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Abstract

The matrix completion problem seeks to recover a d × d ground truth matrix of
low rank r ≪ d from observations of its individual elements. Real-world ma-
trix completion is often a huge-scale optimization problem, with d so large that
even the simplest full-dimension vector operations with O(d) time complexity be-
come prohibitively expensive. Stochastic gradient descent (SGD) is one of the
few algorithms capable of solving matrix completion on a huge scale, and can
also naturally handle streaming data over an evolving ground truth. Unfortunately,
SGD experiences a dramatic slow-down when the underlying ground truth is ill-
conditioned; it requires at least O(κ log(1/ϵ)) iterations to get ϵ-close to ground
truth matrix with condition number κ. In this paper, we propose a preconditioned
version of SGD that preserves all the favorable practical qualities of SGD for
huge-scale online optimization while also making it agnostic to κ. For a sym-
metric ground truth and the Root Mean Square Error (RMSE) loss, we prove that
the preconditioned SGD converges to ϵ-accuracy in O(log(1/ϵ)) iterations, with
a rapid linear convergence rate as if the ground truth were perfectly conditioned
with κ = 1. In our experiments, we observe a similar acceleration for item-item
collaborative filtering on the MovieLens25M dataset via a pair-wise ranking loss,
with 100 million training pairs and 10 million testing pairs. [See supporting code
at https://github.com/Hong-Ming/ScaledSGD.]

1 Introduction

The matrix completion problem seeks to recover an underlying d× d ground truth matrix M of low
rank r ≪ d from observations of its individual matrix elements Mi,j . The problem appears most
prominently in the context of collaborative filtering and recommendation system, but also numerous
other applications. In this paper, we focus on the symmetric and positive semidefinite variant of
the problem, in which the underlying matrix M can be factored as M = ZZT where the factor
matrix Z is d × r, though that our methods have natural extensions to the nonsymmetric case. We
note that the symmetric positive semidefinite variant is actually far more common in collaborative
filtering, due to the prevalence of item-item models, which enjoy better data (most platforms contain
several orders of magnitude more users than items) and more stable recommendations (the similarity
between items tends to change slowly over time) than user-user and user-item models.

For the full-scale, online instances of matrix completion that arise in real-world collaborative fil-
tering, stochastic gradient descent or SGD is the only viable algorithm for learning the underlying
matrix M . The basic idea is to formulate a candidate matrix of the form XXT with respect to a
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learned factor matrix X ∈ Rd×r, and to minimize a cost function of the form ϕ(XXT −M). Earlier
work used the root mean square error (RMSE) loss ∥XXT −M∥2F =

∑
i,j(XXT −M)2i,j , though

later work have focused on pairwise losses like the BPR [1] that optimize for ordering and therefore
give better recommendations. For the RMSE loss, the corresponding SGD iterations with (rescaled)
learning rate α > 0 reads

xi,+ = xi − α ·
(
xT
i xj −Mij

)
xj , xj,+ = xj − α ·

(
xT
i xj −Mij

)
xi, (1)

where Mij is the sampled (i, j)-th element of the ground truth matrix M , and xi, xj and xi,+, xj,+

denote the i-th and j-th rows of the current iterate Xt and new iterate Xt+1. Pairwise losses like
the BPR can be shown to have a similar update equation over three rows of X [1]. Given that only
two or three rows of X are accessed and updated at any time, SGD is readily accessible to massive
parallelization and distributed computing. For very large values of d, the update equation (1) can
be run by multiple workers in parallel without locks, with vanishing probability of collision [2].
The blocks of X that are more frequently accessed together can be stored on the same node in a
distributed memory system.

Unfortunately, the convergence rate of SGD can sometimes be extremely slow. One possible expla-
nation, as many recent authors have pointed out [3–6], is that matrix factorization models are very
sensitive to ill-conditioning of the ground truth matrix M . The number of SGD iterations grows
at least linearly the condition number κ, which here is defined as the ratio between the largest and
the r-th largest singular values of M . Ill-conditioning causes particular concern because most real-
world data are ill-conditioned. In one widely cited study [7], it was found that the dominant singular
value accounts for only ≈80% prediction accuracy, with diversity of individual preferences making
up the remainder ill-conditioned singular values. Cloninger et al. [8] notes that there are certain
applications of matrix completion that have condition numbers as high as κ = 1015.

This paper is inspired by a recent full-batch gradient method called ScaledGD [4, 9] and a closely
related algorithm PrecGD [5] in which gradient descent is made immune to ill-conditioning in the
ground truth by right-rescaling the full-batch gradient by the matrix (XTX)−1. Applying this same
strategy to the SGD update equation (1) yields the row-wise updates

xi,+ = xi − α ·
(
xT
i xj −Mij

)
Pxj , xj,+ = xj − α ·

(
xT
i xj −Mij

)
Pxi, (2a)

in which we precompute and cache the preconditioner P = (XTX)−1 ahead of time1, and update
it after the iteration as

P+ = (P−1 + xi,+x
T
i,+ + xj,+x

T
j,+ − xix

T
i − xjx

T
j )

−1 (2b)

by making four calls to the Sherman–Morrison rank-1 update formula

(P−1 + uuT )−1 = P − PuuTP

1 + uTPu
, (P−1 − uuT )−1 = P +

PuuTP

1− uTPu
.

This way, the rescaled update equations use just O(r2) arithmetic operations, which for modest
values of r is only marginally more than the O(r) cost of the unscaled update equations (1). Indeed,
the nearest-neighbor algorithms inside most collaborative filters have exponential complexity with
respect to the latent dimensionality r, and so are often implemented with r small enough for (1) and
(2) to have essentially the same runtime. Here, we observe that the rescaled update equations (2)
preserve essentially all of the practical advantages of SGD for huge-scale, online optimization: it can
also be run by multiple workers in parallel without locks, and it can also be easily implemented over
distributed memory. The only minor difference is that separate copies of P should be maintained by
each worker, and resynchronized once differences grow large.

Contributions In this paper, we provide a rigorous proof that the rescaled update equations (1),
which we name ScaledSGD, become immune to the effects of ill-conditioning in the underlying
ground truth matrix. For symmetric matrix completion under the root mean squared error (RMSE)
loss function, regular SGD is known to have an iteration count of O(κ4 · dr log(d/ϵ)) within a
local neighborhood of the ground truth [10]. This figure is optimal in the dimension d, the rank

1For an initialization, if the d rows of X0 are selected from the unit Gaussian as in x1, . . . , xd ∼
N (0, σ2Ir), then we can simply set P0 = σ2I without incurring the O(d) time needed in explicitly com-
puting P0 = (XT

0 X0)
−1.
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r, and the final accuracy ϵ, but suboptimal by four exponents with respect to condition number
κ. In contrast, we prove for the same setting that ScaledSGD attains an optimal convergence rate,
converging to ϵ-accuracy in O(dr log(d/ϵ)) iterations for all values of the condition number κ.
In fact, our theoretical result predicts that ScaledSGD converges as if the ground truth matrix is
perfectly conditioned, with a condition number of κ = 1.

At first sight, it appears quite natural that applying the ScaledGD preconditioner to SGD should
result in accelerated convergence. However, the core challenge of stochastic algorithms like SGD is
that each iteration can have substantial variance that “drown out” the expected progress made in the
iteration. In the case of ScaledSGD, a rough analysis would suggest that the highly ill-conditioned
preconditioner should improve convergence in expectation, but at the cost of dramatically worsening
the variance.

Surprisingly, we find in this paper that the specific scaling (XTX)−1 used in ScaledSGD not only
does not worsen the variance, but in fact improves it. Our key insight and main theoretical contri-
bution is Lemma 4, which shows that the same mechanism that allows ScaledGD to converge faster
(compared to regular GD) also allows ScaledSGD to enjoy reduced variance (compared to regular
SGD). In fact, it is this effect of variance reduction that is responsible for most (κ3 out of κ4) of our
improvement over the previous state-of-the-art. It turns out that a careful choice of preconditioner
can be used as a mechanism for variance reduction, while at the same time also fulfilling its usual,
classical purpose, which is to accelerate convergence in expectation.

Related work Earlier work on matrix completion analyzed a convex relaxation of the original
problem, showing that nuclear norm minimization can recover the ground truth from a few incoher-
ent measurements [11–15]. This approach enjoys a near optimal sample complexity but incurs an
O(d3) per-iteration computational cost, which is prohibitive for a even moderately large d. More
recent work has focused more on a nonconvex formulation based on Burer and Monteiro [16], which
factors the optimization variable as M = XXT where X ∈ Rd×r and applies a local search method
such as alternating-minimization [17–20], projected gradient descent [21, 22] and regular gradient
descent [23–26]. A separate line of work [27–35] focused on global properties of nonconvex matrix
recovery problems, showing that the problem has no spurious local minima if sampling operator
satisfies certain regularity conditions such as incoherence or restricted isometry.

The convergence rate of SGD has been well-studied for general classes of functions [36–39]. For
matrix completion in particular, Jin et al. [10] proved that SGD converges towards an ϵ-accurate
solution in O(dκ4 log(1/ϵ)) iterations where κ is the condition number of M . Unfortunately, this
quartic dependence on κ makes SGD extremely slow and impractical for huge-scale applications.

This dramatic slow down of gradient descent and its variants caused by ill-conditioning has become
well-known in recent years. Several recent papers have proposed full-batch algorithms to overcome
this issue [9, 40, 41], but these methods cannot be used in the huge-scale optimization setting where
d is so large that even full-vector operations with O(d) time complexity are too expensive. As
a deterministic full-batch method, ScaledGD [9] requires a projection onto the set of incoherent
matrices at every iteration in order to maintain rapid convergence. Instead our key finding here is
that the stochasticity of SGD alone is enough to keep the iterates as incoherent as the ground truth,
which allows for rapid progress to be made. The second-order method proposed in [41] costs at
least O(d) per-iteration and has no straightforward stochastic analog. PrecGD [5] only applies to
matrices that satisfies matrices satisfying the restricted isometry property, which does not hold for
matrix completion.

2 Background: Linear convergence of SGD

In our theoretical analysis, we restrict our attention to symmetric matrix completion under the root
mean squared error (RMSE) loss function. Our goal is to solve the following nonconvex optimiza-
tion

min
X∈Rd×r

f(X)
def
= ∥XXT − ZZT ∥2F where Z = [z1, z2, . . . , zn]

T ∈ Rd×r (3)

in which we assume that the d × d ground truth ZZT ⪰ 0 matrix is exactly rank-r, with a finite
condition number

κ
def
= λmax(ZZT )/λr(ZZT ) = λmax(Z

TZ)/λmin(Z
TZ) < ∞. (4)
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In order to be able to reconstruct ZZT from a small number of measurements, we will also need to
assume that the ground truth has small coherence [42]

µ
def
=

d

r
· max
1≤i≤d

∥eTi Z(ZTZ)−1/2∥2. (5)

Recall that µ takes on a value from 1 to d/r, with the smallest achieved by dense, orthonormal
choices of Z whose rows all have magnitudes of 1/

√
d, and the largest achieved by a ground truth

ZZT containing a single nonzero element. Assuming incoherence µ = O(1) with respect to d, it
is a well-known result that all d2 matrix elements of ZZT can be perfectly reconstructed from just
O(dr log d) random samples of its matrix elements [12, 43].

This paper considers solving (3) in the huge-scale, online optimization setting, in which individual
matrix elements of the ground truth (ZZT )i,j = zTi zj are revealed one-at-a-time, uniformly at
random with replacement, and that a current iterate X is continuously updated to streaming data.
We note that this is a reasonably accurate model for how recommendation engines are tuned to user
preferences in practice, although the uniformity of random sampling is admittedly an assumption
made to ease theoretical analysis. Define the stochastic gradient operator as

SG(X) = 2d2 · (xT
i xj − zTi zj)(eix

T
j + ejx

T
i ) where (i, j) ∼ Unif([d]× [d]),

where xi, xj ∈ Rr are the i-th and j-th rows of X , and the scaling d2 is chosen that, over the
randomness of the sampled index (i, j), we have exactly E[SG(X)] = ∇f(X). Then, the classical
online SGD algorithm can be written as

Xt+1 = Xt − αSG(Xt) where α > 0. (SGD)

Here, we observe that a single iteration of SGD coincides with full-batch gradient descent in ex-
pectation, as in E[Xt+1|Xt] = Xt − α∇f(Xt). Therefore, assuming that bounded deviations and
bounded variances, it follows from standard arguments that the behavior of many iterations of SGD
should concentrate about that of full-batch gradient descent Xt+1 = Xt − α∇f(Xt).

Within a region sufficiently close to the ground truth, full-batch gradient descent is well-known
to converge at a linear rate to the ground truth [23, 44]. Within this same region, Jin et al. [10]
proved that SGD also converges linearly. For an incoherent ground truth with µ = O(1), they
proved that SGD with an aggressive choice of step-size is able to recover the ground truth to ϵ-
accuracy O(κ4dr log(d/ϵ)) iterations, with each iteration costing O(r) arithmetic operations and
selecting 1 random sample. This iteration count is optimal with respect to d, r, and 1/ϵ, although
its dependence on κ is a cubic factor (i.e. a factor of κ3) worse than full-batch gradient descent’s
figure of O(κ log(1/ϵ)), which is itself already quite bad, given that κ in practice can readily take
on values of 103 to 106.
Theorem 1 (Jin, Kakade, and Netrapalli [10]). For Z ∈ Rd×r with σmax(Z) = 1 and f(X) =
∥XXT − ZZT ∥2F and hi(X) = ∥eTi X∥2, define the following

fmax
def
=

(
1

10κ

)2

, hmax
def
= 20 · κ2 · µr

d
.

For an initial point X0 ∈ Rd×r that satifies f(X0) ≤ 1
2fmax and maxi hi(X0) ≤ 1

2hmax, there
exists some constant c such that for any learning rate α < c · (κ ·hmax ·d2 log d)−1, with probability
at least 1− T/d10, we will have for all t ≤ T iterations of SGD that

f(Xt) ≤
(
1− α

2 · κ

)t

· fmax, max
i

hi(Xt) ≤ hmax.

The reason for Theorem 1’s additional κ3 dependence beyond full-batch gradient descent is due to
its need to maintain incoherence in its iterates. Using standard techniques on martingale concen-
tration, one can readily show that SGD replicates a single iteration of full-batch gradient descent
over an epoch of d2 iterations. This results in an iteration count O(κ · d2 log(1/ϵ)) with an optimal
dependence on κ, but the entire matrix is already fully observed after collecting d2 samples. Instead,
Jin et al. [10] noted that the variance of SGD iterations is controlled by the step-size α times the
maximum coherence µX = d

r ·maxi,t ∥eTi Xt∥2 over the iterates Xt, Xt−1, . . . , X0. If the iterates
can be kept incoherent with µX = O(1), then SGD with a more aggressive step-size will reproduce
an iteration of full-batch gradient descent after an epoch of just O(dr log d) iterations.
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The main finding in Jin et al. [10]’s proof of Theorem 1 is that the stochasticity of SGD is enough to
keep the iterates incoherent. This contrasts with full-batch methods at the time, which required an
added regularizer [20, 30, 45] or an explicit projection step [9]. (As pointed out by a reviewer, it was
later shown by Ma et al. [46] that full-batch gradient descent is also able to maintain incoherence
without a regularizer nor a projection.) Unfortunately, maintaining incoherence requires shrinking
the step-size by a factor of κ, and the actual value of µX that results is also a factor of κ2 worse than
the original coherence µ of the ground truth Z. The resulting iteration count O(κ4 · dr log(d/ϵ)) is
made optimal with respect to d, r, and 1/ϵ, but only at the cost of worsening its the dependence on
the condition number κ by another three exponents.

Finally, the quality of the initial point X0 also has a dependence on the condition number κ.
In order to guarantee linear convergence, Theorem 1 requires X0 to lie in the neighborhood
∥X0X

T
0 − ZZT ∥F < λmin(Z

TZ) = O(κ−1). This dependence on κ is optimal, because full-
batch gradient descent must lose its ability to converge linearly in the limit κ → ∞ [5, 6]. However,
the leading constant can be very pessmistic, because the theorem must formally exclude spurious
critical points Xspur that have ∇f(Xspur) = 0 but f(Xspur) > 0 in order to be provably correct.
In practice, it is commonly observed that SGD converges globally, starting from an arbitrary, pos-
sibly random initialization [30], at a linear rate that is consistent with local convergence theorems
like Theorem 1. It is now commonly argued that gradient methods can escape saddle points with
high probability [47], and so their performance is primarily dictated by local convergence behav-
ior [48, 49].

3 Proposed algorithm and main result

Inspired by a recent full-batch gradient method called ScaledGD [4, 9] and a closely related algo-
rithm PrecGD [5], we proposed the following algorithm

Xt+1 = Xt − αSG(Xt)(X
T
t Xt)

−1 where α > 0. (ScaledSGD)

As we mentioned in the introduction, the preconditioner P = (XTX)−1 can be precomputed
and cached in a practical implementation, and afterwards efficiently updated using the Sherman–
Morrison formula. The per-iteration cost of ScaledSGD is O(r2) arithmetic operations and 1 random
sample, which for modest values of r is only marginally more than the cost of SGD.

Our main result in this paper is that, with a region sufficiently close to the ground truth, this simple
rescaling allows ScaledSGD to converge linearly to ϵ-accuracy O(dr log(d/ϵ)) iterations, with no
further dependence on the condition number κ. This iteration count is optimal with respect to d,
r, 1/ϵ, and κ, and in fact matches SGD with a perfectly conditioned ground truth κ = 1. In our
numerical experiments, we observe that ScaledSGD converges globally from a random initialization
at the same rate as SGD as if κ = 1.

Theorem 2 (Main). For Z ∈ Rd×r with σmax(Z) = 1 and f(X) = ∥XXT − ZZT ∥2F and
gi(X) = eTi X(XTX)−1XT ei, select a radius ρ < 1/2 and set

fmax
def
=

(ρ
κ

)2

, gmax
def
=

24

(1− 2ρ)2
· µr
d
.

For an initial point X0 ∈ Rd×r that satifies f(X0) ≤ 1
2fmax and maxi gi(X0) ≤ 1

2gmax, there
exists some constant c such that for any learning rate α < c · [(gmax + ρ) · d2 log d]−1, with
probability at least 1− T/d10, we will have for all t ≤ T iterations of ScaledSGD that:

f(Xt) ≤
(
1− α

2

)t

· fmax, max
i

gi(Xt) ≤ gmax.

Theorem 2 eliminates all dependencies on the condition number κ in Theorem 1 except for the
quality of the initial point, which we had already noted earlier as being optimal. Our main finding
is that it is possible to maintain incoherence while making aggressive step-sizes towards a highly
ill-conditioned ground truth ZZT . In fact, Theorem 2 says that, with high probability, the maximum
coherence µX over of any iterate Xt will only be a mild constant factor of ≈ 16 times worse than the
coherence µ of the ground truth ZZT . This is particularly surprising in view of the fact that every
iteration of ScaledSGD involves inverting a potentially highly ill-conditioned matrix (XTX)−1. In
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contrast, even without inverting matrices, Theorem 1 says that SGD is only able to keep µX within
a factor of κ2 of µ, and only by shrinking the step-size α by another factor of κ.

However, the price we pay for maintaining incoherence is that the quality of the initial point X0 now
gains a dependence on dimension d, in addition to the condition number κ. In order to guarantee fast
linear convergence independent of κ, Theorem 2 requires X0 to lie in the neighborhood ∥X0X

T
0 −

ZZT ∥F < µrλmin(Z
TZ)/d = (κd)−1, so that ρ can be set to be the same order of magnitude

as gmax. In essence, the “effective” condition number of the ground truth has been worsened by
another factor of d. This shrinks the size of our local neighborhood by a factor of d, but has no
impact on the convergence rate of the resulting iterations.

In the limit that κ → ∞ and the search rank r becomes overparameterized with respect to the true
rank r⋆ < r of ZZT , both full-batch gradient descent and SGD slows down to a sublinear conver-
gence rate, in theory and in practice [5, 6]. While Theorem 2 is no longer applicable, we observe in
our numerical experiments that ScaledSGD nevertheless maintains its fast linear convergence rate
as if κ = 1. Following PrecGD [5], we believe that introducing a small identity perturbation to the
scaling matrix of ScaledSGD, as in (XTX + ηI)−1 for some η ≈

√
f(X), should be enough to

rigorously extend Theorem 2 to the overparameterized regime. We leave this extension as future
work.

4 Key ideas for the proof

We begin by explaining the mechanism by which SGD slows down when converging towards an
ill-conditioned ground truth. Recall that

E[SG(X)] = E[2d2 · (XXT − ZZT )i,j · (eieTj + eje
T
i )X] = 4(XXT − ZZT )X = ∇f(X).

As XXT converges towards an ill-conditioned ground truth ZZT , the factor matrix X must become
progressively ill-conditioned, with

λmin(X
TX) = λr(XXT ) ≤ λr(ZZT ) + ∥XXT − ZZT ∥F ≤ 1 + ρ

κ
.

Therefore, it is possible for components of the error vector XXT − ZZT to become “invisible” by
aligning within the ill-conditioned subspaces of X . As SGD progresses towards the solution, these
ill-conditioned subspaces of X become the slowest components of the error vector to converge to
zero. On the other hand, the maximum step-size that can be taken is controlled by the most well-
conditioned subspaces of X . A simple idea, therefore, is to rescale the ill-conditioned components
of the gradient ∇f(X) in order to make the ill-conditioned subspaces of X more “visible”.

More concretely, define the local norm of the gradient as ∥∇f(X)∥X = ∥∇f(X)(XTX)1/2∥F and
its corresponding dual norm as ∥∇f(X)∥∗X = ∥∇f(X)(XTX)−1/2∥F . It has long been known
(see e.g. [23, 44]) that rescaling the gradient yields

∥∇f(X)∥∗X
def
= ∥4(XXT − ZZT )X(XTX)−1/2∥F = 4 cos θ · ∥XXT − ZZT ∥F ,

where θ is the angle between the error vector XXT −ZZT and the linear subspace {XY T +Y XT :
Y ∈ Rd×r}. This insight immediately suggests an iteration like X+ = X − α∇f(X)(XTX)−1.
In fact, the gradients of f have some Lipschitz constant L, so

f(X+) ≤ f(X)− α⟨∇f(X),∇f(X)(XTX)−1⟩+ L

2
α2∥∇f(X)(XTX)−1∥2F ,

≤ f(X)− α(∥∇f(X)∥∗X)2 +
LX

2
α2(∥∇f(X)∥∗X)2,

≤
[
1− α · 8 cos2 θ

]
f(X) for α ≤ 1/LX .

However, a naive analysis finds that LX = L/λmin(X
TX) ≈ L · κ, and this causes the step-size to

shrink by a factor of κ. The main motivating insight behind ScaledGD [4, 9] and later PrecGD [5] is
that, with a finer analysis, it is possible to prove Lipschitz continuity under a local change of norm.
Lemma 3 (Function descent). Let X,Z ∈ Rn×r satisfy ∥XXT − ZZT ∥F ≤ ρλmin(Z

TZ) where
ρ < 1/2. Then, the function f(X) = ∥XXT − ZZT ∥2F satisfies

f(X + V ) ≤ f(X) + ⟨∇f(X), V ⟩+ LX

2
∥V ∥2X , (∥∇f(X)∥∗X)2 ≥ 13 · f(X)
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for all ∥V ∥X ≤ C ·
√
f(X) with LX = 6 + 8C + 2C2 = O(1 + C2).

This same idea can be “stochastified” in a straightforward manner. Conditioning on the current
iterate X , then the new iterate X+ = X − αSG(X)(XTX)−1 has expectation

E[f(X+)] ≤ f(X)− α⟨∇f(X),E[SG(X)(XTX)−1]⟩+ α
LX

2
E[(∥SG(X)∥∗X)2].

The linear term evaluates as E[SG(X)(XTX)−1] = ∇f(X)(XTX)−1, while the quadratic term is

E[(∥SG(X)∥∗X)2] ≤
∑
i,j

4d2 · (XXT − ZZT )2i,j · 4max
i

(∥eTi X∥∗X)2 = 16 · f(X) ·max
i

gi(X),

where gi(X) = eTi X(XTX)−1XT ei = (∥eTi X∥∗X)2. Combined, we obtain geometric convergence

E[f(X+)] ≤
(
1− α · 8 cos2 θ

)
f(X) for α = O(g−1

max · d−2). (6)

We see that the step-size depends crucially on the incoherence gi(X) ≤ gmax of the current iterate.
If the current iterate X is incoherent with gmax = O(1/d), then a step-size of α = O(1/d) is
possible, resulting in convergence in O(dr log(d/ϵ)) iterations, which can be shown using standard
martingale techniques [10]. But if the current iterate is gmax = O(1), then only a step-size of
α = O(1/d2) is possible, which forces us to compute d2 iterations, thereby obviating the need to
complete the matrix in the first place.

Therefore, in order for prove rapid linear convergence, we need to additionally show that with high
probability, the coherence gk(X)=(∥eTkX∥∗X)2 remains O(1) throughout ScaledGD iterations. This
is the most challenging part of our proof. Previous methods that applied a similar scaling to full-
batch GD [9] required an explicit projection onto the set of incoherent matrices at each iteration.
Applying a similar projection to ScaledSGD will take O(d) time, which destroys the scalability of
our method. On the other hand, Jin et al. [10] showed that the randomness in SGD is enough to
keep the coherence of the iterates within a factor of κ2 times worse than the coherence of the ground
truth, and only by a step-size of at most α = O(κ−1).

Surprisingly, here we show that the randomness in ScaledSGD is enough to keep the coherence of
the iterates with a constant factor of the coherence the ground truth, using a step-size with no depen-
dence on κ. The following key lemma is the crucial insight of our proof. First, it says that function
gk(X) satisfies a “descent lemma” with respect to the local norm ∥ · ∥∗X . Second, and much more
importantly, it says that descending gk(X) along the scaled gradient direction ∇f(X)(XTX)−1

incurs a linear decrement 1−2ρ
1−ρ gk(X) with no dependence of the condition number κ. This is in

direct analogy to the function value decrement in (6), which has no dependence on κ, and in direct
contrast to the proof of Jin et al. [10], which is only able to achieve a decrement of (8/κ)gk(X) due
to the lack of rescaling by (XTX)−1.
Lemma 4 (Coherence descent). Let gk(X) = eTkX(XTX)−1XT ek. Under the same conditions as
Lemma 3, we have

gk(X + V ) ≤ gk(X) + ⟨V,∇gk(X)⟩+ 5(∥V ∥∗X)2

1− 2∥V ∥∗X
,

⟨∇gk(X),∇f(X)(XTX)−1⟩ ≥
[
1− 2ρ

1− ρ
gk(X)− 1

1− ρ

√
gk(X)gk(Z)

]
.

Conditioning on X , we have for the search direction V = SG(X)(XTX)−1 and X+ = X + V

E[gk(X+)] ≤ gk(X)− α⟨∇gk(X),E[V ]⟩+ α2 · E
[

(∥V ∥∗X)2

1− 2∥V ∥∗X

]
≤

(
1− 1− 2ρ

1− ρ
α

)
gk(X) + α · 1

1− ρ
·
√

gk(X)gk(Z) + α2 ·
E
[
(∥V ∥∗X)2

]
1− 2∥V ∥∗X

≤
(
1− 1− 2ρ

1− ρ
α

)
gk(X) + α ·

√
µ/gmax

1− ρ
· gmax + α2 · O(d2 · gmax · ρ2)

1−O(g
1/2
max · ρ)

≤ (1− ζα) gk(X) + α · ζ
2
gmax for α = O(ρ−1d−2). (7)
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It then follows that gk(X+) converges geometrically towards 1
2gmax in expectation, with a conver-

gence rate (1− ζα) that is independent of the condition number κ:

E[gk(X+)−
1

2
gmax] ≤

[
(1− ζα) gk(X) + α · ζ

2
gmax

]
− 1

2
gmax ≤ (1− ζα)

[
gk(X)− 1

2
gmax

]
.

The proof of Theorem 2 then follows from standard techniques, by making the two decrement con-
ditions (6) and (7) into supermartingales and applying a standard concentration inequality. We defer
the rigorous proof to appendix E.

5 Experimental validation

In this section we compare the practical performance of ScaledSGD and SGD for the RMSE loss
function in Theorem 2 and two real-world loss functions: the pairwise RMSE loss used to complete
Euclidean Distance Matrices (EDM) in wireless communication networks; and the Bayesian Per-
sonalized Ranking (BRP) loss used to generate personalized item recommendation in collaborative
filtering. In each case, ScaledSGD remains highly efficient since it only updates two or three rows
at a time, and the preconditioner P can be computed through low-rank updates, for a per-iteration
cost of O(r2). All of our experiments use random Gaussian initializations and an initial P = σ2I .
To be able to accurately measure and report the effects of ill-conditioning on ScaledSGD and SGD,
we focus on small-scale synthetic datasets in the first two experiments, for which the ground truth
is explicitly known, and where the condition numbers can be finely controlled. In addition, to gauge
the scalability of ScaledSGD on huge-scale real-world datasets, in the third experiment, we apply
ScaledSGD to generate personalized item recommendation using MovieLens25M dataset [50], for
which the underlying item-item matrix has more than 62,000 items and 100 million pairwise sam-
ples are used during training. (Due to space constraints, we defer the details on the experimental
setup, mathematical formulations, and the actual update equations to Appendix A.) The code for all
experiments are available at https://github.com/Hong-Ming/ScaledSGD.

Matrix completion with RMSE loss. The problem formulation is discussed in Section 3. Figure 1
plots the error f(X) = ∥XXT − M∥2F as the number of epochs increases. As expected, in the
well-conditioned case, both ScaledSGD and SGD converges to machine error at roughly the same
linear rate. However, in the ill-conditioned case, SGD slows down significantly while ScaledSGD
converges at almost exactly the same rate as in the well-conditioned case.
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Figure 1: Matrix Completion with RMSE loss. We compare the convergence rate of ScaledSGD
and SGD for a well-conditioned and ill-conditioned ground truth matrix of size 30× 30 and rank 3.
(Left) Well-conditoned M , κ(M) = 1. Step-size α = 0.3. Both ScaledSGD and SGD converges
quickly to the ground truth. (Right) Ill-conditoned M , κ(M) = 104. Step-size α = 0.3. SGD
stagnates while ScaledSGD retains the same convergence rate as the well-conditioned case.

Euclidean distance matrix (EDM) completion. The Euclidean distance matrix (EDM) is a ma-
trix of pairwise distance between d points in Euclidean space [51]. In applications such as wireless
sensor networks, estimation of unknown distances, i.e., completing the EDM is often required. We
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emphasize that this loss function is a pairwise loss, meaning that each measurement indexes multiple
elements of the ground truth matrix.

To demonstrate the efficacy of ScaledSGD, we conduct two experiments where D is well-
conditioned and ill-conditioned respectively: Experiment 1. We uniformly sample 30 points in
a cube center at origin with side length 2, and use them to compute the ground truth EDM D. In this
case, each row xi ∈ R3 corresponds to the coordinates of the i-th sample. The corresponding matrix
X ∈ R30×3 is well-conditioned because of the uniform sampling. Experiment 2. The ground truth
EDM is generated with 25 samples lie in the same cube in experiment 1, and 5 samples lie far away
from the the cube. These five outliers make the corresponding X become ill-conditioned.
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Figure 2: Euclidean distance matrix (EDM) completion. We compare the convergence rate of
ScaledSGD and SGD for EDM completion for two set of samples. (Upper right) 30 samples
are uniformly distributed in the pink cube center at origin. (Upper left) 25 samples (in blue) are
uniformly distributed in the cube, 5 outlier samples (in orange) are outside of the cube. (Lower left)
Sample uniformly in cube. (Lower right) Sample with outliers.

Item-item collaborative filtering (CF). In the task of item-item collaborative filtering (CF), the
ground truth M is a d× d matrix where d is the number of items we wish to rank and the i, j-th of
M is a similarity measure between the items. Our goal is to learn a low-rank matrix that preserves
the ranking of similarity between the items. For instance, given a pairwise sample (i, j, k), if item
i is more similar to item j than item k, then Mij > Mik. We want to learn a low-rank matrix that
also has this property, i.e., the i, j-th entry is greater than the i, k-th entry.

To gauge the scalability of ScaledSGD on a huge-scale real-world dataset, we perform simulation
on item-item collaborative filtering using a 62, 000 × 62, 000 item-item matrix M obtained from
MovieLens25M dataset. The CF model is trained using Bayesian Personalized Ranking (BRP) loss
[1] on a training set, which consists of 100 million pairwise samples in M . The performance of
CF model is evaluated using Area Under the ROC Curve (AUC) score [1] on a test set, which
consists of 10 million pairwise samples in M . The BPR loss is a widely used loss function in the
context of collaborative filtering for the task of personalized recommendation, and the AUC score is
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a popular evaluation metric to measure the accuracy of the recommendation system. We defer the
detail definition of BPR loss and AUC score to Appendix A.4.

Figure 3 plots the training BPR loss and testing AUC score within the first epoch (filled with red) and
the second epoch (filled with blue). In order to measure the efficacy of ScaledSGD, we compare its
testing AUC score against a standard baseline called the NP-Maximum [1], which is the best possible
AUC score by non-personalized ranking methods. For a rigorous definition, see Appendix A.4.

We emphasize two important points in the Figure 3. First, the percentage of training samples
needed for ScaledSGD to achieve the same testing AUC scores as NP-Maximum is roughly 4 times
smaller than SGD. Though both ScaledSGD and SGD are able to achieve higher AUC score than
NP-Maximum before finishing the first epoch, ScaledSGD achieve the same AUC score as NP-
Maximum after training on 11% of training samples while SGD requires 46% of them. We note that
in this experiment, the size of the training set is 100 million, this means that SGD would require 35
million more iterations than ScaledSGD before it can reach NP-Maximum.

Second, the percentage of training samples needed for ScaledSGD to converge after the first epoch
is roughly 5 times smaller than SGD. Given that both ScaledSGD and SGD converge to AUC score
at around 0.9 within the second epoch (area filled with blue), we indicate the percentage of training
samples when both algorithms reach 0.9 AUC score in Figure 3. As expected, ScaledSGD is able
to converge using fewer samples than SGD, with only 16% of training samples. SGD, on the other
hand, requires 81% training samples.

Figure 3: Huge-scale item-item collaborative filtering. (MovieLens25M dataset with |Ωtrain| =
100 million and |Ωtest| = 10 million pairwise measurements). We compare the training BPR loss
and testing AUC score of ScaledSGD and SGD. (Left) Training BPR loss on the training set Ωtrain.
(Right) Testing AUC score on the test set Ωtest.

6 Conclusions

We propose an algorithm called ScaledSGD for huge scale online matrix completion. For the non-
convex approach to solving matrix completion, ill-conditioning in the ground truth causes SGD to
slow down significantly. ScaledSGD preserves all the favorable qualities of SGD while making it
immune to ill-conditioning. For the RMSE loss, we prove that with an initial point close to the
ground truth, ScaledSGD converges to an ϵ-accurate solution in O(log(1/ϵ)) iterations, independent
of the condition number κ. We also run numerical experiments on a wide range of other loss func-
tions commonly used in applications such as collaborative filtering, distance matrix recovery, etc.
We find that ScaledSGD achieves similar acceleration on these losses, which means that it is widely
applicable to many real problems. It remains future work to provide rigorous justification for these
observations.
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A Supplemental Details on Experiments in Main Paper

A.1 Experimental setup and datasets used

Simulation environment. We implement both ScaledSGD and SGD in MATLAB (version
R2021a). All simulations in this paper are performed on a computer with Apple silicon M1 pro
chip with 10-core CPU, 16-core GPU, and 32GB of RAM.

Datasets. The datasets we use for the experiments in the main paper are described below.

• Matrix completion with RMSE loss: In the simulation result shown in Figure 1, we
synthetically generate both the well-conditioned and ill-conditioned ground truth matrix
M . We fix both M to be a rank-3 matrix of size 30 × 30. To generate M , we sample a
random orthonormal matrix U ∈ R30×3 and set M = USUT . For well-conditioned case,
we set S = diag(2, 2, 2), thus M is perfectly conditioned with κ = 1. For ill-conditioned
case, we let S = diag(10, 10−1, 10−3), so that M is ill-conditioned with κ = 104.

• Euclidean distance matrix completion: In this simulation shown in Figure 2, the ground
truth Euclidean distance matrix D for experiments 1 and 2 are generated with respect to
their sample matrix X as Dij = ∥xi − xj∥22. For the sample points in Experiment 1,
we randomly sample (without replacement) 30 points in 3-dimensional cube centered at
origin with side length 2, and the corresponding sample matrix X has conditioned number
κ = 1.3908. For the sample points in Experiment 2, we take the first 5 sample points in
experiment 1 and perturb its x-coordinate by 10, and keep the rest of the 25 samples intact.
The corresponding sample matrix X has conditioned number κ = 8.0828.

• Item-item collaborative filtering: In this simulation shown in Figure 3, we use the Movie-
Lens25M dataset [50], which is a standard benchmark for algorithms for recommendation
systems.2 This dataset consists of 25 million ratings over 62,000 movies by 162,000 users,
the ratings are stored in an user-item matrix G whose (i, j)-th entry is the rating that the
i-th user gives the j-th movie. The rating is from 1 to 5, where a higher score indicates
a stronger preference. If the i, j-th entry is 0, then no rating is given. For the simulation
of item-item collaborative filtering, the (i, j)-th entry of the ground truth item-item matrix
M is the similarity score between the item i and j, which can be computed by measuring
cosine similarity between the i-th and j-th column of G.

Hyperparameter and initialization. We start ScaledSGD and SGD at the same initial point in
each simulation. The initial points for each simulation are drawn from the standard Gaussian distri-
bution.

• Matrix completion with RMSE loss: The step-size for both ScaledSGD and SGD are set
to be α = 0.3. The search rank for both ScaledSGD and SGD are set to be r = 3.

• Euclidean distance matrix completion: Since SGD is only stable for small step-size in
EDM completion problem, while ScaledSGD can tolerance larger step-sizes, we pick the

2The MovieLens25M dataset is accessible at https://grouplens.org/datasets/movielens/25m/
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largest possible step-size for ScaledSGD and SGD in both experiments. Experiment 1:
step-size for ScaledSGD α = 0.2, step-size for SGD α = 0.02. Experiment 2: step-
size for ScaledSGD α = 0.2, step-size for SGD α = 0.002. The search rank for both
ScaledSGD and SGD are set to be r = 3.

• Item-item collaborative filtering: The step-sizes for this experiment are set as follows:
we first pick a small step-size and train the CF model over a sufficient number of epochs,
this allows us to estimate the best achievable AUC score; we then set the step-sizes for
both ScaledSGD and SGD to the largest possible step-size for which ScaledSGD and
SGD is able to converge to the best achievable AUC score, respectively. The step-size for
ScaledSGD α = 1, 000, step-size for SGD α = 0.01. The search rank for both ScaledSGD
and SGD are set to be r = 3.

A.2 Matrix completion with RMSE loss

We now turn to the practical aspects of implementing ScaledSGD for RMSE loss function. In
practical setting, suppose we are given a set Ω = {(i, j)} that contains indices for which we know the
value of Mij , our goal is to recover the missing elements in M by solving the following nonconvex
optimization

min
X∈Rd×r

f(X) =
1

2|Ω|
∑

(i,j)∈Ω

(
xT
i xj −Mij

)2
.

The gradient of f(X) is

∇f(X) =
1

|Ω|
∑

(i,j)∈Ω

(
xT
i xj −Mij

) (
eie

T
j + eje

T
i

)
X.

ScaledSGD update equations for RMSE loss. Each iteration of ScaledSGD samples one element
(i, j) ∈ Ω uniformly. The resulting iteration updates only two rows of X

xi,+ = xi − α ·
(
xT
i xj −Mij

)
Pxj , xj,+ = xj − α ·

(
xT
i xj −Mij

)
Pxi.

The update on P is low-rank

P+ = (P−1 + xi,+x
T
i,+ + xj,+x

T
j,+ − xix

T
i − xjx

T
j )

−1,

and can be computed by calling four times of rank-1 Sherman–Morrison–Woodbury (SMW) update
formula in O(r2) time

(P−1 + uuT )−1 = P − PuuTP

1 + uTPu
, (P−1 − uuT )−1 = P +

PuuTP

1− uTPu
. (8)

In practice, this low-rank update can be “pushed” onto a centralized storage of the preconditioner
P . Heuristically, independent copies of P can be maintained by separate, distributed workers, and
a centralized dispatcher can later merge the updates to P by simply adding the cumulative low-rank
updates onto the existing centralized copy.

A.3 Euclidean distance matrix (EDM) completion

Suppose that we have d points x1, . . . , xd ∈ Rr in r dimensional space, the Euclidean distance
matrix D ∈ Rd×d is a matrix of pairwise squared distance between d points in Euclidean space,
namely, Dij = ∥xi − xj∥2. Many applications, such as wireless sensor networks, communication
and machine learning, require Euclidean distance matrix to provide necessary services. However,
in practical scenario, entries in D that correspond to points far apart are often missing due to high
uncertainty or equipment limitations in distance measurement. The task of Euclidean distance matrix
completion is to recover the missing entries in D from a set of available measurement, and this
problem can be formulated as a rank r matrix completion problem with respect to pairwise square
loss function. Specifically, let X ∈ Rd×r be a matrix containing x1, . . . , xd in its row and let
M = XXT be the Grammian of X . Each entry of D can be written in terms of three entries in M

Dij = ∥xi − xj∥2 = xT
i xi − 2xT

i xj + xT
j xj = Mii − 2Mij +Mjj .
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Hence, given a set of sample Ω = {(i, j)} in D, the pairwise square loss function for EDM comple-
tion reads

min
X∈Rd×r

f(X) =
1

4|Ω|
∑

(i,j)∈Ω

(
xT
i xi − 2xT

i xj + xT
j xj −Dij

)2
.

The gradient of f(X) is

∇f(X) =
1

|Ω|
∑

(i,j)∈Ω

(
xT
i xi − 2xT

i xj + xT
j xj −Dij

) [(
eie

T
i + eje

T
j

)
−

(
eie

T
j + eje

T
i

)]
X.

ScaledSGD update equations for EDM completion. Each iteration of ScaledSGD samples one
element (i, j) ∈ Ω uniformly. The resulting iteration updates only two rows of X

xi,+ = xi − α ·
(
xT
i xi − 2xT

i xj + xT
j xj −Dij

)
P (xi − xj),

xj,+ = xj − α ·
(
xT
i xi − 2xT

i xj + xT
j xj −Dij

)
P (xj − xi)

Similarly, the update on P is low-rank and can be computed by calling four times of equation (8).

A.4 Item-item collaborative filtering (CF)

In the task of item-item collaborative filtering, the ground truth M is an d × d matrix where d is
the number of items we wish to rank and the i, j-th of M is a similarity measure between the items.
Our goal is to learn a low-rank matrix that preserves the ranking of similarity between the items.
For instance, suppose that item i is more similar to item j than item k, then Mij > Mik, we want
to learn a low-rank matrix XXT that also has this property, i.e., xT

i xj ≥ xT
i xk where xi is the i-th

row of X .

Similarity score. An important building block of item-item recommendation systems is the so-
called item-item similarity matrix [52–54], which we denote by M . The i, j-th entry of this matrix
is the pairwise similarity scores of items i and j. There are various measures of similarity. In our
experiments we adopt a common similarity measure known as cosine similarity [53]. As a result,
the item-item matrix can be computed from the user-item matrix. In particular, let gi, gj denote the
i-th and j-th columns of the user-item matrix G, corresponding to the ratings given by all users to
the i-th and j-th items. Then the (i, j)-th element of the item-item matrix M is set to

Mij = gTi gj/(∥gi∥∥gj∥).
In general, the item-item matrix computed this way will be very sparse and not capable of generating
good recommendations. Our goal is to complete the missing entries of this matrix, assuming that
that M is low-rank. As we will see, we can formulate this completion problem as an optimization
problem over the set of rank-r matrices.

Pairwise entropy loss (BPR loss). The Bayesian Personalized Ranking (BRP) loss [1] is a widely
used loss function in the context of collaborative filtering. For the task of predicting a personalized
ranking of a set of items (videos, products, etc.), BRP loss often outperforms RMSE loss because
it is directly optimized for ranking; most collaborative filtering models that use RMSE loss are
essentially scoring each individual item based on user implicit feedbacks, in applications that only
positive feedbacks are available, the models will not be able to learn to distinguish between negative
feedbacks and missing entries.

The BPR loss in this context can be defined as follows. Let Ω = {(i, j, k)} denote a set of indices
for which we observe the ranking of similarity between items i, j, k. Our observations are of the
form Yijk = 1 if Mij > Mik and Yijk = 0 otherwise. In other words, Yijk = 1 if item i is more
similar to item j than to item k. We form a candidate matrix of the form XXT , where X ∈ Rd×r.
Our hope is that XXT preserves the ranking between the items. The BPR loss function is designed
to enforce this property.

Let xi denote the i-th row of X and set zijk = (XXT )ij − (XXT )ik = xT
i (xj − xk). The BPR

loss attempts to preserve the ranking of samples in each row of M by minimizing the logistic loss
with respect to (Yijk, σ(zijk)), where σ(·) is the sigmoid function:

min
X∈Rn×r

f(X) =
1

|Ω|
∑

(i,j,k)∈Ω

−Yijk log (σ(zijk))− (1− Yijk) log (1− σ(zijk)) .
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Then the gradient of f(X) is

∇f(X) =
1

|Ω|
∑

(i,j,k)∈Ω

(σ(zijk)− Yijk)
[(
eie

T
j + eje

T
i

)
−

(
eie

T
k + eke

T
i

)]
X.

ScaledSGD update equations for BPR loss. Similarly to the previous section, each iteration of
ScaledSGD samples one element (i, j, k) ∈ Ω uniformly. The resulting iteration updates only three
rows of X , as in

xi,+ = xi − α · (σ(zijk)− Yijk)P (xj − xk), xj,+ = xj − α · (σ(zijk)− Yijk)Pxi,

xk,+ = xk + α · (σ(zijk)− Yijk)Pxi

Similar to before, the preconditioner P can be updated via six call of equation (8) in O(r2) time.

The AUC score. The AUC score [1] is a popular evaluation metric for recommendation system.
Roughly speaking, the AUC score of a candidate matrix XXT is the percentage of ranking of the
entries of M that is preserved by XXT . Specifically, for each sample (i, j, k) ∈ Ω, we define a
indicator variable δijk as

δijk =


1 if zijk > 0 and Yijk = 1

1 if zijk ≤ 0 and Yijk = 0

0 otherwise,

where we recall that Yijk is our observation and zijk = (XXT )ij − (XXT )ik. In other words,
δijk = 1 only if the ranking between Mij and Mik is preserved by (XXT )ij and (XXT )ik. The
AUC score is then defined as the ratio

AUC =
1

|Ω|
∑

(i,j,k)∈Ω

δijk.

Thus, a higher AUC score indicates that the candidate matrix XXT perserves a larger percentage of
the pairwise comparisons in |Ω|.

Training a CF model for Figure 3. We precompute a dataset Ω of 110 million item-item pairwise
comparisons using the user-item ratings from the MovieLens25M dataset, and then run ScaledSGD
and SGD over 2 epochs on this dataset. Let d = 62, 000 denote the number of items and let
Ω ⊆ [d]3 denote the set of observations, i.e., the set of entries (i, j, k) where we observe Yijk = 1
if Mij > Mik and Yijk = 0 if Mij < Mik. We construct Ω by sampling 110 million pairwise
measurements that have either Mij > Mik or Mij < Mik uniformly at random without replacement
from (i, j, k) ∼ [d]3. We do this because the item-item matrix M remains highly sparse, and there
are many pairs of (i, j) and (i, k) for which Mij = Mik = 0.

To ensure independence between training and testing, we divide the set Ω into two disjoint sets
Ωtrain and Ωtest. The first set Ωtrain consists of 100 million of all observations, which we use to fit our
model. The second set Ωtest consists of 10 million samples for which we use to calculate the AUC
score of our model on new data.

Upper bounds on the non-personalized ranking AUC score (NP-Maximum). As opposed to
personalized ranking methods, non-personalized ranking methods generate the same ranking for
every pair of item j and k, independent of item i. In the context of item-item collaborative filtering,
the non-personalized ranking method can be defined as follows. Given a set of pairwise comparisons
Ω = ({i, j, k}) and observations Yijk, we optimized the ranking between item j and k on a candidate
vector x, where x ∈ Rd.

Let xi denote the i-th entry of x, the non-personalized ranking method attempts to preserve the
ranking between the xj and xk by minimizing the logistic loss with respect to (Yijk, σ(xj − xk))
where σ(·) is the sigmoid function:

min
x∈Rr

f(x) =
1

|Ω|
∑

(i,j,k)∈Ω

−Yijk log (σ(xj − xk))− (1− Yijk) log (1− σ(xj − xk)) .
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The gradient of f(x) is

∇f(x) =
1

|Ω|
∑

(i,j,k)∈Ω

(σ(xj − xk)− Yijk)
[
(eTj − eTk )

]
x,

and the SGD update equations for xj and xk are

xj,+ = xj − α · (σ(xj − xk)− Yijk)xj , xk,+ = xk + α · (σ(xj − xk)− Yijk)xk.

Notice that non-personalized ranking method is not a matrix completion problem, the regular SGD
is used to minimized f(x). To find the upper bound on the non-personalized ranking AUC score, we
directly optimize the non-personalized ranking on the test set Ωtest, and evaluated the corresponding
AUC score on Ωtest. Since we perform both training and evaluation on Ωtest, this corresponding AUC
score is the upper bound on the best achievable AUC score on Ωtest.

B Additional Experiments on pointwise cross-entropy loss

This problem is also known as 1-bit matrix completion [55]. Here our goal is to recover a rank-r
matrix M through binary measurements. Specifically, we are allowed to take independent measure-
ments on every entry Mij , which we denote by Yij . Let σ(·) denote the sigmoid function, then
Yij = 1 with probability σ(Mij) and Yij = 0 otherwise. After a number of measurements are
taken on each entry in the set Ω, let yij denote the percentage of measurements on the i, j-th entry
that is equal to 1. The plan is to find the maximum likelihood estimator for M by minimizing a
cross-entropy loss defined as follow

min
X∈Rd×r

f(X) =
1

|Ω|
∑

(i,j)∈Ω

−yij log
(
σ(xT

i xj)
)
− (1− yij) log

(
1− σ(xT

i xj)
)
.

We assume an ideal case where the number of measurements is large enough so that yij = σ(Mij)
and the entries are fully observed. The gradient of f(X) is

∇f(X) =
1

|Ω|
∑

(i,j)∈Ω

(
σ(xT

i xj)− yij
) (

eie
T
j + eje

T
i

)
X.

ScaledSGD update equations for pointwise cross-entropy loss. Each iteration of ScaledSGD
samples one element (i, j) ∈ Ω uniformly. The resulting iteration updates only two rows of X

xi,+ = xi − α ·
(
σ(xT

i xj)− yij
)
Pxj , xj,+ = xj − α ·

(
σ(xT

i xj)− yij
)
Pxi.

The preconditioner P can be updated by calling four times of equation (8) as in RMSE loss.

Matrix completion with pointwise cross-entropy loss. We apply ScaledSGD to perform ma-
trix completion through minimizing pointwise cross-entropy loss. In this experiment, the well-
conditioned and ill-conditioned ground truth matrix M is the same as those in Figure 1, and the
process of data generation are described in A.1. The learning rate for both ScaledSGD and SGD are
set to be α = 1. The search rank for both ScaledSGD and SGD are set to be r = 3.

Figure 4 plots the error f(X) = ∥XXT − M∥2F against the number of epochs. Observe that the
results shown in Figure 4 are almost identical to that of the RMSE loss shown in Figure 1. Ill-
conditioning causes SGD to slow down significantly while ScaledSGD is unaffected.
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Figure 4: Matrix Completion with pointwise cross entropy loss. We compare the convergence
rate of ScaledSGD and SGD for a well-conditioned and ill-conditioned ground truth matrix M used
in Figure 1. (Left) Well-conditoned M . (Right) Ill-conditoned M .

C Additional Experiments with Noise

To mimic the real-world datasets, we corrupt each entry of ground truth matrix M by white Gaussian
noise. We first generate a noiseless well-conditioned and ill-conditioned matrix M̃ following same
procedure as the one described in A.1. For well-conditioned case, we set the singular value as
S = diag(10, 10, 10). For the ill-conditioned case, we set S = diag(10, 10−1, 10−3). To obtain
a noisy ground truth, we generate a matrix of white Gaussian noise W corresponding to a fixed
signal to noise ratio (SNR), which is defined as SNR = 20 log10(∥M̃∥F /∥W∥F ). Finally, we set
M = M̃ + W . For the experiments in this section, we set SNR = 15dB. For the case of well-
conditioned M̃ , the resulting M = M̃ +W is full-rank with condition number κ = 310.72. For the
case of ill-conditioned M̃ , the resulting M is full-rank with condition number κ = 423.5022.

Matrix completion with RMSE loss on noisy datasets. We plot the convergence rate of
ScaledSGD and SGD under the noisy setting in Figure 5. In this experiment, we pick a larger
search rank r = 5 to accommodate the noisy ground truth. Observe that SGD slows down in both
the well-conditioned and ill-conditioned case due to the addition of white Gaussian noise and the
larger search rank r, while ScaledSGD converge linearly toward the noise floor.

We also plot the noise floor, which can be computed as follows. First we take the eigendecomposi-
tion of M = QΛQT , where Q is an orthonormal matrix and Λ is a diagonal matrix containing the
eigenvalues of M sorted in descending order in its diagonal entries. Let Λ′ be a diagonal matrix such
that Λ′

ii = Λii if i ≤ r, and Λ′
ii = 0 otherwise, then the noise floor is defined as the RMSE between

M and its best rank-r approximation M ′ = QΛ′QT , which is equal to 1
2|Ω|

∑
(i,j)∈Ω

(
M ′

ij −Mij

)2
.

The step-sizes in the simulation are set to be the largest possible step-sizes for which ScaledSGD
and SGD can converge to the noise floor. For ScaleSGD, the step-size is set to be α = 0.15. For
SGD, the step-size is set to be α = 0.01. SNR = 20 log10(∥M̃∥F /∥W∥F ) = 15dB.

Matrix completion with pointwise cross-entropy loss on noisy datasets. We plot the conver-
gence rate of ScaledSGD and SGD under the noisy setting in Figure 6. Similar to RMSE loss in
noisy setting, SGD show down in both well-conditioned and ill-conditioned case, while ScaledSGD
converge linearly toward the noise floor. In this simulation, the search rank is set to be r = 5. The
step-size are set to be the largest possible step-sizes for which ScaledSGD and SGD can converge
to the noise floor. For ScaleSGD, the step-size is set to be α = 0.15. For SGD, the step-size is set to
be α = 0.01. SNR = 15dB.
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Figure 5: Matrix Completion with RMSE loss in noisy setting. We compare the convergence rate
of ScaledSGD and SGD for noisy ground truth matrix M = M̃ + W computed with respect to a
well-conditioned and ill-conditioned M̃ and white Gaussian noise W . (Left) Well-conditioned M̃ .
(Right) Ill-conditioned M̃ .
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Figure 6: Matrix Completion with pointwise cross-entropy loss in the noisy setting. We compare
the convergence rate of ScaledSGD and SGD for noisy ground truth matrix M = M̃+W computed
with respect to a well-conditioned and ill-conditioned M̃ and white Gaussian noise W . (Left) Well-
conditioned M̃ . (Right) Ill-conditioned M̃ .

D Additional simulation on item-item collaborative filtering

Finally, we perform three additional experiments on item-item collaborative filtering in order to
compare the ability of ScaledSGD and SGD to generate good recommendations using matrix fac-
torization.

Dataset. For additional simulations on item-time collaborative filtering, we use the MovieLens-
Latest-Small and MovieLens-Latest-Full datasets [50] in order to gauge the performance of our
algorithm on different scales. First, we run a small-scale experiment on the MovieLens-Latest-Small
dataset that has 100,000 ratings over 9,000 movies by 600 users. Second, we run a medium-scale
and a large-scale experiment on the MovieLens-Latest-Full dataset with 27 million total ratings over
58,000 movies by 280,000 users.3

Experimental Setup. The process of training a collaborative filtering model is described in A.4.
The hyperparameters for the three experiments in this section are described below.

3Both datasets are accessible at https://grouplens.org/datasets/movielens/latest/
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• MovieLens-Latest-Small dataset: In the small-scale experiment, we sample |Ωtrain| = 1
million and |Ωtest| = 100,000 pairwise observations for training and testing, respectively.
We set our search rank to be r = 3, so the optimization variable X is of size 9000×3. Both
ScaledSGD and SGD are initialized using a random Gaussian initial point. For ScaledSGD
the step-size is 103 and for SGD the step-size is 5× 10−2.

• MovieLens-Latest-Full dataset: In the medium-scale experiment, we sample |Ωtrain| = 10
million and |Ωtest| = 1 million pairwise observations for training and testing, respectively.
In the large-scale experiment, we sample |Ωtrain| = 30 million and |Ωtest| = 3 million
pairwise observations for training and testing, respectively. In both cases, we set our search
rank to be r = 3, so the optimization variable X is of size 58000× 3. For ScaledSGD the
step-size is 5× 103 and for SGD the step-size is 5× 10−2.

Results. The results of our experiments for ScaledSGD and SGD are plotted in Figures 7, 8, and 9.
In all three cases, ScaledSGD reaches the AUC scores that are greater than NP-Maximum’s within
the first epoch, while SGD requires more than one epoch to achieve the same AUC score as NP-
Maximum’s in the small-scale (Figure 7) and medium-scale (Figure 8) setting. In addition, of all
three cases, ScaledSGD is able to converge to the asymptote of AUC score within the second epoch,
while SGD needs more than 2 epochs to converge to the asymptote in the small-scale (Figure 7)
and medium-scale (Figure 8) setting. These results demonstrates that ScaledSGD remain highly
efficient across small-scale (Figure 7), medium-scale (Figure 8), large-scale(Figure 9) and huge-
scale (Figure 3) settings.
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Figure 7: Small-scale item-item collaborative filtering. (MovieLens-Latest-Small dataset with
|Ωtrain| = 1 million and |Ωtest| = 100,000 pairwise measurements). We compare the training BPR
loss and testing AUC score of ScaledSGD and SGD. (Left) Training BPR loss on the training set
Ωtrain. (Right) Testing AUC score on the test set Ωtest.

E Proof of the theoretical results

In this section, we show that, in expectation, the search direction V = SG(X)(XTX−1) makes a
geometric decrement to both the function value f and the incoherence g. A key idea is to show that
the size of the decrement in f is controlled by the coherence gmax ≥ gk(X) of the current iterate,
and this motivates the need to decrement gk in order to keep the iterates incoherent. Our key result
is that both decrements are independent of the condition number κ.

E.1 Preliminaries

We define the inner product between two matrices as ⟨X,Y ⟩ def
= tr(XTY ), which induces the

Frobenius norm as ∥X∥F =
√
⟨X,X⟩. The vectorization vec(X) is the column-stacking oper-

ation that turns an m × n matrix into a length-mn vector; it preserves the matrix inner product
⟨X,Y ⟩ = vec(X)Tvec(Y ) and the Frobenius norm ∥vec(X)∥ = ∥X∥F .

We denote λi(M) and σi(M) as the i-th eigenvalue and singular value of a symmetric matrix
M = MT , ordered from the most positive to the most negative. We will often write λmax(M) and
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Figure 8: Medium-scale item-item collaborative filtering. (MovieLens-Latest-Full dataset with
|Ωtrain| = 10 million and |Ωtest| = 1 million pairwise measurements). We compare the BPR loss
and AUC score of ScaledSGD and SGD (Left) Training BPR loss on the training set Ωtrain. (Right)
Testing AUC score on the test set Ωtest.
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Figure 9: Large-scale item-item collaborative filtering. (MovieLens-Latest-Full dataset with
|Ωtrain| = 30 million and |Ωtest| = 3 million pairwise measurements). We compare the BPR loss
and AUC score of ScaledSGD and SGD (Left) Training BPR loss on the training set Ωtrain. (Right)
Testing AUC score on the test set Ωtest.

λmin(M) to index the most positive and most negative eigenvalues, and σmax(M) and σmin(M) for
the largest and smallest singular values.

Recall for any matrix V ∈ Rd×r, we define its local norm with respect to X ∈ Rd×r as

∥V ∥X = ∥V (XTX)1/2∥F , ∥V ∥∗X = ∥V (XTX)−1/2∥F .

Also recall that we have defined the stochastic gradient operator

SG(X) = 2d2 · (XXT − ZZT )i,j · (eieTj + eje
T
i )X (9)

where (i, j) ∼ [d]2 is selected uniformly at random. This way SGD is written X+ = X −αSG(X)
and ScaledSGD is written X+ = X − αSG(X)(XTX)−1 for step-size α > 0.

E.2 Function value convergence

Recall that Theorem 1, due to Jin et al. [10], says that SGD converges to ϵ accuracy in
O(κ4 log(1/ϵ)) iterations, with a four-orders-of-magnitude dependence on the condition number
κ. By comparison, our main result Theorem 2 says that ScaledSGD converges to ϵ accuracy in
O(log(1/ϵ)) iterations, completely independence on the condition number κ. In this section, we
explain how the first two factors of κ are eliminated, by considering the full-batch counterparts of
these two algorithms.
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First, consider full-batch gradient descent on the function f(X) = ∥XXT − ZZT ∥2F . It follows
from the local Lipschitz continuity of f that

f(Xt+1) ≤ f(Xt)− α⟨∇f(Xt),∇f(Xt)⟩+ α · (L/2) · ∥∇f(Xt)∥2F
= f(Xt)− α∥∇f(Xt)∥2F︸ ︷︷ ︸

linear progress

+α2 · (L/2) · ∥∇f(Xt)∥2F︸ ︷︷ ︸
inverse step-size

(10)

where Xt+1 = Xt − α∇f(Xt). Here, the linear progress term determines the amount of progress
that can proportionally be made with a sufficiently small step-size α, whereas the inverse step-size
term basically controls how large the step-size can be. In the case of full-batch gradient descent, it
is long known that an Xt that is sufficiently close to Z will satisfy the following

8λmin(Z
TZ) · f(Xt) ≤ ∥∇f(Xt)∥2F ≤ 16λmax(Z

TZ) · f(Xt)

and therefore, taking λmax(Z
TZ) = 1 and λmin(Z

TZ) = κ−1 where κ is the condition number,
we have linear convergence

f(Xt+1) ≤
(
1− α · 8κ−1 + α2 · 8L

)
f(Xt) ≤

(
1− α · 4κ−1

)
f(Xt)

for step-sizes of α ≤ 2/(κL). Therefore, it follows from this analysis that full-batch gradient
descent takes T = O(κ2 log(1/ϵ)) iterations to converge to ϵ-accuracy. In this iteration count, one
factor of κ arises from the linear progress term, which shrinks as O(κ−1) as κ grows large. The
second factor of κ arises because the inverse step-size term is a factor of κ larger than the linear
progress term, which restricts the maximum step-size to be no more than O(κ−1).

The following lemma, restated from the main text, shows that an analogous analysis for full-batch
ScaledGD proves an iteration count of T = O(log(1/ϵ)) with no dependence on the condition
number κ. In fact, it proves that full-batch ScaledGD converges like full-batch gradient descent with
a perfect condition number κ = 1.

Lemma 5 (Function descent, Lemma 3 restated). Let X,Z ∈ Rn×r satisfy ∥XXT − ZZT ∥F ≤
ρλmin(Z

TZ) where ρ < 1/2. Then, the function f(X) = ∥XXT − ZZT ∥2F satisfies

|f(X + V )− f(X)− ⟨∇f(X), V ⟩| ≤ LX

2
· ∥V ∥2X , (11)

13 · f(X) ≤ (∥∇f(X)∥∗X)2 ≤ 16 · f(X), (12)

for all ∥V ∥X ≤ C ·
√

f(X) with LX = 6 + 8C + 2C2 = O(1 + C2).

It follows that the iteration Xt+1 = Xt − α∇f(Xt)(X
T
t Xt)

−1 yields

f(Xt+1) ≤ f(Xt)− α⟨∇f(Xt),∇f(Xt)(X
T
t Xt)

−1⟩+ α · (LX/2) · ∥∇f(Xt)(X
T
t Xt)

−1∥2X
= f(Xt)− α(∥∇f(Xt)∥∗X)2 + α2 · (LX/2) · (∥∇f(Xt)∥∗X)2 (13)

≤
(
1− α · 8 + α2 · 8LX

)
f(Xt) ≤ (1− α · 4) f(Xt) (14)

for step-sizes of α ≤ 2/LX , where LX = 6+ 8(4) + 2(4)2. Therefore, we conclude that full-batch
ScaledGD takes T = O(log(1/ϵ)) iterations to converge to ϵ-accuracy, as if the condition number
were perfectly κ = 1.

Note that Lemma 5 has been proved in both Tong et al. [9] and Zhang et al. [5]. For completeness,
we give a proof inspired by Zhang et al. [5].

Proof of Lemma 5. We prove (11) via a direct expansion of the quadratic

∥(X + V )(X + V )T − ZZT ∥2F︸ ︷︷ ︸
f(X+V )

= ∥XXT − ZZT ∥2F︸ ︷︷ ︸
f(X)

+2⟨XXT − ZZT , XV T + V XT ⟩︸ ︷︷ ︸
⟨∇f(X),V ⟩

+2⟨XXT − ZZT , V V T ⟩+ ∥XV T + V XT ∥2F︸ ︷︷ ︸
1
2 ⟨∇2f(X)[V ],V ⟩

+2⟨V XT +XV T , V V T ⟩︸ ︷︷ ︸
1
6 ⟨∇3f(X)[V,V ],V ⟩

+ ∥V V T ∥2F︸ ︷︷ ︸
1
24 ⟨∇4f(X)[V,V,V ],V ⟩
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and it then follows by simple counting that

|f(X + V )− f(X)− ⟨∇f(X), V ⟩| ≤ L2

2
∥V ∥2X +

L3

6
∥V ∥3X +

L4

24
∥V ∥4X ,

L2 = 4 + 2
∥XXT − ZZT ∥F

λmin(XTX)
, L3 =

24

λmin(XTX)
, L4 =

24

λ2
min(X

TX)
.

Now, from Weyl’s inequality that

λmin(X
TX) = λr(XXT ) ≥ λr(ZZT )− ∥XXT − ZZT ∥F ≥ (1− ρ) · λmin(Z

TZ)

and therefore ∥XXT − ZZT ∥F /λmin(X
TX) ≤ ρ/(1 − ρ) ≤ 1 because ρ < 1/2. It follows that

L2 ≤ 6. If ∥V ∥X ≤ C ·
√
f(X), then L3

3 ∥V ∥X ≤ 8C and L4

12 ∥V ∥2X ≤ 2C2.

For the upper-bound in (12), we have simply

∥∇f(X)∥∗X = 4∥(XXT − ZZT )X(XTX)−1/2∥F ≤ 4∥XXT − ZZT ∥F .
For the lower-bound in (12), we evoke Zhang et al. [5, Lemma 12] with RIP constant δ = 0 and
regularization parameter η = 0 to yield4

∥∇f(X)∥∗X = max
∥Y ∥X=1

2⟨XY T + Y XT , XXT − ZZT ⟩ = 4∥XXT − ZZT ∥F · cos θ

in which cos θ is defined between XXT − ZZT and the set {XY T + Y XT : Y ∈ Rd×r}, as in

cos θ = max
Y ∈Rd×r

⟨XY T + Y XT , XXT − ZZT ⟩
∥XY T + Y XT ∥F · ∥XXT − ZZT ∥F

.

It follows from Zhang et al. [5, Lemma 13] that

sin θ =
∥(I −XX†)(XXT − ZZT )(I −XX†)∥F

∥XXT − ZZT ∥
≤ 1√

2

ρ√
1− ρ2

.

Hence, for ρ < 1/2, we have

(∥∇f(X)∥∗X)2

∥XX − ZZT ∥2F
= 16 cos2 θ ≥ 16

(
1− 1

2

ρ2

1− ρ2

)
≥ 16

(
1− 1

6

)
=

40

3
> 13.

E.3 Coherence convergence

We now explain that ScaledSGD eliminates the last two factors of κ from SGD because it is able
to keep its iterates a factor of κ2 more incoherent. First, consider regular SGD on the function
f(X) = ∥XXT − ZZT ∥2F . Conditioning on the current iterate, we have via the local Lipschitz
continuity of f :

E[f(X+)] ≤ f(X)− α⟨∇f(X),E[SG(X)]⟩+ α · (L/2) · E[∥SG(X)∥2F ]
= f(X)− α∥∇f(X)∥2F︸ ︷︷ ︸

linear progress

+α2 · (L/2) · E[∥SG(X)∥2F ]︸ ︷︷ ︸
inverse step-size

(15)

where X+ = X − αSG(X). In expectation, the linear progress term of SGD coincides with that of
full-batch gradient descent in (10). The inverse step-size term, however, is up to a factor of d2 times
larger. To see this, observe that

E[∥SG(X)∥2F ] =
1

d2

d∑
i=1

d∑
j=1

∥2d2 · (XXT − ZZT )i,j · (eieTj + eje
T
i )X∥2F

= 4d2 ·
d∑

i=1

d∑
j=1

(XXT − ZZT )2i,j · ∥(eieTj + eje
T
i )X∥2F

= 4d2 · f(X) · ∥(eieTj + eje
T
i )X∥2F ≤ 16d2 · f(X) ·max

i
∥eTi X∥2F .

4Here, we correct for a factor-of-two error in Zhang et al. [5, Lemma 12].
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In a coarse analysis, we can simply bound maxi ∥eTi X∥2F ≤ λmax(X
TX) = O(1) to yield

f(X+) ≤
(
1− α · 8κ−1 + 16d2 · α2

)
f(X) ≤

(
1− α · 4κ−1

)
f(X)

for step-sizes of α ≤ 4/(κd2). Hence, we conclude that it takes T = O(κ2d2 log(1/ϵ)) iterations to
converge to ϵ-accuracy, with an epoch of d2 iterations of SGD essentially recreating a single iteration
of full-batch gradient descent. Unfortunately, the matrix is already fully observed after d2 iterations,
and so this result is essentially vacuous.

Here, Jin et al. [10] pointed out that the term hmax = maxi ∥eTi X∥2F measures the coherence of the
d× r iterate X , and can be as small as O(1/d) for small values of rank r = O(1). Conditioned on
the current iterate X , they observed that the function hi(X) = ∥eTi X∥2F converges towards a finite
value in expectation

E[hi(X+)] ≤
(
1− α · 8κ−1

)
hi(X) + α · 8

√
hi(X)hi(Z) + α2/2 · E[∥eTi SG(X)∥2F ]

≤
(
1− α · 8κ−1

)
hi(X) + α · 8

√
hi(X)hi(Z) + α2 ·O(d2h2

max).

Let us define γ as the ratio between the coherences of the ground truth Z and the iterate X:

γ =
maxi ∥eTi X∥2F
maxj ∥eTj Z∥2F

=
maxi hi(Z)

maxj hj(Z)
⇐⇒ max

j
∥eTj Z∥2F ≤ γ−1 · hmax.

Crucially, we require γ = κ2 in order for hi(X) to converge towards 1
2hmax in expectation:

E[hi(X+)−
1

2
hmax] ≤

(
1− α · 8κ−1

)
hi(X) + α · 4γ−1/2hmax −

1

2
hmax

≤
(
1− α · 8κ−1

) [
hi(X)−

(
1− α · 8γ−1/2

1− α · 8κ−1

)
1

2
hmax

]
.

As a consequence, we conclude that, while SGD is able to keep its iterates X incoherent, their actual
coherence hmax = maxi ∥eTi X∥2F is up to a factor of κ2 worse than the coherence maxj ∥eTj Z∥2F
of the ground truth Z.

Using a standard supermartingale argument, Jin et al. [10] extended the analysis above to prove that
if the ground truth Z has coherence maxj ∥eTj Z∥2F = O(1/d), then the SGD generates iterates X
that have coherence maxi ∥eTi X∥2F ≤ hmax = O((κ2/d) log d), which is two factors worse in κ as
expected. Combined, this proves that SGD converges to ϵ accuracy in T = O(κ4dr log(d/ϵ)) iter-
ations with the step-size of α = O(κ−1d−1h−1

max) and iterate coherence hmax = O((κ2/d) log d),
which is another two factors of κ worse than full-batch gradient descent.

The following lemma, restated from the main text, shows that an analogous analysis for ScaledSGD
proves that the algorithm maintains iterates X whose coherences have no dependence on κ. Here,
we need to define a different incoherence function gi(X) = ∥eiX(XTX)−1/2∥2 ≡ (∥eiX∥∗X)2

in order to “stochastify” our previous analysis for full-batch ScaledGD. Surprisingly, the factors of
(XTX)−1 in both the new definition of gi(X) and the search direction SG(X)(XTX)−1 do not
hurt incoherence, but in fact improves it.
Lemma 6 (Coherence descent, Lemma 4 restated). Let X,Z ∈ Rn×r satisfy ∥XXT − ZZT ∥F ≤
ρλmin(Z

TZ) where ρ < 1/2. Then, the functions f(X) = ∥XXT − ZZT ∥2F and gk(X) =
eTkX(XTX)−1XT ek satisfy

|gk(X + V )− gk(X)− ⟨V,∇gk(X)⟩| ≤ 5(∥V ∥∗X)2

1− 2∥V ∥∗X
,

⟨∇gk(X),∇f(X)(XTX)−1⟩ ≥
[
1− 2ρ

1− ρ
gk(X)− 1

1− ρ

√
gk(X)gk(Z)

]
.

Conditioning on X , we have for the search direction V = SG(X)(XTX)−1 and X+ = X + V

Egk(X+) ≤ gk(X)− α⟨∇gk(X),E[V ]⟩+ α2 · E
[

(∥V ∥∗X)2

1− 2∥V ∥∗X

]
≤ (1− ζα) gk(X) + α · ζ

2
gmax for α = O(ρ−1d−2) (16)
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where ζ = 1−2ρ
1−ρ . It then follows that gk(X+) converges geometrically towards 1

2gmax in expecta-
tion, with a convergence rate (1− ζα) that is independent of the condition number κ:

E
[
gk(X+)−

1

2
gmax

]
≤

[
(1− ζα) gk(X) + α · ζ

2
gmax

]
−1

2
gmax ≤ (1− ζα)

[
gk(X)− 1

2
gmax

]
.

Before we prove Lemma 6, we first need to prove a simple claim.

Lemma 7 (Change of norm). The local norm ∥V ∥∗X = ∥V (XTX)−1/2∥ satisfies

(∥V ∥∗X)2

1 + 2∥Y −X∥∗X + (∥Y −X∥∗X)2
≤ (∥V ∥∗Y )2 ≤ (∥V ∥∗X)2

1− 2∥Y −X∥∗X
.

Proof. The upper-bound follows because

tr(V PY V
T ) = tr(V P

1/2
X [P

−1/2
X PY P

−1/2
X ]P

1/2
X V T ) ≤ tr(V PXV T )/λmin[P

1/2
X P−1

Y P
1/2
X ]

where PY = (Y TY )−1 and PX = (XTX)−1 and therefore

P
1/2
X P−1

Y P
1/2
X ⪰ I + P

1/2
X [XT (Y −X) + (Y −X)TX]P

1/2
X

and σmax[P
1/2
X [XT (Y −X)P

1/2
X ] ≤ ∥Y −X∥X because XP

1/2
X is orthonormal. The lower-bound

follows similarly.

We are ready to prove Lemma 6.

Proof of Lemma 6. It follows from the intermediate value version of Taylor’s theorem that there
exists some X̃ = X + tV with t ∈ [0, 1] that

gi(X + V )− gi(X)− ⟨∇gi(X), V ⟩ = 1

2
⟨∇2gi(X̃)[V ], V ⟩.

Let P = (XTX)−1 and U = eie
T
i (I −XPXT )V and G = V PXT eie

T
i . By direct computation,

we have
1

2
⟨∇gi(X), V ⟩ = ⟨(I −XPXT )eie

T
i XP, V ⟩ = ⟨U,XP ⟩ = ⟨I −XPXT , G⟩,

1

2
⟨∇2gi(X)[V ], V ⟩ = ⟨UP −XP (UTX +XTU)P, V ⟩ − ⟨(I −XPXT )(G+GT )XP, V ⟩,

by differentiating XP and XPXT respectively. A coarse count yields 1
2 ⟨∇

2gi(X)[V ], V ⟩ ≤
5(∥V ∥∗X)2 and therefore

|gi(X + V )− gi(X)− ⟨∇gi(X), V ⟩| ≤ 5∥V ∥2X+tV ≤ 5(∥V ∥∗X)2

1− 2t∥V ∥∗X
≤ 5(∥V ∥∗X)2

1− 2∥V ∥∗X
,

which is the first claim. Now, observe that the two functions have gradient

∇gi(X) = 2[I −X(XTX)−1XT ]eie
T
i X(XTX)−1, ∇f(X) = 4(XXT − ZZT )X.

Directly substituting yields
1

8
⟨∇gi(X),∇f(X)(XTX)−1⟩ = ⟨[I −X(XTX)−1XT ]eie

T
i X(XTX)−1, (XXT − ZZT )X(XTX)−1⟩

= eTi X(XTX)−2XTZZTX(XTX)−1XT ei − eTi ZZTX(XTX)−2XT ei

where the second line follows from the fact that

⟨[I −X(XTX)−1XT ]eie
T
i X(XTX)−1, XXTX(XTX)−1⟩ = 0.

The second claim follows from the following three identities

λmin(X
TX) ≥ (1− ρ)λmin(Z

TZ) (17)

eTi ZZTX(XTX)−2XT ei ≤
1

1− ρ
∥eTi X∥∗X · ∥eTi Z∥∗Z (18)

eTi X(XTX)−2XTZZTX(XTX)−1XT ei ≥
1− 2ρ

1− ρ
· (∥eTi X∥∗X)2 (19)
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We have (17) via Weyl’s inequality:

λmin(X
TX) = λr(XXT ) = λr(ZZT +XXT − ZZT ) ≥ λr(ZZT )− ∥XXT − ZZT ∥F .

We have (18) by rewriting

eTi ZZTX(XTX)−2XT ei = (eTi P )(PTZZTX(XTX)−2XTQ)(QT ei)

≤ ∥eTi P∥∥ZZTX(XTX)−2XT ∥∥eTi Q∥

and rewriting ZZT = XXT − E where E = XXT − ZZT and evoking (17) as in

∥ZZTX(XTX)−2XT ∥ ≤ ∥XXTX(XTX)−2XT ∥︸ ︷︷ ︸
=1

+ ∥E∥ · ∥X(XTX)−2XT ∥︸ ︷︷ ︸
≤ρ/(1−ρ)

and noting that 1 + ρ
1−ρ = 1

1−ρ . We have (19) again by substituting ZZT = XXT − E

eTi X(XTX)−2XTZZTX(XTX)−1XT ei = eTi X(XTX)−1XT ei − eTi X(XTX)−2XTEX(XTX)−1XT ei

≥ eTi X(XTX)−1XT ei · (1− ∥E∥ · ∥X(XTX)−2XT ∥︸ ︷︷ ︸
≤ρ/(1−ρ)

)

and then noting that 1− ρ
1−ρ = 1−2ρ

1−ρ .

E.4 Proof of the main result

In the previous two subsections, we showed that when conditioned on the current iterate Xt, a single
step of ScaledSGD Xt+1 = Xt − αSG(Xt)(X

T
t Xt)

−1 is expected to geometrically converge both
the loss function f and each of the incoherence functions gi, as in

E[f(Xt+1)] ≤ (1− α)f(Xt), E[gi(Xt+1)−
1

2
gmax] ≤

(
1− 1− 2ρ

1− ρ
α

)[
gi(Xt)−

1

2
gmax

]
.

In this section, we will extend this geometric convergence to T iterations of ScaledSGD.
Our key challenge is to verify that the variances and maximum deviations of the sequences
f(X0), f(X1), . . . , f(XT ) and gi(X0), gi(X1), . . . , gi(XT ) have the right dependence on the di-
mension d, the radius ρ, the condition number κ, the maximum coherence gmax, and the iteration
count t, so that T iterations of ScaledSGD with a step-size of α ≤ c/[(gmax + ρ)d2 log d] results
in no more than a multiplicative factor of 2 deviation from expectation. Crucially, we must check
that the cumulated deviation over T iterations does not grow with the iteration count T , and that the
convergence rate is independent of the condition number κ. We emphasize that the actual approach
of our proof via the Azuma–Bernstein inequality is textbook; to facilitate a direct comparison with
SGD, we organize this section to closely mirror Jin et al. [10]’s proof of Theorem 1.

Let fmax = ρ2 ·λ2
min(Z

TZ) and gmax = 16
(1−2ρ)2 maxi gi(Z). Our goal is to show that the following

event happens with probability 1− T/d10:

Et ≡
{
f(X) ≤

(
1− α

2

)t

· fmax, max
i

gi(Xτ ) ≤ gmax for all τ ≤ t

}
, (20)

Equivalently, conditioned on event Et, we want to prove that the probability of failure at time t+ 1
is δ ≡ 1/d10. We split this failure event into a probability of δ

2 that the function value clause fails to
hold, as in f(Xt+1) > (1− α/2)

t · fmax, and a probability of δ
2d that any one of the d incoherence

caluses fails to hold, as in gi(Xt+1) > gmax. Then, cumulated over T steps, the total probability of
failure would be T · δ = T/d10 as desired.

We begin by setting up a supermartingale on the loss function f . Our goal is to show that the variance
and the maximum deviation of this supermartingale have the right dependence on α, d, ρ, κ, gmax,
so that a step-size of α ≤ c/(gmaxd

2 log d) with a sufficiently small c > 0 will keep the cumulative
deviations over T iterations within a factor of 2. Note that, by our careful choice of the coherence
function gi, the following statement for ScaledSGD match the equivalent statements for SGD with
a perfect condition number κ = 1; see Jin et al. [10, Section B.2].
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Lemma 8 (Function value supermartingale). Let f(X) = ∥XXT − ZZT ∥2F . Define fmax = ρ2 ·
λ2
min(Z

TZ) and gmax = 16
(1−2ρ)2 maxi gi(Z). For a sufficiently small c > 0, the following with

learning rate α ≤ c/(gmaxd
2 log d) is a supermartingale

Ft = (1− α)
−t

f(Xt) · 1Et
,

meaning that E[Ft+1|Xt, . . . , X0] ≤ Ft holds for all t ∈ {0, 1, 2, . . . }. Moreover, there exist
sufficiently large constants Cdev, Cvar > 0 such that the following holds with probability one:

E[Ft|Xt−1, . . . , X0]− Ft ≤ Cdev · α · d2 · gmax · (1− α)
−t

(
1− α

2

)t

fmax,

Var[Ft|Xt−1, . . . , X0] ≤ Cvar · α2 · d2 · gmax · (1− α)
−2t

(
1− α

2

)2t

f2
max.

Proof. The proof is technical but straightforward; it is deferred to Section E.5.

Lemma 9 (Function value concentration). Let the initial point satisfy f(X0) ≤ 1
2fmax. Then, there

exists a sufficiently small constant c > 0 such that for all learning rates α < c/(gmaxd
2 log d), we

have

Pr

(
fi(Xt+1)1Et >

(
1− α

2

)t

fmax

)
= Pr

(
Et ∩

{
fi(Xt+1) >

(
1− α

2

)t

fmax

})
≤ 1

2d10
.

Proof. Let σ2 =
∑t

τ=1 Var[Fτ |Xτ−1, . . . , X0] and let R satisfy E[Fτ |Xτ−1, . . . , X0] ≤ Xτ + R
almost surely for all τ ∈ {1, 2, . . . , t}. Recall via the standard Azuma–Bernstein concetration
inequality for supermartingales that Pr (Ft ≥ F0 + s) ≤ exp

(
− s2/2

σ2+Rs/3

)
. Equivalently, there

exists a large enough constant C > 0 in s = C · (1− α)
t
[√

σ2 log d+R log d
]

such that the
following is true

Pr
(
f(Xt+1)1Et

≥ (1− α)
t
f(X0) + s

)
≤ 1

2d10
.

Given that f(X0) ≤ 1
2fmax and therefore (1− α)

t
f(X0) ≤ 1

2

(
1− α

2

)t ·fmax holds by hypothesis,
the desired claim is true if we can show that s ≤ 1

2

(
1− α

2

)t · fmax. Crucially, we observe that the
variance term in s does not blow-up with time t

(1− α)
2t · σ2 ≤ f2

max · Cvar · d2 · gmax · α2 ·
t∑

τ=1

(1− α)
2t−2τ

(
1− α

2

)2τ

=
(
1− α

2

)2t

f2
max · Cvar · d2 · gmax · α2 ·

t∑
τ=1

(
1− α

1− α/2

)2t−2τ

≤
(
1− α

2

)2t

f2
max · Cvar · d2 · gmax · α

due to the geometric series expansion
∑t

τ=0 β
t−τ = (1−βt+1)/(1−β). Substituting the deviations

term, choosing a step-size α ≤ c/(ρd2 log d) for sufficiently small c yields

s =
(
1− α

2

)t

·
[√

Cvar · d2 · gmax · α · log d+ Cdev · d2 · gmax · α · log d
]
· fmax

≤ 1

2

(
1− α

2

)t

fmax.

We now set up a supermartingale on each of the incoherence functions gi. Again, our goal is to show
that the variance and the maximum deviation of this supermartingale have the right dependence on
α, d, ρ, κ, gmax, so that a step-size of α ≤ c/(ρd2 log d) with a sufficiently small c > 0 will keep the
cumulative deviations over T iterations within a factor of 2. Note that Jin et al. [10, Section B.2]’s
proof tracks a different function hi(X) = eTi XXT ei that is substantially simpler, but pays a penalty
of two to three factors of the condition number κ.
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Lemma 10 (Incoherence supermartingale). Let gi(X) = eTi X(XTX)−1XT ei. Define gmax =
16

(1−2ρ)2 maxi gi(Z). For a fixed i ∈ [n] with sufficiently small c > 0, the following with learning
rate α < c/(ρd2 log d) is a supermartingale

Git = (1− ζ · α)−t

(
g(Xt) · 1Et−1 −

ζ

2
gmax

)
where ζ =

1− 2ρ

1− ρ
< 1,

meaning that E[Gi(t+1)|Xt, . . . , X0] ≤ Git holds for all t ∈ {0, 1, 2, . . . }. Moreover, there exist
sufficiently large constants Cdev, Cvar > 0 with no dependence on gmax, n, t such that

E[Git|Xt−1, . . . , X0]−Git ≤ Cdev · α · d2 · ρ · (1− ζ · α)−t
gmax,

Var[Git|Xt−1, . . . , X0] ≤ Cvar · α2 · d2 · ρ2 · (1− ζ · α)−2t
g2max.

Proof. The proof is long but straightforward; it is deferred to Section E.5.

Lemma 11 (Incoherence concentration). Let the initial point satisfy maxi gi(X0) ≤ 1
2gmax. Then,

there exists a sufficiently small constant c > 0 such that for all learning rates α < c/(ρd2 log d), we
have

Pr(gi(Xt+1)1Et
> gmax) = Pr(Et ∩ {gi(Xt+1) > gmax}) ≤

1

2d11
. (21)

Proof. Let σ2 =
∑t

τ=1 Var[Giτ |Xτ−1, . . . , X0] and let R satisfy E[Giτ |Xτ−1, . . . , X0] ≤ Xτ+R
almost surely for all τ ∈ {1, 2, . . . , t}. Recall via the standard Azuma–Bernstein concetration
inequality for supermartingales that

Pr (Git ≥ Gi0 + s) ≤ exp

(
− s2/2

σ2 +Rs/3

)
.

Equivalently, there exists a large enough constant C > 0 such that the following is true

Pr

(
gi(Xt+1)1Et

≥ 1

2
gmax + (1− ζ · α)t

(
g(X0)−

1

2
gmax

)
+ s′

)
≤ 1

2d11

where s′ = C · (1− ζ · α)t ·
[√

σ2 log d+R log d
]
.

Given that g(X0) ≤ 1
2gmax holds by hypothesis, the desired claim is true if we can show that

s′ ≤ 1
2gmax. Crucially, we observe that the variance term in s′ does not blow-up with time t

(1− ζ · α)2t σ2 ≤ g2max · Cvar · d2 · ρ2 · α2
t∑

τ=1

(1− ζ · α)2t−2τ

≤ g2max · Cvar · d2 · ρ2 · α

due to the geometric series expansion
∑t

τ=0 β
t−τ = (1−βt+1)/(1−β). Substituting the deviations

term, choosing a step-size α ≤ c/(ρd2 log d) for sufficiently small c yields

s′ = O
(√

α · d2 · ρ2 · g2max · log d
)
+O

(
α · d2 · ρ · gmax · log d

)
=

gmax

2
.

In summary, Lemma 9 requires a step-size of α ≤ c/(gmaxd
2 log d) to keep deviations on f small,

while Lemma 11 requires a step-size of α ≤ c/(ρd2 log d) to keep deviations on gi small. Therefore,
it follows that a step-size α ≤ c/((gmax + ρ)d2 log d) will keep both deviations small.

Proof of Theorem 2. For a step-size α ≤ c/((gmax + ρ)d2 log d) with sufficiently small c > 0, both
concentration bounds Lemma 9 and Lemma 11 are valid. Combined, we take the trivial union bound
to determine the probability of failure at the (t+ 1)-th step, after succeeding after t steps:

Pr(Et ∩ Et+1) =

d∑
i=1

Pr(Et ∩ {gi(Xt+1) ≥ gmax}) +Pr(Et ∩ {f(Xt+1) ≥ (1− α

2
)t+1fmax).

≤ d · 1

2d11
+

1

2d10
=

1

d10
.
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Here, Et+1 denotes the complement of Et+1. The probability of failure at the T -th step is then the
cummulative probability of failing at the (t+1)-th step, after succeeding after t steps, over all t ≤ T :

Pr(ET ) ≤
T∑

t=1

Pr(Et−1 ∩ Et) ≤
T

d10

and this proves that ET happens with probability 1− T/d10 as desired.

E.5 Proofs of supermartingale deviations and variances

We will now verify the supermartingales and their deviations and variances in detail. We first begin
by proving the following bounds on the size of the stochastic gradient.
Lemma 12. Let X,Z ∈ Rn×r satisfy ∥XXT − ZZT ∥F ≤ ρ · λmin(Z

TZ) with ρ < 1/2 and
maxi e

T
i X(XTX)−1Xei ≤ gmax and maxi e

T
i Z(ZTZ)−1Zei ≤ gmax. Then, with respect to the

randomness of the following

SG(X) = 2d2 · (XXT − ZZT )i,j · (eieTj + eje
T
i )X

where (i, j) ∼ [d]2 is selected uniformly at random, we have:

1. ∥SG(X)∥∗X ≤ 8d2 · g1/2max · ∥XXT − ZZT ∥F .

2. ∥SG(X)(XTX)−1∥∗X ≤ 16d2 · g1/2max · ρ.

3. E(∥SG(X)∥∗X)p ≤ 22p · d2(p−1) · gp/2max · ∥XXT − ZZT ∥pF .

4. E(∥SG(X)(XTX)−1∥∗X)p ≤ 23p · d2(p−1) · gp/2max · ρp.

Proof. Let us write E = XXT − ZZT . To prove (i) we have

∥SG(X)∥∗X = 2d2 · Ei,j · (∥(eieTj + eje
T
i )X∥∗X) ≤ 4d2 · Ei,j ·max

i
∥eTi X∥∗X

and if we write QX = X(XTX)−1/2 and QZ = Z(ZTZ)−1/2 we have

Ei,j = eTi Eej = eTi QXQT
X(XXT − ZZT )ej − eTi (I −QXQT

X)ZZej

≤ ∥eTkQX∥∥QT
X(XXT − ZZT )ej∥+ ∥eTi (I −QXQT

X)ZZTQZ∥∥QT
Zej∥,

≤ g1/2max · ∥XXT − ZZT ∥F + ∥XXT − ZZT ∥F · g1/2max.

we use the fact that (I −QXQT
X)(XXT −ZZT ) = −(I −QXQT

X)ZZT in the first and last lines.
To prove (ii) we have

∥SG(X)(XTX)−1∥∗X =
∥SG(X)∥∗X
λmin(XTX)

≤ 8d2 · g1/2max · ρ · λmin(Z
TZ)

(1− ρ) · λmin(ZTZ)
≤ 16d2 · g1/2max · ρ

where we used Weyl’s inequality λr(XXT ) ≥ λr(ZZT ) − ∥XXT − ZZT ∥F . To prove (iii) we
have

E(∥SG(X)∥∗X)p =
1

d2

∑
i,j

d2p · (2Ei,j)
p · (∥(eieTj + eje

T
i )X∥∗X)p ≤ 22p · d2(p−1) · ∥E∥pF ·max

i
(∥eTi X∥∗X)p

where we used (
∑

i x
2
i )

1/2 ≥ (
∑

i x
p
i )

1/p for any p ≥ 2. The proof of (iv) follows identically by
applying the proof of (ii) to the proof of (iii).

We now prove the properties of the function value supermartingale Ft.

Proof of Lemma 8. Conditioning on the current iterate Xt and the event Et, the new iterate Xt+1 =
Xt − αSG(Xt)(X

T
t Xt)

−1 has expectation

E[f(Xt+1)] ≤ f(Xt)− α⟨∇f(Xt),E[SG(Xt)(X
T
t Xt)

−1]⟩+ LX

2
α2 · E[(∥SG(Xt)∥∗X)2]
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with LX = O(1) by evoking Lemma 3 noting that ∥αSG(Xt)∥∗X = O(1)·
√

f(Xt) for the step-size
α ≤ c/(gmaxd

2 log d), since

∥αSG(Xt)∥∗X = α · 2d2 · (XtX
T
t − ZZT )i,j∥(eieTj + eje

T
i )Xt∥∗X

≤ α · 2d2 · |XtX
T
t − ZZT |∞ · 2√gmax

≤ c

gmaxd2 log d
· 2d2 ·

√
f(Xt)gmax · 2

√
gmax =

4c

log d

√
f(Xt).

The linear term evaluates simply as E[SG(X)(XTX)−1] = ∇f(X)(XTX)−1, while the quadratic
term evaluates

E[(∥SG(X)∥∗X)2] =
1

d2

∑
i,j

4d4 · (XXT − ZZT )2i,j(∥(eieTj + eje
T
i )X∥∗X)2

≤
∑
i,j

4d2 · (XXT − ZZT )2i,j · 4gmax = 16 · gmax · d2 · f(X)

Combined, substituting (∥∇f(X)∥∗X)2 ≥ 13 · f(X), it follows that we have geometric convergence

E[f(Xt+1)] ≤ f(Xt)− α⟨∇f(Xt),E[SG(Xt)(X
T
t Xt)

−1]⟩+ LX

2
α2 · E[(∥SG(Xt)∥∗X)2]

≤ (1− 2α) f(Xt) + LX · α2 · 8 · gmax · d2 · f(Xt) ≤ (1− α) f(Xt)

where we observe that we can pick a small enough constant c in the step-size α ≤ c/(gmaxd
2 log d)

so that

LX · α2 · 8 · gmax · d2 · f(Xt) =
c · LX · 8 · gmax · d2

gmaxd2 log d
αf(Xt) ≤ αf(Xt).

Now, to confirm that Ft is a martingale, it remains to see that

E[Ft+1|Xt] = (1− α)
−(t+1) E[f(Xt+1) · 1Et

|Xt] ≤ (1− α)
−(t+1)

(1− α) f(Xt)1Et

≤ (1− α)
−t

f(Xt)1Et−1
= Ft,

where the last inequality follows from 1Et
≤ 1Et−1

.

We now bound the deviations on Ft. Conditioning on the previous iterates Xt, . . . , X0, we obseve
that the f(Xt) terms cancel:

f(Xt+1) · 1Et − E[f(Xt+1) · 1Et ] ≤
[
−α⟨∇f(Xt), [SG(Xt)− ESG(Xt)](X

T
t Xt)

−1⟩

+
α2 · LX

2
(∥SG(Xt)∥∗X)2 + E(∥SG(Xt)∥∗X)2

]
· 1Et

. (22)

Here we have for the linear term

⟨∇f(Xt), SG(Xt)(X
T
t Xt)

−1⟩ · 1Et
≤ ∥∇f(Xt)∥∗X∥SG(Xt)∥∗X · 1Et

≤ 4
√

f(Xt) · 4d2
√

f(Xt) · gmax · 1Et = O(d2gmax)f(Xt) · 1Et

and the quadratic term

(∥SG(Xt)∥∗X)2 · 1Et ≤ d4 · f(Xt) · g2max · 1Et = O(d4g2max)f(Xt) · 1Et .

Therefore, using the maximum value to bound the expectation, we have

Ft+1 − E[Ft+1|Xt, . . . , X0] ≤ α (1− α)
−t ·

[
O(d2gmax)f(Xt) + αO(d4g2max)f(Xt)

]
· 1Et

≤ α (1− α)
−t ·O(d2gmax)f(Xt) · 1Et

≤ Cdev · α (1− α)
−t

(
1− α

2

)t

fmax · d2 · gmax · 1Et

where again we observe that a step-size like α ≤ c/(gmaxd
2 log d) = O(d−2g−1

max) yields the
cancellation of exponents α ·O(d4g2max) = O(d2gmax).
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Finally, we bound the variance. Conditioned on all previous iterates Xt, . . . , X0 we have

Var(⟨∇f(Xt), SG(Xt)(X
T
t Xt)

−1⟩ · 1Et
) ≤ E[⟨∇f(Xt), SG(Xt)(X

T
t Xt)

−1⟩2 · 1Et
]

≤ (∥∇f(Xt)∥∗Xt
)2 · E[(∥SG(Xt)∥∗X)2] · 1Et

≤ O(d2gmax) · f(Xt)
2 · 1Et

,

and also

Var((∥SG(Xt)∥∗X)2 · 1Et
) ≤ E[(∥SG(Xt)∥∗X)4 · 1Et

] = O(d6g3max)f(Xt)
2 · 1Et

.

By the same expansion in (22) we have

Var(Ft+1|Xt, . . . , X0) ≤ α2 (1− α)
−2t ·

[
O(d2gmax) · f(Xt)

2 + α2O(d6g3max)f(Xt)
2
]
· 1Et

≤ α2 (1− α)
−2t ·O(d2gmax) · f(Xt)

2 · 1Et

≤ Cvar · α2 (1− α)
−2t

(
1− α

2

)2t

f2
max · d2 · gmax · 1Et

where again we observe that a step-size like α ≤ c/(gmaxd
2 log d) = O(d−2g−1

max) yields the
cancellation of exponents α2 · (d6g3max) = O(d2gmax).

We now prove properties of the incoherence martingale.

Proof of Lemma 10. Conditioning on Xt and the event Et, we have for V = SG(Xt)(X
T
t Xt)

−1

E[gi(Xt+1)] ≤ gk(Xt)− α⟨∇gi(Xt),E[V ]⟩+ α2 · E
[

(∥V ∥∗X)2

1− 2∥V ∥∗X

]
≤

(
1− 1− 2ρ

1− ρ
α

)
gi(Xt) + α · 1

1− ρ
·
√
gi(X)gi(Z) + α2 ·

E
[
(∥V ∥∗X)2

]
1− 2∥V ∥∗X

≤
(
1− 1− 2ρ

1− ρ
α

)
gi(Xt) + α ·

√
gi(Z)/gmax

1− ρ
· gmax + α2 · O(d2 · gmax · ρ2)

1−O(g
1/2
max · ρ)

≤ (1− ζα) gi(Xt) + α · ζ
2
gmax for α = O(ρ−1d−2).

Here we note that we have carefully chosen gmax so that the ratio maxi gi(Z)/gmax = [(1 − ρ) ·
ζ/4]2. It then follows that the following is a supermartingale

Git = (1− ζα)
−t

(
gi(Xt) · 1Et−1

− ζ

2
gmax

)
.

Indeed, we have

E[Gi(t+1)|Xt, . . . , X0] = (1− ζα)
−(t+1)

(
E[gi(Xt+1) · 1Et

|Xt, . . . , X0]−
ζ

2
gmax

)
≤ (1− ζα)

−(t+1)

[
(1− ζα) gi(Xt) · 1Et + α · ζ

2
gmax · 1Et −

ζ

2
gmax

]
≤ (1− ζα)

−t

[
gi(Xt) · 1Et−1

−
(
1− α

1− α

)
· ζ
2
gmax

]
= Git

where the final line uses 1Et
≤ 1Et−1

≤ 1.

We now bound the deviations on Git. Conditioning on the previous iterates Xt, . . . , X0, we obseve
that the gi(Xt) terms cancel:

gi(Xt+1) · 1Et
− E[gi(Xt+1) · 1Et

] ≤
[
−α⟨∇gi(Xt), [SG(Xt)− ESG(Xt)](X

T
t Xt)

−1⟩

+5α2 · (∥SG(Xt)(X
T
t Xt)

−1∥∗X)2 + E(∥SG(Xt)(X
T
t Xt)

−1∥∗X)2

1− α∥SG(Xt)(XT
t Xt)−1∥∗X

]
· 1Et

. (23)

Here we have for the linear term

∥∇g(X)∥ · 1Et
≤ ∥2[I −X(XTX)−1XT ]eie

T
i X(XTX)−1∥ · 1Et

≤ O(κ1/2 · g1/2max)
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and ∥SG(X)∥∗X · 1Et ≤ O(d2 ·
√
gmaxf(X)) = O(d2

√
gmaxρ/κ) noting that fmax = ρ2/κ2 and

hence

|⟨∇g(Xt), SG(Xt)(X
T
t Xt)

−1⟩| ≤ ∥∇g(Xt)∥ · ∥SG(Xt)∥∗X
≤ O(

√
κgmax) ·O(d2

√
gmaxρ/κ) = O(gmax · d2ρ) · 1Et

.

We have for the quadratic term

5(∥SG(Xt)(X
T
t Xt)

−1∥∗X)2

1− α∥SG(Xt)(XTX)−1∥∗X
· 1Et ≤

O(d4 · gmax · ρ2)
1− α ·O(d2 · g1/2max · ρ)

· 1Et = O(gmax · d4ρ2) · 1Et .

Therefore, using the maximum value to bound the expectation, we have

Gi(t+1) − E[Gi(t+1)|Xt, . . . , X0] ≤ α (1− α)
−t

gmax ·
[
O(d2ρ) + αO(d4ρ2)f(Xt)

]
· 1Et

≤ α (1− α)
−t

gmax ·O(d2ρ) · 1Et

where again we observe that a step-size like α ≤ c/(ρd2 log d) = O(d−2ρ−1) yields the cancellation
of exponents α ·O(d4ρ2) = O(d2ρ).

Finally, we bound the variance. Conditioned on all previous iterates Xt, . . . , X0 we have

Var(⟨∇gi(Xt), SG(Xt)(X
T
t Xt)

−1⟩ · 1Et
) ≤ E[⟨∇gi(Xt), SG(Xt)(X

T
t Xt)

−1⟩2 · 1Et
]

≤ (∥∇gi(Xt)∥)2 · E[(∥SG(Xt)∥∗X)2] · 1Et ≤ O(g2max · d2ρ2) · 1Et ,

and also

Var

(
5(∥SG(Xt)(X

T
t Xt)

−1∥∗X)2

1− α∥SG(Xt)(XT
t Xt)−1∥∗X

· 1Et

)
≤ 25 · E[(∥SG(Xt)(X

T
t Xt)

−1∥∗X)4]

(1− α∥SG(Xt)(XT
t Xt)−1∥∗X)2

· 1Et

≤ O(g2max · d6ρ4)
1− α ·O(d2 · g1/2max · ρ)

· 1Et
= O(g2max · d6ρ4) · 1Et

.

By the same expansion in (23) we have

Var(Gi(t+1)|Xt, . . . , X0) ≤ α2 (1− α)
−2t ·

[
O(g2max · d2ρ2) · 1Et

+ α2O(g2max · d6ρ4) · 1Et
,
]
· 1Et

≤ α2 (1− α)
−2t

g2max ·O(d2ρ2) · 1Et

where again we observe that a step-size like α ≤ c/(ρd2 log d) = O(d−2ρ−1) yields the cancellation
of exponents α2 · (d6ρ4) = O(d2ρ2).
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