23
24
25
26
27
28
29

39
40
41
42
43
44

Supplementary Materials

DAC: 2D-3D Retrieval with Noisy Labels via Divide-and-Conquer Alignment and Correction
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In this supplementary material, we provide complementary in-
formation on experiments and Objaverse-N200. Specifically, we
give extra implementation details of our DAC in Appendix A. In
Appendix B, our supplementary experimental results are shown
and we conduct several insightful experiments to comprehensively
investigate the impact of our multimodal loss distribution and self-
correction. Finally, we give supplementary dataset information of
Objaverse-N200 in Appendix C.

A IMPLEMENTATION DETAILS

Algorithm 1 The proposed DAC framework

Input: Training dataset {X, Y}, feature encoders {¢; }?’I , shared
classifier F;,, multimodal classifier F,;,.
1: while e < MaxEpoch do
2. Calculate multimodal loss distribution [ = {li}fi 1
3 yi = GMM(LI{L}YY)
> to obtain the credibility
4 Se=A{(xuyi)lyi > oV (xi,yi) € {X, Y}} > clean set
s: 0 Sp={(xi,yi), lyi <a.V(x,y) € {X,Y}} > noisy set
6: fori=1tonum_iters do
align
7: (xi:yi)e e Lsem(Po;..;0m) & Linst(Po;..;dm)-
> apply semantic and instance alignment to S;
.. refurbish R
8: (xi:9i)n e—  Fm(21)
> refurbish label of sample in S, with fused feature z;

.. align
9: (i, G)n «— Lsem(¢o; ;M) & Linst(dos-..; dm)-

> apply semantic and instance alignment to S,

align

10: (xiyi)e & (xi0i)n «— Legs(Fus Fn).

> align samples in label space
11: L=Lsem + M Linst + 2L > total loss
12: Update parameters of {¢; }§\4 , Fu, Fip. in backward process.
13- end for
14: end while
Output: The final feature encoders {¢; }jw .

In this work, we adopt two fully connected layers as the shared
classifier F,, and multimodal classifier F;;, for common representa-
tion classification. For all the datasets, the temperature parameter
7. is set as 0.22, and 1y, is set as 1.0. Consistent with [4], we utilize
the mean Average Precision (mAP) score as our primary metric to
evaluate the performance of the models. It is worth noting that for
the balance parameters A1 and Az, we set them as different values
for the clean set S; and noisy set S,,. Specifically, for S¢, A; and A2
are set as 0.1 and 0.1, respectively. For noisy set S,,, we set A; and A2
as 10 and 1 to mitigate the negative impact of false-corrected labels.
The optimization process of our framework is shown in Algorithm
1.
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Figure 1: Division accuracy of MDD and correction accuracy
of the corrected labels generated by self-correction strategy
on ModelNet10 under asymmetric noise.

To evaluate the effectiveness of our DAC in real-world scenarios,
we conduct experiments on our proposed realistic noisy dataset
Objaverse-N200, where we set Objaverse-N200, which comprised
194,800 objects as the training set, and Objaverse-lvis with 46,205
objects [3] as the testing set.

B MORE RESULTS AND ANALYSIS

Due to space limitations in the main paper, we present supple-
mentary experiments in this section.

B.1 More Comparative Experimental Results
and Analysis

To comprehensively evaluate our model, we conducted three
comparative experiments. 1) To fully verify the effectiveness of our
model, we conduct comparative experiments on 3D MNIST [17]
under symmetric and asymmetric noise as shown in Tab. 1 and
Tab. 2. From the results, one can observe that our model achieves
superior results compared to previous methods under various sym-
metric and asymmetric noise, which demonstrates the effectiveness
of our method. 2) To thoroughly assess the robustness of our pro-
posed MDD and the self-correction mechanism’s label correction
capabilities under asymmetric noise conditions, we also conduct
experiments on ModelNet10 [16] under 0.2 and 0.4 asymmetric
label noise. The results, depicted in Fig. 1, demonstrate the robust-
ness of our MDD strategy in effectively dividing noisy samples
(Fig. 1 (a)) and the high quality of the corrected labels generated by
self-correction (Fig. 1 (b)), under challenging asymmetric noise sce-
narios. 3) In addition, we conduct extensive retrieval experiments
across three modalities (image, point cloud, and mesh) on Model-
Net10 [16] under 0.2, 0.4, 0.6, and 0.8 symmetric noise, comparing
it with the state-of-the-art RONO [4]. The results, presented in Tab.
3 demonstrate the robustness of our model DAC.

B.2 Investigation of Fusion Layer

To assess the impact of distinct fusion layers, we implemented
three distinct fusion architectures: Add (feature adding), Concat
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Table 1: Performance comparison in terms of mAP under the
symmetric noise rates of 0.2,0.4,0.6, and 0.8 on the 3D MNIST

Anonymous Authors

Table 2: Performance comparison in terms of mAP under the
asymmetric noise rates of 0.1, 0.2, and 0.4 on the 3D MNIST

datasets. datasets.
3D MNIST [17] 3D MNIST [17]
Method Image — Point Cloud Point Cloud — Image Method Image — Point Cloud Point Cloud — Image
02 04 06 08 | 02 04 06 08 0 01 02 04 ] 0 01 02 04
CCA [7] 0.415 0.415 0.415 0.415|0.414 0.414 0.414 0.414 CCA [7] 0.415 0.415 0415 0415|0415 0415 0415 0.415
DCCA [1] 0.595 0.595 0.595 0.595|0.593 0.593 0.593 0.593 DCCA [1] 0.595 0.595 0.595 0.595 | 0.593 0.593 0.593 0.593
DGCPN [18] |0.792 0.792 0792 0.792 | 0.783 0.783 0.783 0.783 DGCPN[18] 10792 0792 0792 0.792 | 0.783 0.783 0.783 0783
UCCH[9] |0.791 0791 0791 0791|0790 0790 0.790 0.790 UCCH [9] 0.791 0.791 0.791 0.791]0.790 0.790 0.790 0.790
GMA [14] ] 0449 0438 0426 04150437 0432 0423 0414 GMA[14] 10514 0.444 0436 0415|0500 0435 0417 0.39%
MvDA [11] |0.481 0461 0432 0328|0482 0461 0431 0.323 Aﬁ‘é&% [[161]] 8222 ggi g:‘l’z gizg g;gf g‘;;ﬁ gzz; gzig
gigg g% 8'522 gzg; 8'132 8‘223 3'322 g'zﬁ g';zg g';éz DADH [2] 0.971 0.848 0.718 0.570 |0.969 0.825 0.701 0.572
: : . : : : : : DAGNN [13] | 0.927 0.894 0.871 0.684 | 0.927 0.893 0.864 0.691
DAGNN [13] | 0.883 0.850 0749 0445 0.879 0.845 0.743 0.435 ALGCN [12] | 0.908 0.876 0.860 0.635|0.900 0.871 0.852 0.641
ALGCN[12] | 0.874 0.840 0757 0.4010.868 0.831 0.748 0.385 DSCMR [19] | 0.963 0914 0.869 0.711|0.945 0.906 0.862 0.704
DSCMR [19] |0.908 0.812 0.512 0.219 [ 0.896 0.811 0.472 0.140 MRL [8] 0063L0.958 0.944 0.792 | 0.945 0.940 0.922 0.762
MRL [8] 0.955 0.937 0.918 0.785|0.944 0.931 0.905 0.791 CLF [10] 0.983 0.045 0.924 0.809 | 0.958 0.932 0.920 0.802
CLF [10] 0.890 0.811 0.460 0.124 | 0.872 0.793 0.426 0.120 CLF [19]+MAE[5] | 0.971 0.942 0.921 0.796 | 0.951 0.930 0.918 0.783
CLF +MAE [5] | 0.810 0.812 0.501 0.122 | 0.809 0.811 0.483 0.122 RONO [4] 0.983 0.961 0.958 0.912|0.968 0.947 0.938 0.897
RONO[4] |0.962 0.952 0.931 0.831|0.948 0.934 0.915 0.828 DAC(Ours)  [0.974 0.965 0.965 0.924[0.957 0.949 0.948 0.899
DAC (Ours) |0.965 0.964 0.954 0.846 |0.950 0.940 0.939 0.838
Add Concat . Attention Table 3: Performance comparison of RONO [4] and our DAC
z L;z;"; 7 under the symmetric noise rates of 0, 0.2, 0.4, 0.6, and 0.8 on
VT q 73 trimodal (Image, Mesh, Point cloud) ModenNet10 dataset.

i

z

Zm

UONUBNY $504D

Figure 2: Structure comparison of different fusion layer .

(feature concatenation), and an Attention-based approach (lever-
aging a learned query for feature fusion through cross-attention)
as shown in Fig. 2. The comparative experimental results of these
multimodal fusion techniques are presented in Tab. 4. In the table,
Ensemble denotes to naive ensemble of the unimodal loss distri-
bution, which is set as the baseline. The findings reveal that a
naive combination of unimodal loss distribution yields subopti-
mal performance as the significance of various modalities varies.
Conversely, multimodal feature fusion enables the network to adap-
tively capture discriminative semantics from diverse modalities,
which significantly boosts the discrimination of representation.
Among these strategies, feature concatenation emerges as the most
effective approach, as demonstrated in Tab. 4. Hence, we utilize
Concat (feature concatenation) as our final fusion layer .

B.3 Insightful Experiments of Multimodal Loss
Distribution

To thoroughly investigate the impact of our multimodal loss dis-
tribution, we conduct several insightful visualization experiments
on trimodal ModelNet40 [16] under both symmetric and asymmet-
ric noise. The results are shown in Fig. 3 and Fig. 4. From the results,
we can find that multimodal loss distribution exhibits a smaller over-
lap and larger loss value for False labeled samples compared to the
unimodal loss distribution (Image, Point cloud, Mesh). Notably, for

Qry Img Msh Pnt

Retrv

Img Msh Pnt

Img Msh Pnt

Img Msh Pnt

RONO
Ours

0.913 0.906 0.898
0.925 0.915 0.909

0.896 0.919 0.904
0.915 0.915 0.905

0.895 0.903 0.892
0.916 0.899 0.905

RONO

0.2
Ours

0.871 0.889 0.877
0.919 0.912 0.906

0.890 0.912 0.905
0.913 0.914 0.903

0.872 0.899 0.895
0.897 0.899 0.897

RONO

4
0 Ours

0.866 0.888 0.878
0.920 0.914 0.907

0.883 0.911 0.900
0.915 0.914 0.903

0.865 0.897 0.895
0.900 0.895 0.892

RONO

0.6
Ours

0.840 0.857 0.850
0.900 0.899 0.891

0.868 0.901 0.892
0.900 0.904 0.894

0.854 0.888 0.892
0.889 0.890 0.891

RONO

08 Ours

0.826 0.859 0.849
0.879 0.872 0.878

0.858 0.898 0.887
0.875 0.875 0.878

0.842 0.880 0.885
0.879 0.877 0.889

asymmetric noise, the extremely complex class conditional noise
will degrade the performance of the memorization effect of DNNs,
resulting in a large overlap for unimodal loss distribution. In con-
trast, our multimodal approach effectively captures discriminative
semantics across modalities and leverages the complementary in-
formation from different modalities to model the multimodal loss
distribution. As a result, our multimodal loss distribution exhibits
a reduced overlap and a more distinct bimodal pattern, thereby
facilitating efficient sample division. These results demonstrate the
effectiveness of our multimodal loss distribution in managing both
symmetric and asymmetric noise.

B.4 Insightful Experiments of Self-Correction.

To investigate the impact of our self-correction, we conduct
visualization experiments to investigate the quality of representa-
tions of samples on ModelNet40 [16] under 0.4 symmetric noise,
as shown in Fig. 5. The results reveal the following key insights:
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Table 4: Investigation on the structure of fusion layer /.

ModelNet40
Img — Pnt | Pnt — Img
0.4 0.8 0.4 0.8
Ensemble | 0.877 0.832 | 0.866 0.827
Add 0.878 0.830 | 0.868 0.826
Concat |0.885 0.849|0.882 0.847
Attention | 0.880 0.830 | 0.873 0.824

Method

1) Improved representation compactness. By comparing Fig. 5 (a)
and (b), we observed that our model with self-correction gener-
ated more compact representations for clean samples as the use of
corrected labels from noisy samples facilitated enhanced network
optimization. 2) Enhanced discrimination of noisy samples. The
comparison between Fig. 5 (c) and (d) demonstrated that without
self-correction, the model struggled to mine the true semantics of
noisy samples, resulting in a less focused similarity distribution. In
contrast, with self-correction, we can exploit the noise-free seman-
tic information from the model’s multimodal predictions, which
allowed noisy samples to compact to their respective clean cen-
ters, thus boosting the semantic compactness and discrimination
of their representations. These results highlight the high quality
of the corrected labels and the effectiveness of our self-correction
strategy.

C OBJAVERSE-N200

In this section, we present a comprehensive overview of our
proposed realistic noisy 3D benchmark: Objaverse-N200. Fig. 6 il-
lustrates the noisy samples within Objaverse-N200. From the figure,
we could obtain the following observations: 1) Diversity. Derived
from the extensive Objaverse [3], Objaverse-N200 reveals a signifi-
cantly enhanced diversity in instances within a category. 2) Uneven
noise distribution. A comparison between categories like Apple
and Basketball reveals a stark contrast in noise ratios, with Bas-
ketball having approximately 90% noisy samples, while Apple has
around 20%. This highlights the varying noise levels across differ-
ent categories, posing a realistic challenge. 3) Feature-dependent
noise. By comparing samples with true and false labels, it is evident
that the noisy samples exhibit similar appearances. Furthermore,
the zero-shot classification mechanism employed for label assign-
ment introduces feature-dependent noise, making the dataset more
challenging. These observations collectively demonstrate the com-
plexity and practical relevance of Objaverse-N200, serving as a
valuable resource for evaluating the robustness of 2D-3D retrieval
methods in the presence of real-world noise.
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Figure 3: Comparison of the different loss distribution on trimodal ModelNet40 under 0.4 symmetric noise at epoch 2.
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Figure 4: Comparison of the different loss distribution on trimodal ModelNet40 under 0.2 asymmetric noise at epoch 4.
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Figure 5: Investigation of Self-Correction (SC) on ModelNet40 under 0.4 symmetric noise. (a), (b), (c), and (d) show the similarity
distribution of the training dataset, which describes the cosine similarity between the centers in our contrastive center loss
Lsem and common representations of samples. Noisy similarity denotes the similarity between common representations and
the centers corresponding to their noisy labels. Clean similarity denotes the similarity between common representations and
the centers corresponding to their ground-truth clean labels.

Apple

Banana

Basketball

: Samples in Objaverse-N200. Green/red boxes indicate True/False labels
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