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In this supplementary material, we provide complementary in-
formation on experiments and Objaverse-N200. Specifically, we
give extra implementation details of our DAC in Appendix A. In
Appendix B, our supplementary experimental results are shown
and we conduct several insightful experiments to comprehensively
investigate the impact of our multimodal loss distribution and self-
correction. Finally, we give supplementary dataset information of
Objaverse-N200 in Appendix C.

A IMPLEMENTATION DETAILS

Algorithm 1 The proposed DAC framework

Input: Training dataset {X,Y}, feature encoders {𝜙 𝑗 }𝑀𝑗 , shared
classifier 𝐹𝑢 , multimodal classifier 𝐹𝑚 .

1: while 𝑒 < MaxEpoch do
2: Calculate multimodal loss distribution 𝑙 = {𝑙𝑖 }𝑁𝑖=1
3: 𝛾𝑖 = GMM(𝑙𝑖 |{𝑙𝑖 }𝑁𝑖=1)

⊲ to obtain the credibility
4: 𝑆𝑐 = {(𝑥𝑖 , 𝑦𝑖 )𝑐 |𝛾𝑖 > 𝛼,∀ (𝑥𝑖 , 𝑦𝑖 ) ∈ {X,Y}} ⊲ clean set
5: 𝑆𝑛 = {(𝑥𝑖 , 𝑦𝑖 )𝑛 |𝛾𝑖 ≤ 𝛼,∀ (𝑥𝑖 , 𝑦𝑖 ) ∈ {X,Y}} ⊲ noisy set
6: for 𝑖 = 1 to num_iters do

7: (𝑥𝑖 , 𝑦𝑖 )𝑐
𝑎𝑙𝑖𝑔𝑛
←− L𝑠𝑒𝑚 (𝜙0; ...;𝜙𝑀 ) & L𝑖𝑛𝑠𝑡 (𝜙0; ...;𝜙𝑀 ).
⊲ apply semantic and instance alignment to 𝑆𝑐

8: (𝑥𝑖 , 𝑦𝑖 )𝑛
𝑟𝑒 𝑓 𝑢𝑟𝑏𝑖𝑠ℎ
←− 𝐹𝑚 (𝒛̂𝑖 )

⊲ refurbish label of sample in 𝑆𝑛 with fused feature 𝒛̂𝑖

9: (𝑥𝑖 , 𝑦𝑖 )𝑛
𝑎𝑙𝑖𝑔𝑛
←− L𝑠𝑒𝑚 (𝜙0; ...;𝜙𝑀 ) & L𝑖𝑛𝑠𝑡 (𝜙0; ...;𝜙𝑀 ).
⊲ apply semantic and instance alignment to 𝑆𝑛

10: (𝑥𝑖 , 𝑦𝑖 )𝑐 & (𝑥𝑖 , 𝑦𝑖 )𝑛
𝑎𝑙𝑖𝑔𝑛
←− L𝑐𝑙𝑠 (𝐹𝑢 ; 𝐹𝑚).

⊲ align samples in label space
11: L = L𝑠𝑒𝑚 + 𝜆1L𝑖𝑛𝑠𝑡 + 𝜆2L𝑐𝑙𝑠 ⊲ total loss
12: Update parameters of {𝜙 𝑗 }𝑀𝑗 , 𝐹𝑢 , 𝐹𝑚 . in backward process.
13: end for
14: end while
Output: The final feature encoders {𝜙 𝑗 }𝑀𝑗 .

In this work, we adopt two fully connected layers as the shared
classifier 𝐹𝑢 and multimodal classifier 𝐹𝑚 for common representa-
tion classification. For all the datasets, the temperature parameter
𝜏𝑐 is set as 0.22, and 𝜏𝑚 is set as 1.0. Consistent with [4], we utilize
the mean Average Precision (mAP) score as our primary metric to
evaluate the performance of the models. It is worth noting that for
the balance parameters 𝜆1 and 𝜆2, we set them as different values
for the clean set 𝑆𝑐 and noisy set 𝑆𝑛 . Specifically, for 𝑆𝑐 , 𝜆1 and 𝜆2
are set as 0.1 and 0.1, respectively. For noisy set 𝑆𝑛 , we set 𝜆1 and 𝜆2
as 10 and 1 to mitigate the negative impact of false-corrected labels.
The optimization process of our framework is shown in Algorithm
1.
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Figure 1: Division accuracy of MDD and correction accuracy
of the corrected labels generated by self-correction strategy
on ModelNet10 under asymmetric noise.

To evaluate the effectiveness of our DAC in real-world scenarios,
we conduct experiments on our proposed realistic noisy dataset
Objaverse-N200, where we set Objaverse-N200, which comprised
194,800 objects as the training set, and Objaverse-lvis with 46,205
objects [3] as the testing set.

B MORE RESULTS AND ANALYSIS
Due to space limitations in the main paper, we present supple-

mentary experiments in this section.

B.1 More Comparative Experimental Results
and Analysis

To comprehensively evaluate our model, we conducted three
comparative experiments. 1) To fully verify the effectiveness of our
model, we conduct comparative experiments on 3D MNIST [17]
under symmetric and asymmetric noise as shown in Tab. 1 and
Tab. 2. From the results, one can observe that our model achieves
superior results compared to previous methods under various sym-
metric and asymmetric noise, which demonstrates the effectiveness
of our method. 2) To thoroughly assess the robustness of our pro-
posed MDD and the self-correction mechanism’s label correction
capabilities under asymmetric noise conditions, we also conduct
experiments on ModelNet10 [16] under 0.2 and 0.4 asymmetric
label noise. The results, depicted in Fig. 1, demonstrate the robust-
ness of our MDD strategy in effectively dividing noisy samples
(Fig. 1 (a)) and the high quality of the corrected labels generated by
self-correction (Fig. 1 (b)), under challenging asymmetric noise sce-
narios. 3) In addition, we conduct extensive retrieval experiments
across three modalities (image, point cloud, and mesh) on Model-
Net10 [16] under 0.2, 0.4, 0.6, and 0.8 symmetric noise, comparing
it with the state-of-the-art RONO [4]. The results, presented in Tab.
3 demonstrate the robustness of our model DAC.

B.2 Investigation of Fusion Layer
To assess the impact of distinct fusion layers, we implemented

three distinct fusion architectures: Add (feature adding), Concat
2024-04-19 09:39. Page 1 of 1–4.
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Table 1: Performance comparison in terms of mAP under the
symmetric noise rates of 0.2,0.4,0.6, and 0.8 on the 3D MNIST
datasets.

3D MNIST [17]
Method Image→ Point Cloud Point Cloud→ Image

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
CCA [7] 0.415 0.415 0.415 0.415 0.414 0.414 0.414 0.414
DCCA [1] 0.595 0.595 0.595 0.595 0.593 0.593 0.593 0.593

DCCAE [15] 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600
DGCPN [18] 0.792 0.792 0.792 0.792 0.783 0.783 0.783 0.783
UCCH [9] 0.791 0.791 0.791 0.791 0.790 0.790 0.790 0.790
GMA [14] 0.449 0.438 0.426 0.415 0.437 0.432 0.423 0.414
MvDA [11] 0.481 0.461 0.432 0.328 0.482 0.461 0.431 0.323
AGAH [6] 0.688 0.557 0.128 0.108 0.680 0.548 0.122 0.116
DADH [2] 0.735 0.632 0.403 0.290 0.727 0.614 0.382 0.286

DAGNN [13] 0.883 0.850 0.749 0.445 0.879 0.845 0.743 0.435
ALGCN [12] 0.874 0.840 0.757 0.401 0.868 0.831 0.748 0.385
DSCMR [19] 0.908 0.812 0.512 0.219 0.896 0.811 0.472 0.140
MRL [8] 0.955 0.937 0.918 0.785 0.944 0.931 0.905 0.791
CLF [10] 0.890 0.811 0.460 0.124 0.872 0.793 0.426 0.120

CLF +MAE [5] 0.810 0.812 0.501 0.122 0.809 0.811 0.483 0.122
RONO [4] 0.962 0.952 0.931 0.831 0.948 0.934 0.915 0.828
DAC (Ours) 0.965 0.964 0.954 0.846 0.950 0.940 0.939 0.838

Table 2: Performance comparison in terms of mAP under the
asymmetric noise rates of 0.1, 0.2, and 0.4 on the 3D MNIST
datasets.

3D MNIST [17]
Method Image→ Point Cloud Point Cloud→ Image

0 0.1 0.2 0.4 0 0.1 0.2 0.4
CCA [7] 0.415 0.415 0.415 0.415 0.415 0.415 0.415 0.415
DCCA [1] 0.595 0.595 0.595 0.595 0.593 0.593 0.593 0.593

DCCAE [15] 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600
DGCPN [18] 0.792 0.792 0.792 0.792 0.783 0.783 0.783 0.783
UCCH [9] 0.791 0.791 0.791 0.791 0.790 0.790 0.790 0.790
GMA [14] 0.514 0.444 0.436 0.415 0.500 0.435 0.417 0.396
MvDA [11] 0.530 0.472 0.407 0.370 0.508 0.472 0.397 0.352
AGAH [6] 0.967 0.730 0.611 0.519 0.961 0.729 0.589 0.512
DADH [2] 0.971 0.848 0.718 0.570 0.969 0.825 0.701 0.572

DAGNN [13] 0.927 0.894 0.871 0.684 0.927 0.893 0.864 0.691
ALGCN [12] 0.908 0.876 0.860 0.635 0.900 0.871 0.852 0.641
DSCMR [19] 0.963 0.914 0.869 0.711 0.945 0.906 0.862 0.704
MRL [8] 0.963 0.959 0.944 0.792 0.945 0.940 0.922 0.762
CLF [10] 0.983 0.945 0.924 0.809 0.958 0.932 0.920 0.802

CLF [19]+MAE[5] 0.971 0.942 0.921 0.796 0.951 0.930 0.918 0.783
RONO [4] 0.983 0.961 0.958 0.912 0.968 0.947 0.938 0.897
DAC(Ours) 0.974 0.965 0.965 0.924 0.957 0.949 0.948 0.899

+… +
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Figure 2: Structure comparison of different fusion layer𝜓 .

(feature concatenation), and an Attention-based approach (lever-
aging a learned query for feature fusion through cross-attention)
as shown in Fig. 2. The comparative experimental results of these
multimodal fusion techniques are presented in Tab. 4. In the table,
Ensemble denotes to naive ensemble of the unimodal loss distri-
bution, which is set as the baseline. The findings reveal that a
naive combination of unimodal loss distribution yields subopti-
mal performance as the significance of various modalities varies.
Conversely, multimodal feature fusion enables the network to adap-
tively capture discriminative semantics from diverse modalities,
which significantly boosts the discrimination of representation.
Among these strategies, feature concatenation emerges as the most
effective approach, as demonstrated in Tab. 4. Hence, we utilize
Concat (feature concatenation) as our final fusion layer𝜓 .

B.3 Insightful Experiments of Multimodal Loss
Distribution

To thoroughly investigate the impact of our multimodal loss dis-
tribution, we conduct several insightful visualization experiments
on trimodal ModelNet40 [16] under both symmetric and asymmet-
ric noise. The results are shown in Fig. 3 and Fig. 4. From the results,
we can find that multimodal loss distribution exhibits a smaller over-
lap and larger loss value for False labeled samples compared to the
unimodal loss distribution (Image, Point cloud, Mesh). Notably, for

Table 3: Performance comparison of RONO [4] and our DAC
under the symmetric noise rates of 0, 0.2, 0.4, 0.6, and 0.8 on
trimodal (Image, Mesh, Point cloud) ModenNet10 dataset.

𝜂
Qry Img Msh Pnt
Retrv Img Msh Pnt Img Msh Pnt Img Msh Pnt

0 RONO 0.913 0.906 0.898 0.896 0.919 0.904 0.895 0.903 0.892
Ours 0.925 0.915 0.909 0.915 0.915 0.905 0.916 0.899 0.905

0.2 RONO 0.871 0.889 0.877 0.890 0.912 0.905 0.872 0.899 0.895
Ours 0.919 0.912 0.906 0.913 0.914 0.903 0.897 0.899 0.897

0.4 RONO 0.866 0.888 0.878 0.883 0.911 0.900 0.865 0.897 0.895
Ours 0.920 0.914 0.907 0.915 0.914 0.903 0.900 0.895 0.892

0.6 RONO 0.840 0.857 0.850 0.868 0.901 0.892 0.854 0.888 0.892
Ours 0.900 0.899 0.891 0.900 0.904 0.894 0.889 0.890 0.891

0.8 RONO 0.826 0.859 0.849 0.858 0.898 0.887 0.842 0.880 0.885
Ours 0.879 0.872 0.878 0.875 0.875 0.878 0.879 0.877 0.889

asymmetric noise, the extremely complex class conditional noise
will degrade the performance of the memorization effect of DNNs,
resulting in a large overlap for unimodal loss distribution. In con-
trast, our multimodal approach effectively captures discriminative
semantics across modalities and leverages the complementary in-
formation from different modalities to model the multimodal loss
distribution. As a result, our multimodal loss distribution exhibits
a reduced overlap and a more distinct bimodal pattern, thereby
facilitating efficient sample division. These results demonstrate the
effectiveness of our multimodal loss distribution in managing both
symmetric and asymmetric noise.

B.4 Insightful Experiments of Self-Correction.
To investigate the impact of our self-correction, we conduct

visualization experiments to investigate the quality of representa-
tions of samples on ModelNet40 [16] under 0.4 symmetric noise,
as shown in Fig. 5. The results reveal the following key insights:

2024-04-19 09:39. Page 2 of 1–4.
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Table 4: Investigation on the structure of fusion layer𝜓 .

ModelNet40
Method Img→ Pnt Pnt→ Img

0.4 0.8 0.4 0.8
Ensemble 0.877 0.832 0.866 0.827

Add 0.878 0.830 0.868 0.826
Concat 0.885 0.849 0.882 0.847

Attention 0.880 0.830 0.873 0.824

1) Improved representation compactness. By comparing Fig. 5 (a)
and (b), we observed that our model with self-correction gener-
ated more compact representations for clean samples as the use of
corrected labels from noisy samples facilitated enhanced network
optimization. 2) Enhanced discrimination of noisy samples. The
comparison between Fig. 5 (c) and (d) demonstrated that without
self-correction, the model struggled to mine the true semantics of
noisy samples, resulting in a less focused similarity distribution. In
contrast, with self-correction, we can exploit the noise-free seman-
tic information from the model’s multimodal predictions, which
allowed noisy samples to compact to their respective clean cen-
ters, thus boosting the semantic compactness and discrimination
of their representations. These results highlight the high quality
of the corrected labels and the effectiveness of our self-correction
strategy.

C OBJAVERSE-N200
In this section, we present a comprehensive overview of our

proposed realistic noisy 3D benchmark: Objaverse-N200. Fig. 6 il-
lustrates the noisy samples within Objaverse-N200. From the figure,
we could obtain the following observations: 1) Diversity. Derived
from the extensive Objaverse [3], Objaverse-N200 reveals a signifi-
cantly enhanced diversity in instances within a category. 2)Uneven
noise distribution. A comparison between categories like Apple
and Basketball reveals a stark contrast in noise ratios, with Bas-
ketball having approximately 90% noisy samples, while Apple has
around 20%. This highlights the varying noise levels across differ-
ent categories, posing a realistic challenge. 3) Feature-dependent
noise. By comparing samples with true and false labels, it is evident
that the noisy samples exhibit similar appearances. Furthermore,
the zero-shot classification mechanism employed for label assign-
ment introduces feature-dependent noise, making the dataset more
challenging. These observations collectively demonstrate the com-
plexity and practical relevance of Objaverse-N200, serving as a
valuable resource for evaluating the robustness of 2D-3D retrieval
methods in the presence of real-world noise.
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Figure 3: Comparison of the different loss distribution on trimodal ModelNet40 under 0.4 symmetric noise at epoch 2.
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Figure 4: Comparison of the different loss distribution on trimodal ModelNet40 under 0.2 asymmetric noise at epoch 4.
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Figure 5: Investigation of Self-Correction (SC) on ModelNet40 under 0.4 symmetric noise. (a), (b), (c), and (d) show the similarity
distribution of the training dataset, which describes the cosine similarity between the centers in our contrastive center loss
L𝑠𝑒𝑚 and common representations of samples. Noisy similarity denotes the similarity between common representations and
the centers corresponding to their noisy labels. Clean similarity denotes the similarity between common representations and
the centers corresponding to their ground-truth clean labels.
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Figure 6: Samples in Objaverse-N200. Green/red boxes indicate True/False labels
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