IC*()\x) +
= H(z,m).

In this case,

d

&H(z, m)

= ﬁ(Eq. (33) + n x Eq. (34))

- f;f; « Eq. (33) + ﬁ X Bg. (9. I '7+ 5= (1] QE’A) from (36)

== f:; (m — VK*(\z)) T (VK(m) — \x) — ﬁ(m —m) " (VK(m) — VK(m)) < 0.
To ensure that n > 0, we need ey < 1. O

LaSalle’s invariance principle Let H(z) is a continuously differentiable Lyapunov function of
%zt = v(z), satisfying %H (2:) < 0. By LaSalle’s Invariance Principle, the accumulation points
of any trajectories of {2, = v(z) is included in

d
Z = {the union of all trajectories z; satisfying aH (z:) =0forall¢t >0 }.

For the Lion-XC ODE and its H, the points in Z should satisfy m; = VK*(\z;), which yields
VK(m:) = \xy, and hence
x't = V]C(’ﬁ’l,t) - )\fEt = 0.

This suggests that xz; is constant for the trajectories in Z. Because m; = VK*(A\x;) and m; =
my — e(aV f(xy) + ymy), we have

(1 —ey)my = VK" (Azy) +eaV f(xy)

Hence, (1 — ey)m; is also constants in the trajectories in Z. This suggests that (1 — ey)r; = 0
along the trajectories in Z, and hence

0=(1—ey)rin
— (1 - )@V f(z) +4m)
=—(1—-ey)aVf(x) —yVK*(Axy) — evaV f(xy)
= —aV f(zy) —yVK* (Azy)

= -VF(z) /F(z)=af(z)+ %IC*(/\:L')

Hence, all trajectories in Z are singleton points and are stationary points of the objective F'(z) =
af(z) + $K*(Ax).
B.8 THE DECOMPOSITION STRUCTURE

We provide the decomposition structure (11) which provides a simplified proof of the Lyapunov
property.
Lemma B.4. For ODE iy = V. (x¢,my¢), thy = Vi (24, my), let H(x,m) be a function satisfying
Ve H(x,m) = =V, (z,m) 4+ nVp(z,m)
Vo H (z,m) = =V (2, m) — nVy(z,m),
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where a € R and VI and Vm have positive inner products with V,,, V,,,, respectively, that is,
Vin(z,m) Vi (z,m) >0, Vz,m.

V(x,m) "V (2,m) >0,

Then we have d
&H(xt,mt) <0.
Proof.
%H(ajt,mt) =V, H V, +V,,H Vp,
= (Vo +aVi) Vi + (Vi — aVi) "V,
==V, Va + Vi Vi) <0
O

Lemma B.5. Under the condition of Theorem 3.1, let
Ve(z,m) = VK(m) — Az

m—m

Vin(z,m) = —aV f(x) —ym E

—eaVf(z)+ (1 —ey)m — VK" (Az),

and related

Vio(x,m) = i — VK*(\z)
Vin(z,m) = VK(10) — VK(m).
Then we have VIT V., > 0and Vn—{ Vin > 0 by Lemma 2.1. Moreover,
VoH(z,m) = =1/ Ve = Vi
Vi H (@, m) = =nVi + Vs,

where n = }J:} andn' = 11% This yields
(xtamt) = vaTVm + vaTVm = _(n/VxTVz + nVJVm) <0

d
—H
dt
Proof. Letn = }Iz} We have We have
Vi H(z,m) =n(VK(m) — \z)
=n(VK(m) — Az + VK(m) — VK(n))
=n(Ve — Vm)

V. H(z,m)
=aVf(z) +yVEK* (Az) + n(AVEK*(Az) — Am)

=aVf(z)+ (v +nA)VK*(Ax) — nim
= (Y +n\)(eaVf(z) — (1 —ey)m + VK (Az)) + (a — (v + nM)ea) V[ (z) — (A — (v + nA) (1 —ey))m

+ A
= 17+ IS (eaVf(z) — (1 —ey)m + VK (Ax)) + naV f(z) + nym
Y+ A A
=—— Vo=V,
1+eX K
where we used the following identities on 7:
l—ey,  7v+A

)\: =
) =7+ 1A T 15
v+ A 1—ey

(v +nM)e 1—#5)\6 1+el "
v+ A ey? — v
= = =1

A — N1 —ey) = —
A= (v +nA)(1 —ev) T T T T
O
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B.9 CONSTRAINT ENFORCING: CONTINUOUS TIME

When K* can possible take infinite values, the minimization of H(x, m) becomes a constrained
optimization. Let dom/KC* = {z: K*(z) < +oo}. The optimization can be framed as

min H(x,m) s.t. A\x € domK*.

z,m

The Lion-/C algorithm would first steer z; to the region where K* has finite values, and then de-
crease the finite parts of the objective function. In the following, we show that Lion-/C enforces the
constraint with a fast linear rate: the distance from Az; and dom/C* decays exponentially fast with
time ¢, and once Az, € dom/kC*, then Az, stays within dom/C* for all ¢ > t,.

Theorem B.6. Under the condition of Theorem 3.1, we have

dist(Azt, domK*) < exp(A(s — t)) dist(Axs, domk*).

Proof. Define ws_y = exp(A(s — t)). Integrating &, = VK (1) — Az, we have
[T w, VK (i )ds

JHwedr

We have VI (m,) € domK* from Lemma B.7 and dom/C* is convex. Hence z,_.¢, as the convex
combination of {VK (1}, belongs to dom/C*. For any ¢ > 0, let AZ, € domK* to the point
satisfying ||[A2s — Azs|| < dist(Azs, domk*) + €. Hence,

. S~ oinf _
dist(Az¢, domK*) Lcinf Ay — z||

Az = (1 - ws—>t)zs—>t + ws—>t(>\xs)7 where  z,_,; = , V0<s<t.

IN

||>\xt - (1 - ws—>t)zs—>t - ws—>t/\£s)H
= Ws—t ||A335 - )\ib”
< exp(A(s — t))(dist(Azs, domK*) + €).
Taking € — 0 yields
dist(Az¢, domK*) < exp(A(s — t)) dist(Azs, domk*).

Lemma B.7. Assume I is proper, closed and convex, and KC* is the conjugate of K. We have
OK(z) C domK*, Vz e domk.

Proof. If x € OK(z), then z attains the minimum of K*(x) = sup,{z "z — K(z)}, suggesting that
K*(z) =272 — K(2) < +00, and hence z € dom/*. O

B.10 DISCRETE TIME ANALYSIS

Theorem B.8. Assume f: R — R is L-smooth, and KC: R% — R is closed and convex. Consider
the following scheme:

M1 = Pamy — (1= B2)V f (1)
M1 = Pime — (1= B1)V f () (37
Ti41 = Tt + E(VK:(’I:H/H_l) — /\xt+1),
where VIC is a subgradient of K, and 1,82 € (0,1), and By > (81, and e, A > 0. Let K* be the
conjugate function of K. Define the following Lyapunov function:
B

* —Xz'm
(B + (1 gy M) HRm = Aeim)

Hz,m) = f(z) + %IC*(/\a:) =

and
A} = (VE(ri41) = A1) T (Fugr — VK (Azis1)),
A? = (VIC(th) - VK(mt+1>)T<mt+1 - mt+1)7
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where VIK* is a subgradient of K*. Then we have Atl > 0and Af > 0 from Lemma B.9, and

Lé? 5
H(2p1,mep1) — H(zg,my) < —e(al] +bAT) + - IV (1) — Azesal3

where

o 6)\61
o 6)\(1 751) + (1 7&2

Hence, a telescoping sum yields

Bl — B2)
(B2 — BL) (A — B1) + (1 — Bo)) > 0.

a

jH120, b=

T—1
1 1 o _ H(zo,mo) — H(zp,mr) Le
fZ}ﬁﬁw@ﬁ T 5B

where By = % Zthl (IVK(myt1) — )\3Ut+1||3~

Note that we used an implicit scheme in the update of x; in (43). It is equivalent the explicit scheme
with an adjusted learning rate:

€

1+ Y (V/C(ﬁlt+1) — )\l’t)

Ti41 = Ty +

Proof. We follow the proof in the continuous-time case to find out a Lyapunov function for the
discrete time update in (43). We start with constructing the basic inequalities and work out the
Lyapunov function backwardly. From Lemma 2.1, we have

(VK (mi41) — Azeg1) T (VK (ATp1) — 1gg1) < 0. (38)

(V’C(mt+1) — VIC(th))T(th — mt+1) S 0 (39)
Taking a x Eq.(38) + b x Eq(39) for a,b > 0, we have

(VK(mig1) = Arpgr) T (a(VE (Azig1) = Mugr) + b(mggr — mieg)) + -
+b(VE(meg1) = Azigr) T (—miega + mega) <0
Plugging (43) yields
(VE(p11) = A1) ' (@VE* (Aagi1) = ((a+0)B1 — bB2)my + (a — (a + )1 + bB2)V f (21))
—b(B2 = B1)(VE(mit1) = Azpyr) " (my + V() <0
Define
H@mm:4a—@ﬂm+§nwmg+§nmo—mﬁm, with ¢ = (a+b)B; — bps,

and

~ C
vat = (a — C)Vf(l’t) + aVIC*()\xH_l) — CMy, vat = XVIC(mH_l) — CTt41-

Then the inequality can be written into

N ~ - b(B2 — B1)A
vatT (VIC(mtJrl) - )\wt+1) + vatT (M

(=t = V() ) <0

Plugging the update rule of ;11 = 2+ (VI (Meq1) — Axe1) and myp1 —my = —(1—B2)(me+
Vf(xt)), we get

ﬁl’HtT <xt+1€_xt> + @mHtT (lm(mtﬂ - mt)) <0.

To make this coincide with the linear approximation of the difference H (xs41, mey1) — H(z, my)
(see Lemma B.9), we want
b(B2 —B)A 1

0(1—52) - 6.
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On the other hand, to make the coefficient of f(z) in H(x, m) equal to one, we want a — ¢ = 1.
This yields the following equations on a, b, c:

c=(a+0b)p —bBa, le, a—c=1, a,b>0.

c(1 =) €

To solve this, let ¢ = ze(B2 — B1)A and b = z(1 — B2) for some z > 0 and plug them together with
a = ¢ + 1 into the first equations:

2€(B2 — B1)A = (z€(B2 — Bi)A + 1+ 2(1 — B2))B1 — 2(1 — B2)Ba.

We get
L B1
€(B2 = P1)A —€(B2 — L)AL — (1 = B2) 1 + (1 = B2) 2
_ b1
eABa—B1) (1= B1) + (1 — B2) (B2 — B1)
_ B1 >0
(B2 = BL)(eX1 = B1)+(1—=pB2)) —
Hence
b= il = Bo) >0, ¢ Aby >0, a=c+1>0.

(B2 — B)(A(T = B1) + (1 — B2)) T 1= B1)+ (1-Ba)

In this case, we have

H(z,m)= f(z)+ 1IC*()\ac) + c(K*(A\z) + K(m) — Az "m)

A
= f(x L T Ay *(Ax m) — Az'm
= @)+ 3700 + Sy O + Km) — X,

and
L HT (W) L HT (w) Al —bA2 <0,
€

€
From Lemma B.9, we get
L
H(zp1, meg1) — H(z,my) < —e(aA} + bAZ) + 5 i1 — 2413
O

Lemma B.9. Let H(x,m) = f(x) + K1(x) + Ka(m) — Azm, where f is L-smooth, and K1, Ko
are convex functions with subgradient VK1 and VICo. Then

N L
H($t+1, mt+1) - H(xtymt) < VthT(ﬂﬁtJrl - fUt) + vatT(mt+1 - mt) + 5 ||$t+1 - xt”g )

where
ﬁth = Vf(l't) + ]Cl(.’ﬂt+1) - )\mt
VinHy = Ko (1) — Azgsr.

Note the use of x¢ vs. Ti41 and my vs. M1 in @mHt and @mHt.
Proof. We have

f@e) = f@e) S V(@) (@1 — @) + g lzer1 — el
<V

K1($t+1) - ]C1(It) K1($t+1)T(xt+1 - If,)
/Cg(mt+1) - K2(mt) < V’Cz(mt+1)T(mt+1 - mt)
whoame =zl me = m (@ — ) + 2l (Mg —my).

Summing them together yields the result. O
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Theorem B.10. Under the same conditions of Theorem 4.1, for any two integers s < t,

1
dist(Azy, dom/*) < (1 o

s—t
) dist(Azs,domK*), Vs <t.

Proof. Rewriting the update into the explicit form:

1 €
T4l = 1+e)\zt+1—|—e)\

VK (fe41).

s—t1
Unrolling this update yields, with w,_,; = (ﬁ) ,

> s Wt VK (1)
22254—1 Wk—t

We have VIC(my) € domK* from Lemma B.7 and dom/C* is convex. Hence z,_,;, as the convex
combination of {V/C(1my, }«, belongs to domK*. For any € > 0, let A&, € domA* to the point
satisfying ||AZs — Az|| < dist(Azs, domK*) + €. Hence,

dist(Az¢, domK*) = C}nflC Az — z|]
z€domK*

ATy = (1 — Werst)Zost + Werst Ts, Zs—t =

S H)\xt - (1 - ws—)t)zs%t + ws%t)\i's)”
= Ws—t H>\xs - )\ﬁjsH

1 s—t
< i * .
< <1 n 6)\) (dist(Azs, domk*) + €)

Taking € — 0 yields the result.

B.11 ANALYSIS WITH STOCHASTIC GRADIENT FOR LION-/C

In this section, we are going to have the convergence analysis of discrete time Lion-C. The proof
idea is adapted for section B.10, by defining the same Hamiltonian function, we obtain the bound
for A} and A?.

Compared with the deterministic case, the main challenge is to bound an additional correlation term
due to the stochastic gradient at each iteration ¢:

Vi = cov(gy, VEK(Myy1)) = cov(ge, VE(Bime + (1 — B1)gt)), (40)
where cov(X,Y) = E[(X — E[X])T (Y — E[Y])].

Definition B.11. For a random variable X on RY, its (trace of) variance var(X), when exists, is
defined as

var(X) = E[||X — E[X]|5]
Assumption B.12. Assume

Umax

Var(gt) S )
Npatch

where Npqrcn Fepresents the batch size.

Assumption B.13. D is the data distribution, the stochastic sample & ~ D is i.i.d., given a function
f(x;€), the gradient V f(x; €) is taken with respect to variable x, and E[V f(x,&)] = V f(x)

Theorem B.14. Under the assumptions delineated in B.13 and B.12, consider a function f: R% —
R that is L-smooth. Additionally, let KC: R — R be a closed and convex function, consider the
following scheme:

M1 = Pamy — (1 — B2)gs

M1 = Prmy — (1= B1)gu 41)

Ter1 = x4 + €(VK(Me41) — ATes1),
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where g. = VY f(x4;&) as shown in  B.13, mo,g1,...,G¢,... are random variables with
Elg:] = Vf(x)). VK is a weak gradient of K with VK(0) = 0, ||[VK(z) — VK(y)|| <
Li |z —y|| , Yo,y € RY, and By, Bo € (0,1), and By > B1, and €, \ > 0.

Let KC* be the conjugate function of K. Define the following Lyapunov function:

b1
(1—=751)+ (1= po2)

H(z,m)= f(z)+ %IC*(/\x) + ) (K*(\z) + K(m) — Az "m),

and
Ap = (VK(meg1) = Axpgr) T (M1 — VK (Aze11),
A} = (VK(met1) — VK(magr)) T (regr — mega),
where VK* is a subgradient of K*. Then we have A} > 0 and A? > 0 from Lemma B.9, and

Le? -
E[H(241,mip1) — H(zy,me)] <E | —€(al] +bAT) + - IV (741) — Axt+1||§}
L max L ]- - max
betE (1Y k  [(A=P) v
14 e Noateh 1+ Ae\| (14 B2) Npaten
where
eXBy +1>0, b= 51(1 - ﬁz) > 0.

T AT =B+ (- B

VUmax> Mbatch are defined in B.12

(B2 = B1)(eA(1 = B1) + (1 = B2))

Hence, a telescoping sum yields
=

TZE[&A%—}—bA%] gE[
t=0

H(zo,mo) — H(zxr, L C
(z0,mo) — H(xr, mr) L Lep , G
el 2

Npatch

where Bt = % Zthl HVIC(T?LHJ) - )\SCt+1

2 1-—
> and Cy = (ﬁ(l -G+ 1ﬁ_’§€ Em@) Umaz-

Proof. The proof is a simple extended variant of 4.1. Following the proof of Theorem B.8, define
H(z,m)=(a—c)f(x)+ %K*(Ax) + %K(m) —cx'm, with c¢=(a+b)B —bPa,
where
2!

CTA-B)+ (1B
By the definition of A}, AZ, we have
al} + bA?
= a(VK(i41) = Meigr) | (igr — VK (Azega))

+ (VK (m41) = VE(mer1)) " (M1 — megr)
= (VE(mig1) = Azigr) T (@(VK* (Azg41) = 1ivg1) + b(mis — miga)

+b(VE(mes1) = Azer1) T (mign — M)
= —(VE(m41) = Aer1) T (@VE* (Azpi1) = ((a+b)Br — bB2)my + (a — (a +b)B1 + bB2)V f ()
Ba—P1 A, c

1—pa Z(XV’C(mHl) — cyp1) " (M1 — my)

= —[(a—&)ge + aVK* (Azg1) — emy] | (VK (yg1) — Azpp)

B1(1 — B2)
(B2 = B1)(eA(1 = B1) + (1 — B2))

+1>0, b=

>0, c=a—1.

-b

1 T
—- EVIC(th) - C$t+1} (M1 —my)
1
= (@~ c)ge + aVK (Axer) = emi] " (i1 — )
1yec T
e [XVIC(mt+1> - C.Tt-i-l} (M1 — M) (2
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By Lemma B.9,

N L
H(ea,megn) = H(@e,me) < Vo] @ = @) + Vi (me = m) + 5 e = el

where
VeH; = (a— )V f(x:) + aVK* (Azi11) — emy,
~ C Cc -~ ~
Vi Hy = XV’C(th) — Ty = a(vx,t — VK(miq1) + VE(miq1))
with
V:v,t = Ti41 — Tt = G(V’C(Tht+1) — )\.’EtJrl)
Ving = Myyp1 —my = *(1 - 52)(% - mt)
M1 — Myr1 = —(B2 — B1)(ge — my) = —(B2 — B1)Vine
Vm,t = —VK(m41) + VE(myy1)
This gives
H (441, meg1) — H(wg,my)
N - L
< VthT(xt-H —x) + VmHtT(th —my) + 3 i1 — $t||§
Hence,

H(@pgr,mer1) — H(ze,mye) < [(a — )V f(2g) + aVE* (A\tpsr) — eme] | (241 — 22)
c T L
+ [XVIC(th) — Cl‘t-&-l} (M1 —me) + S llze4r — 3
= [(a — ©)gs + aVK*(Azes1) — eme] " (zer1 — 1)
c T L 5
[ §VKme) = ere | sy —mo) + 5 o = w3
+ela—e)(VI(x) = gi) " (VE(Mit1) — Azgga)
L
= —e(al; +bAF) + §\|xt+1 — 4|2 //by equation 44

+e(a—c)(Vf(z) = g0) (VKR g1) — Azgga)
It suffices to bound E [(V f(z1) — g¢) T (VK (5g41) — Awey1)].

Note that
E[(Vf(z:) = ge) " (VE(mi11) = Azepa)]
= |(V/ @) = 00 (s VK Giss) - 1o

A
14+ Xe

E [(Vf(z) — g0) VK (ries1)] + E[(Vf(x) — g1) w4

IEEDY:
By Assumption B.13,
E[(Vf(z) = g¢) " Axy)] = AEq, [Be, [(Vf () = Vf(20,&)) "m0 | 2]
=0 //byB.13 E[Vf(2,)] =V [(2)
Next, let us bound E [(V f(z;) — g1) " VK (1y41)].
E[(Vf(ae) = g0) " VKGe1)| = E[(VF(0) = g0) " VK(Bimy = (1= B)gu)]
< Lic(1 — By)var(gy) + Lic\/var(Bimy) - var(g;) /by B.18

Umaz K (1 - 62) Umax
Nbatch (1 + 62) Npatch

< Li(1— 1) //by B.18
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Hence,
E[(Vf(z1) = 90) " (VK(Tug1) = Azega)]
)]

— B [(VH) — ) VK G)] + 1B (96 (w0) - ) ]

L max L 1- max
E_(1-py)mes 4 =K ( ﬁQ) -
1 + e Nbatch 1 + e (]- + 52) Nbatch

O

Lemma B.15. Let X,Y be two Re-valued random variables with var(X) < +oo and var(Y) <
400, and assume K yields a weak derivative VK. We have

E[(Y —EY) VK(X + €Y)] < Lgevar(Y) + Livar(X) - var(Y)

Proof.

E[(Y —E[Y])TVK(X + €Y)]
=E[(Y —E[Y])" (VK(X +€Y) — K(E[X] + €E[Y])]

— VEIIY —EY]IP\/E[VK(X + €¥) — K(E[X] + E[Y])|

- \/]E Y —E[Y HQ\/L,C]E |X + €Y —E[X] — E[Y]|?

— LeyE|lY —E[Y <\/IE||X ELX]| + \/e2 ||y — eE[Y ])
= LeeB |V —E[Y]|> + Le\/E[[Y — E[Y]|2\/E X — E[X]|]?

= Lievar(Y) + Li+/var(X) - var(Y)

O

Lemma B.16 (Cumulative error of stochastic gradient [4]). Following the same setting in theo-
rem B.14, denote 6, = g, — V f(x;), for any k < oo and fixed weight —co < aq,...,a < 00,

Zle 0y is a Martingale. In particular,

k 2 k
Zalél] < Za%oQ.
=1

Proof. We simply check the definition of a Martingale. Denote Y}, := Zle ayd;. First, we have

that
E[|Yx|] = [ > s ]

< Z loq [E[|6:]] triangle inequality

= Z |y |E[E[|67|:]] law of total probability

< Z |ou|E[\/E[62|]] Jensen’s inequality
< Z laglo < o0
]
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Second, again using the law of total probability,
k+1

Z 041(5[

=Y.+ Oék+1E [5k+1|a151, ey akék}

=Y.+ Oék+1E [E [5k+1\$k+17 101, ..., Ozk(sk] |04151, . ak§k]

=Y.+ Oék+1E [E [6k+1‘$k+1] |O¢151, . aszk]

=Y
This completes the proof that it is indeed a Martingale. We now make use of the properties of
Martingale difference sequences to establish a variance bound on the Martingale.

k k
]E[[Z 05151]2] = Z]E[a?élg] + QZ]E[alaj(Sl(Sj]
=1 =1

I<j

E[Ykq1|Y1,..., Y5 04151;---70%51@]

k
= ZafE[E[aﬂal, s8]l 2 uoyE[GE[ELG; |01, ., 851]]01]

1<j

_ZQ%E (51 |1‘l7(51,...,(5171”(51,...,(5171]]+0

=3 ate?
=1
O
The consequence of this lemma is that we are able to treat §1, ..., d; as if they are independent, even

though they are not—clearly ¢; is dependent on ¢, ..., ;1 through z;. By Lemma B.16, we can
compute the variance of momentum m;,

var(m) = (1 — ﬂg L=l

=(1- ﬂz)QEZﬂSt—” 16|

i=1
_ (1 - ﬂQ)Umam
(1 + ﬂZ)nbatch

B.12 ANALYSIS WITH STOCHASTIC GRADIENT LION

Theorem B.17. Under the assumptions delineated in B.13 and B.12, consider a function f: R% —
R that is L-smooth. Consider the following scheme:

M1 = Pomy — (1 - BQ)gt

M1 = Pimy — (1= B1)ge (43)
Ti41 = Tt + e(sz’gn(fnt_,_l) — )\xt—&-l);
where g, = V f(x;&) as shown in B.13, mg,¢1,...,4t,... are random variables with E[g;] =

Vf(z). 1,82 € (0,1), and B2 > (1, and e, A > 0.
Define the following Lyapunov function:

B1
eA(1 = B1) + (1 = B2)

1, . .
H(z,m) = f(z) + LlIAz]" + (A [|* + [lm]| = Xz "m),

and
A} = (sign(my1) — Aeggr) | (g — sign® (Azig),

A? = (sign(m) — sign(mep)) (a1 — myt1),
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where sign* is a subgradient of KC*. Then we have A} > 0 and A? > 0 from Lemma B.9, and

L62 . - 1 V d * Umax
E[H(z411,mt1) — H(we,my)] < E | —€(al} + bAT) + - |sign(iies1) — Awerlls| + ‘I N Vi
where
1 _
a €A1 b— B1(l — Bz) > 0.

T A1 -5+ (1B 120 (B2 — B1)(eX(1 — B1) + (1 — Ba))
VUmaz> Mbatch are defined in B.12

Hence, a telescoping sum yields

T—1
1 H(xzg,mo) — H(xp,mp) Le 1 Vd vmaz
—E E[aAl + A2l < E ! ! +—B+—
T = [ ' t] el 27" 14 e v/ Mbarch

where B; = - ZtT:1 [sign(mesr) — )\xt+1||§

Proof. Define
H(w,m) = (a = o)f (@) + SIAe|* + Slml —czTm,  with ¢ =(a+b)8, — b,

where

_ 6>\ﬂ1
A1 = B1) + (1 = B2)

By the definition of A}, A2, we have

B1(1 — B2)
(B2 = B1)(eA(1 = B1) + (1 = B2))

a +1>0, b= >0, c=a—1.

al} + bA}
= a(sign(Mmep1) — A1) | (i1 — sign” (A1)

+ b(sign (1) — sign(miy1)) " (Mg — miga)
= (sign(Muy1) — Awep1) | (a(sign™ (Azig1) — Mas1) + b(Mugr — miga))

+ b(sign(mis1) — Awegr) T (mygr — M)
= —(sign(mit1) — Azey1) " (asign®(Azip1) = ((a 4 b)B1 — bBa)ms + (a — (a + b)B1 + bB2) V f ()
Ba—P1 A c

-5, c (Xé’ign(mtﬂ) — i) (Mey1 —my)

= —[(a — ¢)ge + asign*(Azer1) — emy] " (sign(iiesr) — Azesr)

—b

l7c . T
- {stgn(mtﬂ) - C$t+1} (my1 —my)

1 L.
= [(a = ¢)g: + asign™(Aziy1) — cmt]T (Tpr1 — 1)
lrce . T
L bszgn(th) - C$t+1} (Mig1 — 1) (44)

By Lemma B.9,

R L
H (w41, musr) — H(we,my) < VoH, (@041 — @) + Vi H, (myg1 — my) + 3 |zers — 23

where

Vol = (a— )V f(xe) + asign®(Azes1) — emy,

. c . c ) - .
Vo H: = stgn(mtﬂ) — Tyl = a(Vm — sign(mey1) + sign(meg))
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with
Vet = 41—z = €(sign(myy1) — ATi41)
Ving = myy1 —my = —(1 — B2) (gt — my)
Mip1 — Mip1 = — (B2 — B1) (gt —me) = —(B2 — 1) Vint

Vi = —sign(mes1) + sign(mi41)
This gives
H(xpp1,meqpr) — H(xe, my)
- - L
<Vl (w1 — @) + Vo H (mygy —my) + 3 e = 23
Hence,

H(xes1,mig1) — H(zg,my) < [(a — o)V f(x) + asign” (Azeg1) — em] " (wes1 — 1)
c . T L 2
+ [Xswn(mtﬂ) - C$t+1} (M1 = me) + Sllzes — 22
= [(a — )g¢ + asign* (\tes1) — cmy] " (wesr — )
c . T L 2
+ [Fsion(me) — evea] (me —me) + 5w - o3
+e(a— o) (Vi) = gi) " (sign(iivgsr) = Aziyr)
L
= —e(aA} +bA?) + §||£Ct+1 — 24|32 //by equation 44

+e(a—e)(Vf(xe) = g) " (sign(mesr) — Azei)
It suffices to bound E [(V f(z,) — g:) T (sign(1mu41) — Azeq1)].
Note that
E[(Vf(z:) = g0) " (sign(mi1) — Azeg)]
A

=B | (V) ~ 907 (5 j sign(ini) — 1so)
= ﬁﬂ‘l [(Vf(zy) — gt)Tsign(mH_l)} + T )\GE [(Vf(a) — gt)TZ‘t]

By Assumption B.13,
E[(Vf(x:) = g0) " Axe)] = AEq, [Be, [(V () = V (20, &)) T3¢ | 24]]
=0 /byB.13 E[Vf(z,6)] = Vf(z)

Next, we can use B.18 to bound E [(V f(2;) — g;) " sign(ive41)].

E[(Vf(ae) = g0) " sign(iv1)| = B[ (V@) = g0) " sign(Bim: — (1= B1)gy)]

< +/d-var(g) //byB.18
< fEOma B
Nbatch

E[(Vf(x:) = g0) " (sign(es1) — Azeq)]

1 le)\e]E [(vf(l‘t) - gt)Tsign(thﬂ +
1

< / d- Umax
— 1+ Ae Nbatch

Hence,

A

1+ )\GE [(Vf(mt) - gt>Ta?t+1]
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Lemma B.18. Let X,Y be two R%-valued random variables with var(Y') < +oo, and assume K
yields a weak derivative sign. We have E[(Y —EY) Tsign(X + €Y)] < /dvar(Y)

Proof.

E[(Y — E[Y])"sign(X + V)] <E[Y — E[Y][] < v/d-E[[Y —E[Y]|?] = V/d - var(Y)
O
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