
DynGFN: Towards Bayesian Inference of Gene
Regulatory Networks with GFlowNets

Anonymous Author(s)
Affiliation
Address
email

Abstract

One of the grand challenges of cell biology is inferring the gene regulatory network1

(GRN) which describes interactions between genes and their products that control2

gene expression and cellular function. We can treat this as a causal discovery3

problem but with two non-standard challenges: (1) regulatory networks are inher-4

ently cyclic so we should not model a GRN as a directed acyclic graph (DAG),5

and (2) observations have significant measurement noise, so for typical sample6

sizes there will always be a large equivalence class of graphs that are likely given7

the data, and we want methods that capture this uncertainty. Existing methods8

either focus on challenge (1), identifying cyclic structure from dynamics, or on9

challenge (2) learning complex Bayesian posteriors over DAGs, but not both. In10

this paper we leverage the fact that it is possible to estimate the “velocity” of gene11

expression with RNA velocity techniques to develop an approach that addresses12

both challenges. Because we have access to velocity information, we can treat the13

Bayesian structure learning problem as a problem of sparse identification of a dy-14

namical system, capturing cyclic feedback loops through time. Since our objective15

is to model uncertainty over a discrete structures, we leverage Generative Flow16

Networks (GFlowNets) to estimate the posterior distribution over the combinatorial17

space of possible sparse dependencies. Our results indicate that our method learns18

posteriors that better encapsulate the distributions of cyclic structures compared to19

counterpart state-of-the-art Bayesian structure learning approaches.20

1 Introduction21

Inferring gene regulatory networks (GRNs) is a long standing problem in cell biology [25, 44]. If22

we knew the GRN, it would dramatically simplify the design of biological experiments and the23

development of drugs because it would serve as a map of which genes to perturb to manipulate24

protein and gene expression. GRNs concisely represent the complex system of directed interactions25

between genes and their regulatory products that govern cellular function through control of RNA26

(gene) expression and protein concentration. We can treat GRN inference as a causal discovery27

problem by treating the regulatory structure between genes (variables) as causal dependencies (edges)28

that we infer / rule out by using gene expression data. Structure learning methods aim to automate29

this task by inferring a set of directed acyclic graphs (DAGs) that are consistent with the conditional30

independencies that we can measure among the variables [13, 41, 42]. While there may be multiple31

DAGs in this set—the “Markov equivalence class”—when we are able to perturb the variables with32

enough experimental interventions, it is possible to uniquely identify a causal graph [17].33

However, structure learning for inferring GRNs comes with two non-standard challenges: (1) gene34

regulation contains inherent cyclic feedback mechanisms, hence we should not model a GRN as a35

DAG, and (2) observations are limited and have significant measurement noise, hence there exists a36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

A Problem: Gene Modules

GFN Graph Sampler

G ∼ Qψ (G)

1 0 1 …
0 1 0 …
⋮ ⋮ ⋱
1 0 0 …

Parameter HyperNetwork

⋮

G

θ
θ

Structural Model

{
G
θ
x } ⋮ ⋮

xi d xi

G

p (G, θ , D) = p (D |G, θ)p (θ |G)p (G)

Qψ (G) ∝ p (G) → G p (θ |G) = δ (θ |G) = θ

hϕ(G) → θ

p (D |G, θ) = ∥d x − fθ(x , G)∥
fθ(x , G) → ̂d x

x

̂d x

Figure 1: Architecture for Bayesian structure learning of dynamical systems. DynGFN consists
of three main components: A GFlowNet modeling a posterior distribution over graphs Q(G|D), a
HyperNetwork modeling a posterior over parameters given a graph Q(θ|G,D), and the structural
equation model scoring G and θ according to how well they fit the data. Although the figure shows
the case where Q(G|D) is modelled with a GFlowNet, this can be any arbitrary graph sampler that
can sample discrete structures G ∼ Q(G|D).

large equivalence class of graphs that are likely given datasets with typical sample sizes. Existing37

methods either focus on (1) – identifying graphs with cyclic structure by leveraging dynamics [14, 12]38

or assuming the system is in equilibrium [36], or (2) – learning complex Bayesian posteriors over39

explanatory DAGs [11], but not both. In this work, we address both challenges concurrently in a fully40

differentiable end-to-end pipeline (see Figure 1).41

To accomplish this, we treat structure learning as a problem of sparse identification of a dynamical42

system. From a dynamical systems perspective, one can model both causal structure between variables43

as well as their time-dependent system response with the drift function [37, 43]. We leverage the44

fact that we can estimate the rate of change of a gene’s expression (velocity) with RNA velocity45

methods [8]. This data takes the form of dynamic tuple pairs (x, dx), which we can use to pose the46

dynamical system learning problem as a regression task (see Figure 1). This significantly simplifies47

the learning objective as we can model system dynamics while also learning structure without the48

need for numerically intensive differential equation solvers. We view this as a step towards Bayesian49

structure learning from continuous dynamics – we term this Bayesian dynamic structure learning.50

Our approach estimates the posterior over the sparse dependencies and parameters of the dynamical51

system. This is important in scientific applications because it is usually prohibitively expensive52

to acquire a enough data to uniquely identify the true graph underlying a data generating process.53

Capturing the complex distribution over candidate structure is critical for downstream scientific54

applications and is an essential step in active causal discovery [39, 52, 18]. This is especially important55

in settings where experiments are expensive, e.g. conducting genetic perturbations for inference of56

GRNs. Bayesian structure learning is a class of methods that try to model this distribution over57

structure from observed data. These methods model posteriors over admissible structures P (G|D)58

that explain the observations [32, 10, 4, 11, 31], but focus on modelling distributions over DAGs.59

Our approach leverages Generative Flow Networks (GFlowNets) to model complex distributions over60

cyclic structures. GFlowNets [6, 7] parameterize the distribution over any discrete object (e.g. graphs)61

through a sequential policy, and as a result avoid needing to make restrictive parametric assumptions62

on the distribution. This makes them a useful tool in structure learning, particularly in cases where63

P (G|D) is discrete and complex [11]. In this work, we use GFlowNets to learn posteriors over the64

sparse structure in a dynamical system, and separately learn the posteriors over the parameters of the65

drift function via a HyperNetwork [15] that conditions on inferred structures. Our main contributions66

are summarized as follows:67

• We develop a novel framework for Bayesian structure learning under the lens of dynamical68

system identification for modelling complex posteriors over cyclic graphs. We consider flexible69

parameterizations for the structural model such that we can capture both linear and non-linear70

dynamic relationships.71

2

• We design a novel GFlowNet architecture, Dynamic GFlowNet (DynGFN), tailored for modelling72

posteriors over cyclic structures. We propose a per-node factorization within DynGFN that enables73

efficient search over the discrete space of cyclic graphs.74

• We empirically evaluated DynGFN on synthetic dynamic data designed to induce highly multi-75

modal posteriors over graphs.76

• We showcase the use of DynGFN on a real biological system using single-cell RNA-velocity data77

for learning posteriors of GRNs.78

2 Related Work79

There is a lot of prior work on the problem of identifying causal structure G from either observa-80

tional [e.g. 49, 54, 35] or interventional [e.g. 26, 29, 38] data, but the majority of existing methods81

return only the most likely DAG under the observed data. Bayesian approaches attempt to explicitly82

model this distribution over admissible DAGs.83

Bayesian Structure Learning: Recently, there has been significant interest in fully differentiable84

Bayesian methods for structure learning in the static case. DiBS [32], BCD-Nets [10], VCN [4], and85

DAG-GFlowNet [11] all attempt to learn a distribution over structural models from a fully observed86

system. The key difference is in how these methods parameterize the graph. DiBS is a particle87

variational inference method that uses two matrices U and V where G = sigmoid(UTV) where the88

sigmoid is applied elementwise which is similar to graph autoencoders. BCD-Nets and DP-DAG89

use the Gumbel-Sinkhorn distribution to parameterize a permutation and direct parameterization of a90

lower triangular matrix. VCN uses an autoregressive LSTM to generate the graph as this gets rid of91

the standard uni-modal constraint of Gaussian distributed parameters. DAG-GFN has shown success92

for modelling P (G|D) [11]. However, it remains restrictive to assume the underlying structure of93

the observed system is a DAG as natural dynamical systems typically contain regulating feedback94

mechanisms. This can be particularly challenging for GFlowNets since including cycles in the95

underlying structure exponentially increases the discrete search space. We show that under certain96

assumptions we can in part alleviate this shortcoming for learning Bayesian posteriors over cyclic97

structures for dynamical systems. In small graphs, these methods can model the uncertainty over98

possible models (including over Markov equivalence classes).99

Dynamic and Cyclic Structure Learning: There has been comparatively little work towards100

Bayesian structure learning from dynamics. Recent works in this direction based on NeuralODEs [9]101

propose a single explanatory structure [50, 5, 1, 2]. CD-NOD leverages heterogeneous non-stationary102

data for causal discovery when the underlying generative process changes over time [53, 20]. A103

similar approach uses non-stationary time-series data for causal discovery and forecasting [19].104

DYNOTEARS is a score-based approach that uses time-series to learn structure [40]. However,105

these methods do not attempt to explicitly model a distribution over the explanatory structure. Other106

methods aim to learn cyclic dependencies in the underlying graph [23, 36, 28, 3]. For instance, [23]107

propose an iterative method that leverages interventional data to learn directed cyclic graphs. It is108

suggested that CD-NOD is also extendable to learn cyclic structure [20]. But these methods do not109

model a posterior over structure. In general, there remains a gap for the problem of Bayesian structure110

learning over cyclic graphs.111

We include further discussion on related work for GRN inference from single-cell transcriptomic112

data and cell dynamics in Appendix C.1.113

3 Preliminaries114

3.1 Bayesian Dynamic Structure Learning115

Problem Setup: We consider a finite dataset, D, of dynamic pairs (x, dx) ∈ Rd × Rd where x116

respresents the state of the system sampled from an underlying time-invariant stochastic dynamical117

system governed by a latent drift dxdt = f(x, ϵ) where ϵ is a noise term that parameterizes the SDE; x118

and ϵ are mutually independent. The latent drift has some fixed sparsity pattern i.e. ∂fi
∂xj
̸= 0 for a119

small set of variables, which can be parameterized by a graph G such that gij = 1[∂fi∂xj
̸= 0], where120

3

gij ∈ G, i = 1, . . . , d, j = 1, . . . , d. The variables xj for which ∂fi
∂xj
̸= 0 can be interpreted as the121

causal parents of xi, denoted Pa(xi). This lets us define an equivalent dynamic structural model122

[37, 43] of the form,123

dxi(t)

dt
= fi(Pa(xi), ϵi), (1)

for i = 1, . . . , d. For the graphG to be identifiable, we assume that all relevant variables are observed,124

such that causal sufficiency is satisfied.125

Our goal is to model our posterior over explanatory graphs Q(G|D) given the data. We aim to126

jointly learn distribution over parameters θ that parameterize the latent drift f(x); these parameters127

will typically depend on the sparsity pattern such that, i.e. p(θ|G) ̸= p(θ). We can factorize this128

generative model as follows,129

p(G, θ,D) = p(D|G, θ)p(θ|G)p(G) (2)

This factorization forms the basis of our inference procedure. We learn a parameterized function130

fθ(x) : Rd → Rd that approximates the structural model defined in (1). To model this joint131

distribution, we need a way of representing, P (G), a distribution over the combinatorial space of132

possible sparsity patterns, and P (θ|G), the posterior over the parameters of fθ. We use GFlowNets133

[6] represent P (G), and a HyperNetwork to parameterize P (θ|G).134

3.2 Generative Flow Networks135

GFlowNets are an approach for learning generative models over spaces of discrete objects [6, 7].136

GFlowNets learn a stochastic policy PF (τ) to sequentially sample an object x from a discrete space137

X . Here τ = (s0, s1, . . . , sn) represents a full Markovian trajectory over plausible discrete states,138

where sn is the terminating state (i.e. end of a trajectory) [34]. The GFlowNet is trained such that at139

convergence, sequential samples from the stochastic policy over a trajectory, x ∼ PF (τ), i.e. x = sn,140

are equal in distribution to samples from the normalized reward distribution P (x) = R(x)∑
x′∈X R(x′) .141

The GFlowNet policies are typically trained by optimizing either the Trajectory Balance (TB)142

loss [34], Subtrajectory Balance (Sub-TB) loss [33], or the Detailed Balance (DB) loss [11]. In this143

work, we exploit the DB loss to learn a stochastic policy for directed graph structure.144

Detailed Balance Loss: The DB loss [11] leverages the fact that the reward function can be145

evaluated for any partially constructed graph (i.e. any prefix of τ), and hence we get intermediate146

reward signals for training the GFlowNet policy. The DB loss is defined as:147

LDB(si, si−1) =

(
log

R(si)PB(si−1|si;ψ)PF (sn|si−1;ψ)

R(si−1)PF (si|si−1;ψ)PF (sn|si;ψ)

)2

, (3)

where PF (si|si−1;ψ) and PB(si−1|si;ψ) represent the forward transition probability and backward148

transition probability, and a trainable normalizing constant, respectively. Under this formulation,149

during GFlowNet training the reward is evaluated at every state. For this reason, the DB formulation150

is in general advantageous for the structure learning problem where any sampled graph can be viewed151

as a complete state, hence more robustly inform gradients when training the stochastic policy than152

counterpart losses. Previous work has shown GFlowNets are useful in settings with multi-modal153

posteriors. This is of particular interest to us where many admissible structures can explain the154

observed data equally well. We model Qψ(G) using PF (si|si−1;ψ) and learn the parameters ψ.155

4 DynGFN for Bayesian Dynamic Structure Learning156

We present a general framework for Bayesian dynamic structure learning and propose a GFlowNet157

architecture, DynGFN, tailored for modelling a posterior over discrete cyclic graphical structures.158

We summarize our framework in Figure 1 and Algorithm 1. DynGFN consists of 3 key modules:159

1. A graph sampler that samples graphical structures that encode the structural dependencies160

among the observed variables. This is parameterized with a GFlowNet that iteratively adds161

edges to a graph.162

4

Algorithm 1 Batch update training of DynGFN

1: Input: Data batch (xb, dxb), initial NN weights ψ, ϕ, L0 sparsity prior λ0, and learning rate ϵ.
2: s0 ← 0B×d×d ▷ Training is paralleled over B graph trajectories
3: a ∼ PF (s1|s0;ψ), ▷ Sample initial actions vector
4: while a not ∅ do
5: Compute PF (si|si−1;ψ), PB(si−1|si;ψ)
6: θ ← hϕ(si)

7: d̂xb ← fθ(x, si)

8: Ri(si)← e−∥dxb−d̂xb∥2
2+λ0∥si∥0

9: ψ ← ψ − ϵ∇ψLDB(si, si−1) ▷ LDB(si, si−1) computed as in Equation 3
10: a ∼ PF (si|si−1;ψ), si → si+1 ▷ Take action step to go to next state
11: ϕ← ϕ− ϵ∇ϕ logR

return Updated GFN weights ψ and updated HyperNetwork weights ϕ.

2. A model that approximates the structural equations defined in (1) to model the functional163

relationships between the observed variables, indexed by parameters θ. This is a class of164

functions that respect the conditional independencies implied by the graph sampled in step165

1. We enforce this by masking inputs according to the graph.166

3. Because the functional relationships between variables may be different depending on which167

graph is sampled, we use a HyperNetwork architecture that outputs the parameters θ of the168

structural equations as a function of the graph. We also show that under linear assumptions169

of the structural modules, we can solve for optimal θ analytically (i.e. we do not need the170

HyperNetwork).171

For training, we assume L0 sparsity of graphs G to constrain the large discrete search space over172

possible structures. We use a reward R for a graph G and L0 penalty of the form: R(G) =173

e−∥dx−d̂x∥2
2+λ0∥G∥0 . We motivate this set-up so we can estimate d̂x close to dx in an end-to-end174

learning pipeline. Since estimates for d̂x are dependent on G and θ, this reward informs gradients to175

learn a policy that can approximate Q(G) given dynamic data.176

The main advantage of DynGFN comes when modelling complex posteriors with many modes. Prior177

work has shown GFlowNets are able to efficiently model distributions where we can share information178

between different modes [34]. The challenge we tackle is how to do this with a changing objective179

function, as the GFlowNet objective is a function of the current parameter HyperNetwork and the180

structural equations. We use multilayer perceptrons (MLPs) to parameterize the stochastic GFlowNet181

policy, HyperNetwork architecture, and the dynamic structural model1.182

4.1 Graph Sampler183

DynGFN models a posterior distribution over graphs Q(G|D) given a finite set of observations. To184

learn Q(G|D), DynGFN needs to explore over a large discrete state space. Since we aim to learn185

a bipartite graph between x and dx, DynGFN needs to search over 2d
2

possible structures, where186

d denotes the dimensionality of the system and 2d
2

the number of possible edges in G. For even187

moderate d, this discrete space is very large (e.g. for d = 20 we have 2400 possible graphs).188

However, under the assumption of causal sufficiency, we can significantly reduce this search space,189

by taking advantage of the fact that Q(G|D) factorizes as follows,190

Q(G|D) =
∏

i∈[1,...,d]

Qi(G[·, i]|D) (4)

By using this model, we reduce the search space from 2d
2 → d2d. For d = 20 this is ≈ 2104. While191

still intractable to search over, it is still a vast improvement over the unfactorized case. We call this192

model a per-node posterior, and we use a per-node GFlowNet going forward. We discuss details193

regarding encouraging forward policy exploration during training in Appendix B.6.194

1When we assume linear dynamic structural relationships, we can solve for the parameters analytically, thus
do not need MLPs for the HyperNetwork and dynamic structural model. This is further discussed in section 4.2

5

4.2 HyperNetwork and Structural Model195

We aim to jointly learn the structural encoding G and parameters θ that together model the structural196

relationships dx = fθ(x,G) of the dynamical system variables. To accomplish this, we propose197

learning an individual set of parameters θ for each graph G, independent of the input data x. This198

approach encapsulates P (θ|G) in (2). We use a HyperNetwork architecture that takes G as input199

and outputs the structural equation model parameters θ, i.e. θ = hϕ(G) hence P (θ|G) = δ(θ|G) –200

allowing us to learn a separate θ for each G. This HyperNetwork model does not capture uncertainty201

in the parameters, however the formulation may be extended to the Bayesian setting by placing a202

prior on the HyperNetwork parameters ϕ. Although hϕ allows for expressive parameterizations for θ,203

it may not be easy to learn2. HyperNetworks have shown success in learning parameters for more204

complex models (e.g. LSTMs and CNNs) [15], hence motivates their fit for our application.205

Linear Assumption on Dynamic Structural Model: In addition to analytically modelling linear206

systems, in some cases it may suffice to assume a linear differential form dx
dt = Ax to approximate207

dynamics. In this setting, given a sampled graph G ∼ Q(G) and n i.i.d. observations of (x, dx) we208

can solve for θ = A analytically. To induce dependence on the graph structure, we use the sampled209

G as a mask on x and construct x̃i = GTi ⊙ x. Then we can solve for θ on a per-node basis as210

θi = (x̃Ti x̃i + λI)−1x̃Ti dxi, (5)

where i = 1, . . . d, λ > 0 is the precision of an independent Gaussian prior over the parameters, and211

I is the identity matrix. We use λ = 0.01 throughout this work.212

5 A Useful Model of Indeterminacy213

Figure 2: For an identifiable graph, we add a new variable which
has the same values as v3 and creates three possible explanations
for the data (green). If we consider a sparsity penalty, then we can
eliminate the last possibility (which has two additional edges) for
only two possible graphs.

In order to evaluate DynGFN214

ability to model complex pos-215

teriors over graphs, we need a216

structure learning problem with217

a large equivalence class of ad-218

missible graphs. We present a219

simple way to augment a set220

of identifiable dynamics under221

some model to create a com-222

binatorial number of equally223

likely dynamics under the same224

model. More specifically, this225

creates a ground truth posterior226

Q∗(G|D) ∝
∑
T (G∗) where227

T (·) : G → G is an analytically228

computable transformation over graphs and G∗ is the identified graph under the original dynamics.229

We use this system to test how well we can learn a posterior over structures that matches what we see230

in single-cell data.231

Specifically, given a dataset of (x, dx) ∈ Rd ×Rd pairs, we create a new dataset with d+1 variables232

where the ‘new’ variable v′ is perfectly correlated with an existing variable v. In causal terms, this233

new variable inherits the same parents as v, that is Pa(v′) := Pa(v) and the same structural equations234

as v, that is dv′ = dv. This is depicted in Figure 2. This creates a number of new possible explanatory235

graphs, which we generalize with the following proposition.236

Proposition 1. Given any d dimensional ODE system with G∗ identifiable under f ∈ F , the237

D = d + a dimensional system dx
dt = Ax, denote the vector of multiplicities m ∈ Nd with mi as238

the number of repetitions of each variable. Then this construction creates an admissible family of239

graphs G′ where |G′| =
∏
i∈d(2

mi − 1)Gi1. Furthermore, under an L0 penalty on G, this reduces to240 ∏
i(mi)

Gi1.241

See Appendix A for full proof. The intuition behind this proposition can be seen from the case of242

adding a single copied variable. This corresponds to A = [δvId] where δv is a vector with a 1 on243

2We discuss training dynamics when using hϕ in Appendix B.7.

6

Table 1: Bayesian dynamic structure learning of linear and non-linear systems with d = 20 variables.
The graphs representing the structural dynamic relationships of the linear and non-linear systems have
50 edges out of possible 400. The ground truth discrete distribution P (G∗) contains 1024 admissible
graphs for each respective system. The ℓ and h pre-fix denote usage of the analytic linear solver and
HyperNetwork solver for structural model parameters, respectively. Results are reported on held out
test data over 5 model seeds.

Linear System
Model Bayes-SHD ↓ AUC ↑ KL ↓ NLL ↓
ℓ-DynBCD 32.0± 0.27 0.71± 0.0 1707.45± 9.66 —
ℓ-DynDiBS 29.2± 0.78 0.71± 0.0 6622.43± 171.67 —
ℓ-DynGFN 22.8 ± 1.4 0.75 ± 0.01 1091.60 ± 35.72 —

h-DynBCD 5.5 ± 1.1 0.89± 0.04 701.19± 46.99 (9.83± 0.59)E − 5
h-DynDiBS 28.5± 4.2 0.51± 0.07 7934.90± 381.80 (8.17 ± 1.30)E − 6
h-DynGFN 6.7 ± 0.0 0.94 ± 0.0 350.92 ± 30.15 (8.35± 0.02)E − 3

Non-linear System
Model Bayes-SHD ↓ AUC ↑ KL ↓ NLL ↓
ℓ-DynBCD 77.5± 8.3 0.42± 0.03 3814.86± 354.56 —
ℓ-DynDiBS 75.7± 7.7 0.59 ± 0.01 5893.65± 59.66 —
ℓ-DynGFN 45.7 ± 0.6 0.55± 0.0 226.25 ± 6.58 —

h-DynBCD 192.9± 0.7 0.50± 0.0 9108.69± 51.34 (3.83± 0.32)E − 4
h-DynDiBS 48.1± 9.0 0.53± 0.10 8716.64± 265.29 (4.06 ± 0.10)E − 6
h-DynGFN 32.6 ± 0.9 0.67 ± 0.01 193.28 ± 8.53 (1.47± 0.11)E − 3

node v and zeros elsewhere, and Id is the d-dimensional identity matrix. Let v have c children, such244

that v ∈ Pa(c) in the identifiable system, then any of those c child nodes could depend either on v or245

on the new node v′ or both. This creates 3c possible explanatory graphs. If we restrict ourselves to246

the set of graphs with minimal L0 norm, then we eliminate the possibility of a child node depending247

on both v and v′, this gives 2c possible graphs, choosing either v or v′ as a parent.248

6 Experimental Results249

In this section we evaluate the performance of DynGFN against counterpart Bayesian structure250

learning methods (see Appendix B.2 for details). Since our primary objective is to learn Bayesian251

posteriors over discrete structure G, we compare to Bayesian methods that can also accomplish this252

task, i.e. versions of BCD-Nets [10] and DiBS [32]. We show in certain cases, DynGFN is able253

to better capture the true posterior when there are a large number of modes. We evaluate methods254

according to four metrics: Bayes-SHD, area under the receiver operator characteristic curve (AUC),255

Kullback–Leibler (KL) divergence between learned posteriors Q(G) and the distribution over true256

graphs P (G∗), and the negative log-likelihood (NLL) P (D|G, θ) (in our setting this reduces to the257

mean squared error between d̂x and dx, given θ and sampled G′s). Since the analytic linear solver258

requires data at run-time to compute optimal parameters for the structural model, we include the NLL259

metric only for models using the HyperNetwork solver. Bayes-SHD measures the average distance to260

the closest structure in the admissible set of graphs according to the structural hamming distance,261

which in this case is simply the hamming distance of the adjacency matrix representation to the262

closest admissible graph. We assume P (G∗) is uniform over G∗ and include further details about263

evaluating the quality of learned posteriors in Appendix B.8.264

6.1 Experiments with Synthetic Data265

We generated synthetic data from two systems using our indeterminacy model presented in section 5:266

(1) a linear dynamical system dx = Ax, and (2) a non-linear dynamical system dx = sigmoid(Ax).267

We consider ℓ-DynGFN and h-DynGFN, i.e. DynGFN with the linear analytic parameter solver as268

shown in (5), and DynGFN with the HyperNetwork parameter solver hϕ. Likewise, we compare ℓ-269

DynGFN and h-DynGFN to counterpart Bayesian baselines which we call ℓ-DynBCD, ℓ-DynDiBS, h-270

DynBCD, and h-DynDiBS. To constrain the discrete search procedure, we assume a sparse prior on the271

structure the graphs G, specifically the L0 prior. Due to challenging iterative optimization dynamics272

present when using θ = hϕ(G) for DynGFN, to train initialize the forward policy PF (si|si−1;ψ)273

7

using the ψ learned in ℓ-DynGFN to provide a more admissible starting point for learning hϕ (we274

discuss further details in Appendix B.7). We do not need to do this for h-DynBCD and h-DynDiBS275

as we are able to train both models end-to-end without iterative optimization. In Table 1 we show276

results of our synthetic experiments for learning posteriors over multi-modal distributions of cyclic277

graphs. We observe the DynGFN is most competitive on both synthetic systems for modelling the278

true posterior over structure. Details about DynGFN, baselines, and accompanying hyper-parameters279

can be found in Appendix B.280

6.2 Ablations Over Sparsity and Linearity of Dynamic Systems281

We conduct two ablations: (1) ablation over sparsity of the dynamic system structure, and (2) ablation282

over ∆t, the time difference between data points of dynamic simulation. For a sparsity level of 0.9,283

the ground truth graphs have 50 edges out of d2 possible edges. In these experiments, P (G∗) has284

1024 modes. We conduct the ablations over 5 random seeds for each set of experiments.285

Table 2: Ablation for ℓ-DynGFN on d = 20 systems
with varying levels of sparsity and fixed ∆t = 0.05.

Sparsity Bayes-SHD ↓ AUC ↑ KL ↓
0.95 16.4± 1.71 0.79± 0.0 889.57± 31.24
0.90 22.8± 1.41 0.75± 0.01 1091.60± 35.72
0.85 32.8± 0.72 0.71± 0.0 —
0.80 39.2± 0.69 0.71± 0.0 —
0.75 60.2± 1.17 0.66± 0.01 —

Table 3: Ablation for ℓ-DynGFN on d = 20 non-linear
systems with varying ∆t and fixed sparsity at 0.9.

∆t Bayes-SHD ↓ AUC ↑ KL ↓
0.001 38.7± 0.80 0.61± 0.0 202.41± 9.95
0.005 39.0± 0.81 0.60± 0.0 206.83± 11.55
0.01 40.6± 1.13 0.59± 0.0 202.71± 7.74
0.05 45.7± 0.62 0.55± 0.0 226.25± 6.58
0.1 51.8± 0.18 0.50± 0.0 264.86± 2.17

Sparsity: DynGFN uses the L0 prior on286

G throughout training. Under this setting,287

system sparsity carries significant weight288

on the ability to learn posteriors over the289

structured dynamics of a system. We show290

this trend in Table 2. We note that comput-291

ing the KL-divergence for DynGFN, specif-292

ically computing the probability generat-293

ing a true G, becomes computationally in-294

tractable as G is less sparse3. For systems295

of 0.9 and 0.95 sparsity, we observe a de-296

creasing trend in KL and Bayes-SHD, and297

an increasing trend in AUC. This result is298

expected as DynGFN can better traverse299

sparse graphs as the combinatorial space300

over possible trajectories is smaller relative301

to denser systems.302

Linearity: Training DynGFN via the lin-303

ear solver for the structural model parame-304

ters is an easier objective due to simplified305

training dynamics. Because of this, we explore the performance of ℓ-DynGFN assuming fθ for306

modelling equation (1) to be linear in the non-linear system. We do this by conducting an ablation307

over ∆t and find that the performance of ℓ-DynGFN on the non-linear system improves as ∆t→ 0.308

We show a portion of this trend in Table 3.309

6.3 Experiments on Single-Cell RNA-velocity Data310

To show how DynGFN can be applied to single cell data we use a cell cycle dataset of human311

Fibroblasts [46]. As a motivating example we show the correlation structure of single-cell RNA-seq312

data from human Fibroblast cells [46] Figure 3. We show both the raw correlation and the correlation313

over cell cycle time, which is significantly higher. With such a pure cell population whose primary314

axis of variation is state in the cell cycle by aggregating over cell cycle time we expect observation315

noise to be averaged out, leading to a “truer” view of the correlation between latent variables. Further316

details for this experimental set-up are provided in Appendix C.1.3. Since there are many genes which317

are affected by the cell cycle phase, there are many correlated variables that are downstream of the318

true cell cycle regulators. This provides a natural way of using cell cycle data to evaluate a model’s319

ability to capture the Bayesian posterior. In Table 4 we show results for learning posteriors over an320

undetermined GRN using RNA velocity data. We find that ℓ-DynGFN and h-DynGFN yield low KL321

3For example, since DynGFN constructs one object G sequentially over a state space distribution, we must
compute probabilities of all combinatorial state trajectories for constructing G = (si, . . . , sn). The space of
combinatorial state trajectories is n! in nature, hence this computation is only possible for small graphs and/or
sparse graphs.

8

Figure 3: (Left) Correlation structure in the raw single cell data over 5000 cells and 2000 genes
selected by scVelo [8] pre-processing. (Middle) Correlation structure among genes over (inferred) cell
cycle times. This stronger correlation structure is more reflective of the correlation in the underlying
system. (Right) Cdc25A is known to inhibit Cdk1 which is known to inhibit Cdc25C, while the Mcm
complex is highly correlated with Cdc25A, they do not directly interact with Cdk1 [24].

Table 4: Bayesian dynamic structure learning 5-D cellular system using scRNA velocity data. The
dynamics of this system are unknowns, however we identify 81 admissible graphs between variables
(genes) that describe the data. We train models over 5 seeds. The graphs of this system contain of 7
true edges.

Cellular System - RNA Velocity
Model Bayes-SHD ↓ AUC ↑ KL ↓ NLL ↓
ℓ-DynBCD 2.6 ± 0.1 0.56± 0.01 321.95± 3.34 —
ℓ-DynDiBS 6.5± 0.4 0.47± 0.01 550.17± 16.63 —
ℓ-DynGFN 3.3 ± 0.4 0.59 ± 0.03 44.98 ± 18.60 —

h-DynBCD 10.1± 0.8 0.53± 0.03 587.41± 24.00 0.094± 0.003
h-DynDiBS 9.6± 4.2 0.51± 0.13 560.85± 83.83 0.084 ± 0.0
h-DynGFN 5.1 ± 1.2 0.58 ± 0.05 39.82 ± 28.05 0.109± 0.001

and moderate Bayes-SHD. While ℓ-DynBCD performs well in terms of identify a small distribution322

of true G’s, it falls short in modelling the true posterior (this can be seen from low Bayes-SHD, high323

KL).324

7 Conclusion325

We presented DynGFN, a method for Bayesian dynamic structure learning. In low dimensions we326

found that DynGFN is able to better model the distribution over possible explanatory structures than327

counterpart Bayesian structure learning baseline methods. As a proof of concept, we presented an328

example of learning the distribution over likely explanatory graphs for linear and non-linear synthetic329

systems where complex uncertainty over explanatory structure is prevalent. We demonstrate the330

use of DynGFN for learning gene regulatory structure from single-cell transcriptomic data where331

there are many possible graphs, showing DynGFN can better model the uncertainty over possible332

explanations of this data rather than capturing a single explanation.333

Limitations and Future Work: We have demonstrated a degree of efficacy when using DynGFN334

for Bayesian structure learning with dynamic observational data. A key limitation of DynGFN335

is scaling to larger systems. To effectively model P (G, θ,D), DynGFN needs to search over an336

environment state space of possible graphs. This state space grows exponentially with the number of337

possible edges, i.e. 2d
2

or d2d for per-node-GFN where d is the number of variables in the system.338

Therefore, DynGFN is currently limited to smaller systems. Nevertheless, there are many applications339

where Bayesian structure learning, even over 5-20 dimensional examples that we explore here, could340

be extraordinarily useful. We include further discussion of scaling DynGFN in Appendix C.3 with341

some ideas on how to approach this challenge. We found that training DynGFN requires some342

selection of hyper-parameters and in particular parameters that shape the reward function. Selecting343

hyper-parameters for the baseline methods prove more difficult for this task.344

9

References345

[1] Aliee, H., Theis, F. J., and Kilbertus, N. Beyond predictions in neural odes: Identification and346

interventions. arXiv preprint 2106.12430, 2021.347

[2] Aliee, H., Richter, T., Solonin, M., Ibarra, I., Theis, F., and Kilbertus, N. Sparsity in continuous-348

depth neural networks. Advances in Neural Information Processing Systems (NeurIPS), 2022.349

[3] Améndola, C., Dettling, P., Drton, M., Onori, F., and Wu, J. Structure learning for cyclic linear350

causal models. Uncertainty in Artificial Intelligence (UAI), 2020.351

[4] Annadani, Y., Rothfuss, J., Lacoste, A., Scherrer, N., Goyal, A., Bengio, Y., and Bauer, S.352

Variational causal networks: Approximate bayesian inference over causal structures. arXiv353

preprint, 2021.354

[5] Bellot, A. and Branson, K. Neural Graphical Modelling in Continuous Time: Consistency355

Guarantees and Algorithms. International Conference on Learning Representations (ICLR),356

2022.357

[6] Bengio, E., Jain, M., Korablyov, M., Precup, D., and Bengio, Y. Flow Network based Generative358

Models for Non-Iterative Diverse Candidate Generation. Advances in Neural Information359

Processing Systems (NeurIPS), 2021.360

[7] Bengio, Y., Deleu, T., Hu, E. J., Lahlou, S., Tiwari, M., and Bengio, E. GFlowNet Foundations.361

arXiv preprint 2111.09266, 2022.362

[8] Bergen, V., Lange, M., Peidli, S., Wolf, F. A., and Theis, F. J. Generalizing RNA velocity to363

transient cell states through dynamical modeling. BioRxiv preprint 820936, 2019.364

[9] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. Neural Ordinary Differential365

Equations. Advances in Neural Information Processing Systems (NeurIPS), 2018.366

[10] Cundy, C., Grover, A., and Ermon, S. BCD Nets: Scalable Variational Approaches for Bayesian367

Causal Discovery. Advances in Neural Information Processing Systems (NeurIPS), 2021.368

[11] Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-Julien, S., Bauer, S., and Bengio,369

Y. Bayesian Structure Learning with Generative Flow Networks. Uncertainty in Artificial370

Intelligence (UAI), 2022.371

[12] Friedman, N., Murphy, K., and Russell, S. Learning the structure of dynamic probabilistic372

networks. Uncertainty in Artificial Intelligence (UAI), 1998.373

[13] Glymour, C., Zhang, K., and Spirtes, P. Review of Causal Discovery Methods Based on374

Graphical Models. Frontiers in Genetics, 2019.375

[14] Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods.376

Econometrica: journal of the Econometric Society, 1969.377

[15] Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. International Conference on Learning378

Representations (ICLR), 2017.379

[16] Hashimoto, T. B., Gifford, D. K., and Jaakkola, T. S. Learning Population-Level Diffusions380

with Generative Recurrent Networks. International Conference on Machine Learning (ICML),381

2016.382

[17] Hauser, A. and Bühlmann, P. Characterization and greedy learning of interventional markov383

equivalence classes of directed acyclic graphs. Journal of Machine Learning Research (JMLR),384

13(1), 2012.385

[18] He, Y.-B. and Geng, Z. Active learning of causal networks with intervention experiments and386

optimal designs. Journal of Machine Learning Research (JMLR), 9, 2008.387

[19] Huang, B., Zhang, K., Gong, M., and Glymour, C. Causal discovery and forecasting in388

nonstationary environments with state-space models. International Conference on Machine389

Learning (ICML), 2019.390

10

[20] Huang, B., Zhang, K., Zhang, J., Ramsey, J., Sanchez-Romero, R., Glymour, C., and Schölkopf,391

B. Causal discovery from heterogeneous/nonstationary data. The Journal of Machine Learning392

Research (JMLR), 21, 2020.393

[21] Huguet, G., Magruder, D. S., Tong, A., Fasina, O., Kuchroo, M., Wolf, G., and Krishnaswamy,394

S. Manifold interpolating optimal-transport flows for trajectory inference. Advances in Neural395

Information Processing Systems (NeurIPS), 2022.396

[22] Huguet, G., Tong, A., Zapatero, M. R., Wolf, G., and Krishnaswamy, S. Geodesic Sinkhorn:397

Optimal transport for high-dimensional datasets. arXiv preprint 2211.00805, 2022.398

[23] Itani, S., Ohannessian, M., Sachs, K., Nolan, G. P., and Dahleh, M. A. Structure learning in399

causal cyclic networks. Proceedings of Workshop on Causality: Objectives and Assessment at400

NIPS 2008, 2010.401

[24] Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M. KEGG:402

Integrating viruses and cellular organisms. Nucleic Acids Research, 49, 2021.403

[25] Karlebach, G. and Shamir, R. Modelling and analysis of gene regulatory networks. Nature404

reviews Molecular cell biology, 9, 2008.405

[26] Ke, N. R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle, H., Pal, C., and Bengio, Y. Learning406

neural causal models from unknown interventions. arXiv preprint 1910.01075, 2019.407

[27] La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber,408

K., Kastriti, M. E., Lönnerberg, P., Furlan, A., Fan, J., Borm, L. E., Liu, Z., van Bruggen,409

D., Guo, J., He, X., Barker, R., Sundström, E., Castelo-Branco, G., Cramer, P., Adameyko, I.,410

Linnarsson, S., and Kharchenko, P. V. RNA velocity of single cells. Nature, 560, 2018.411

[28] Lacerda, G., Spirtes, P. L., Ramsey, J., and Hoyer, P. O. Discovering cyclic causal models by412

independent components analysis. arXiv preprint 1206.3273, 2012.413

[29] Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien, S. Gradient-Based Neural DAG414

Learning. International Conference on Learning Representations (ICLR), 2020.415

[30] Liu, Q. and Wang, D. Stein variational gradient descent: A general purpose bayesian inference416

algorithm. Advances in Neural Information Processing Systems (NeurIPS), 2016.417

[31] Lopez, R., Hütter, J.-C., Pritchard, J. K., and Regev, A. Large-scale differentiable causal418

discovery of factor graphs. Advances in Neural Information Processing Systems (NeurIPS),419

2022.420

[32] Lorch, L., Rothfuss, J., Schölkopf, B., and Krause, A. DiBS: Differentiable Bayesian Structure421

Learning. Advances in Neural Information Processing Systems (NeurIPS), 2021.422

[33] Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E., Jain, M., Nica, A., Bosc, T., Bengio,423

Y., and Malkin, N. Learning gflownets from partial episodes for improved convergence and424

stability. arXiv preprint 2209.12782, 2022.425

[34] Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio, Y. Trajectory Balance: Improved Credit426

Assignment in GFlowNets. Advances in Neural Information Processing Systems (NeurIPS),427

2022.428

[35] Monti, R. P., Zhang, K., and Hyvärinen, A. Causal discovery with general non-linear relation-429

ships using non-linear ica. Uncertainty in Artificial Intelligence (UAI), 2020.430

[36] Mooij, J. M., Janzing, D., Heskes, T., and Schölkopf, B. On causal discovery with cyclic431

additive noise models. Advances in Neural Information Processing Systems (NeurIPS), 2011.432

[37] Mooij, J. M., Janzing, D., and Schölkopf, B. From Ordinary Differential Equations to Structural433

Causal Models: The deterministic case. Uncertainty in Artificial Intelligence (UAI), 2013.434

[38] Mooij, J. M., Magliacane, S., and Claassen, T. Joint causal inference from multiple contexts.435

The Journal of Machine Learning Research (JMLR), 21, 2020.436

11

[39] Murphy, K. P. Active learning of causal bayes net structure. Technical report, UC Berkeley,437

2001.438

[40] Pamfil, R., Sriwattanaworachai, N., Desai, S., Pilgerstorfer, P., Georgatzis, K., Beaumont, P.,439

and Aragam, B. Dynotears: Structure learning from time-series data. International Conference440

on Artificial Intelligence and Statistics (AISTATS), 2020.441

[41] Pearl, J. Causality. Caimbridge University Press, second edition, 2009.442

[42] Peters, J., Janzing, D., and Schölkopf, B. Elements of causal inference: foundations and443

learning algorithms. The MIT Press, 2017.444

[43] Peters, J., Bauer, S., and Pfister, N. Causal models for dynamical systems. Probabilistic and445

Causal Inference: The Works of Judea Pearl, 2022.446

[44] Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and Murali, T. Benchmarking algorithms447

for gene regulatory network inference from single-cell transcriptomic data. Nature methods, 17,448

2020.449

[45] Qiu, X., Zhang, Y., Martin-Rufino, J. D., Weng, C., Hosseinzadeh, S., Yang, D., Pogson, A. N.,450

Hein, M. Y., Hoi (Joseph) Min, K., Wang, L., Grody, E. I., Shurtleff, M. J., Yuan, R., Xu, S.,451

Ma, Y., Replogle, J. M., Lander, E. S., Darmanis, S., Bahar, I., Sankaran, V. G., Xing, J., and452

Weissman, J. S. Mapping transcriptomic vector fields of single cells. Cell, 185, 2022.453

[46] Riba, A., Oravecz, A., Durik, M., Jiménez, S., Alunni, V., Cerciat, M., Jung, M., Keime, C.,454

Keyes, W. M., and Molina, N. Cell cycle gene regulation dynamics revealed by RNA velocity455

and deep-learning. Nature Communications, 13, 2022.456

[47] Saelens, W., Cannoodt, R., Todorov, H., and Saeys, Y. A comparison of single-cell trajectory457

inference methods. Nature Biotechnology, 37, 2019.458

[48] Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu,459

S., Lin, S., Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K., Jaenisch,460

R., Regev, A., and Lander, E. S. Optimal-Transport Analysis of Single-Cell Gene Expression461

Identifies Developmental Trajectories in Reprogramming. Cell, 176, 2019.462

[49] Spirtes, P. and Glymour, C. An algorithm for fast recovery of sparse causal graphs. Social463

Science Computer Review, 9, 1991.464

[50] Tank, A., Covert, I., Foti, N., Shojaie, A., and Fox, E. Neural Granger Causality. IEEE465

Transactions on Pattern Analysis and Machine Intelligence, 2021.466

[51] Tong, A., Huang, J., Wolf, G., van Dijk, D., and Krishnaswamy, S. TrajectoryNet: A Dynamic467

Optimal Transport Network for Modeling Cellular Dynamics. International Conference on468

Machine Learning (ICML), 2020.469

[52] Tong, S. and Koller, D. Active learning for structure in bayesian networks. International Joint470

Conference on Artificial Intelligence (IJCAI), 17, 2001.471

[53] Zhang, K., Huang, B., Zhang, J., Glymour, C., and Schölkopf, B. Causal discovery from nonsta-472

tionary/heterogeneous data: Skeleton estimation and orientation determination. International473

Joint Conference on Artificial Intelligence (IJCAI), 2017.474

[54] Zheng, X., Aragam, B., Ravikumar, P., and Xing, E. P. DAGs with NO TEARS: Continuous475

Optimization for Structure Learning. Advances in Neural Information Processing Systems476

(NeurIPS), 2018.477

12

Supplementary Material478

A Proof of Proposition 1479

Proposition 1 calculates the number of admissible structure graphs for a linear ODE system with480

correlated variables. We will first show the general case this is
∏
i∈d(2

mi − 1)Gi1, then analyze the481

case of an L0 penalty on the edges of G, which reduces the size of the set of admissible graphs to482 ∏
i(mi)

Gi1.483

Proof. Consider an identifiable linear system dx
dt = Ax where we directly observe (x, dxdt) with G∗484

identifiable. Then the system with m = 1d has exactly one admissible graph by definition. For each485

node, we analyze its set of child nodes in G, i.e. c(u) = {v ∈ V s.t. u→ v ∈ G}. For an identifiable486

system, each child v must have an incoming edge from its parent.487

Next, we consider the process of adding a correlated variable, i.e. consider the situation of w.l.o.g.488

consider m = (s, 1, 1, . . . , 1) for some s > 1. Then for each child of cj(v1), there are now s possible489

parents. This has multiplied the number of possible graphs by 2s − 1. Since each element of m is490

independent, this leads to the first statement, i.e. |G′| =
∏
i∈d(2

mi − 1)Gi1.491

Under an L0 penalty, then we constrain the possible graphs to s different graphs, where each492

child node picks exactly one of the s possible parents. This leads to the second statement, |G′| =493 ∏
i(mi)

Gi1494

B Experimental Details495

B.1 Single Cell Dataset Preprocessing496

We start with the processed data from [46]. We first filter it applying steps from the ScVelo tutorial.497

We then sub-select the genes of interest and use the “Ms” and “velocity” layers, which we normalize498

to mean zero standard deviation one for the states and scale the dx with the same parameters.499

B.2 Baselines for Bayesian Dynamic Structure Learning500

Existing Bayesian structure learning methods are typically constrained to learning DAGs. Tem-501

poral information about the the dynamic relationships amongst variables in a system can help502

alleviate this constraint. DiBS and BCD-Nets are two state-of-the-art Bayesian structure learn-503

ing approaches for static systems. We apply versions of DiBS and BCD-Nets such that they504

are applicable in our Bayesian dynamic structure learning framework for learning cyclic graph505

structure from dynamic data. We use the approach taken in DiBS and parameterize the distribu-506

tion over graphs as Pαt(G|Z) =
∏
i

∏
j Pαt(Gij |Zij), where Z = UTV , U, V ∈ Rk×d. Here507

Pαt
(Gij = 1|Zij) = σ(αtZij), σ(x) = 1/(1 + e−αtx), and αt = αc(t) (t denotes the training508

iteration. We use c(t) =
√
t). As t → ∞, Pαt

(G|Z) → δ(G|Z). In DiBS, Stein variational509

gradient decent (SVGD) [30] is used to iteratively transport particles Z to learn the target distribu-510

tion. Following from the above parameterization, we implement a version of BCD-Nets by treating511

U ∼ N (µu, σ
2
u), V ∼ N (µv, σ

2
v), and learning µu, µv, σu, and σv. Since our framework uses512

dynamic data, we incorporate DiBS and BCD-Nets within the framework (labeled DynDiBS and513

DynBCD, respectively) to leverage dynamic information for Bayesian structure learning of cyclic514

graphs.515

B.3 Hyper-parameters for Baselines516

For both DynBCD and DynDiBS we use k = d across datasets. Since DynDiBS is an ensemble517

based method, we use 1024 samples for the linear and non-linear synthetic systems and 1000 samples518

for the cellular system (both training and evaluation). Since DynBCD is a variational approach519

and doesn’t require parallelized model ensembles, we use a large quantity of samples for training520

and evaluation. In the case of the cellular system, since there is a significantly smaller quantity of521

admissible graphs, we use less samples for DynBCD. We use graph sparsity regularization denoted by522

λ0 and a temperature parameter T that scales the magnitude of the likelihood (e.g. 1
T 2 MSE(dx, d̂x)).523

13

In Table 5 and Table 6 we outline the hyper-parameters we found to yield the most competitive results.524

We use grid search to tune DynBCD and DynDiBS. All baselines are trained for 1000 epochs.525

Table 5: Hyper-parameters for DynBCD. We define learning rate as ϵ.
Linear System

Model ϵ λ0 T α samples
ℓ-DynBCD 0.0001 0.001 0.01 0.1 5000
h-DynBCD 0.0001 0.0025 0.01 2 2000

Non-linear System
Model ϵ λ0 T α samples

ℓ-DynBCD 0.00005 0.01 0.01 2 5000
h-DynBCD 0.0001 0.001 0.01 1 2000

Cellular System
Model ϵ λ0 T α samples

ℓ-DynBCD 0.0001 0.001 0.05 0.05 1000
h-DynBCD 0.00001 0.0005 0.1 2 1000

Table 6: Hyper-parameters for DynDiBS. We define learning rate as ϵ.
Linear System

Model ϵ λ0 T α γ

ℓ-DynDiBS 0.0025 500 0.01 0.0001 3000
h-DynDiBS 0.0001 3 0.01 0.0001 10000

Non-linear System
Model ϵ λ0 T α γ

ℓ-DynDiBS 0.001 10 0.01 0.0001 3000
h-DynDiBS 0.0001 0.1 0.01 0.0001 10000

Cellular System
Model ϵ λ0 T α γ

ℓ-DynDiBS 0.0025 1 0.05 0.0001 3000
h-DynDiBS 0.00001 0.1 0.01 0.01 3000

We note that when evaluation on validation and test data for Bayes-SHD and AUC metrics, we hard526

threshold Pαt
(G|Z). We find that through training this the final αt is typically small enough in527

magnitude such that Pαt
(G|Z) does not yield a full threshold of Z. To this end, we select large αt528

when computing the KL metric to mimic hard threshold behaviour as experienced during training.529

We use αt = 1 × 104 for DynBCD and αt = 1 × 108 for DynDiBS methods, respectively. In530

DynDiBS The parameter γ helps control separation of particles Z during training. In general, we531

found DynBCD and DynDiBS baselines are challenging to train and to find hyper-parameter settings532

with good performance. In part, we believe this is due to the numerous hyper-parameters required to533

tune as well as the general difficulty of the objective.534

B.4 Neural Network Architectures and Hyper-parameters535

We parameterize PF (si|si−1;ψ) and hϕ with MLP architectures. PF (si|si−1;ψ) takes the current536

state as input and firsts computes common representations using a 3 layer MLP. Then a 2 layer537

MLP with a softmax output activation takes the representations as input and outputs a distribution538

over possible actions. The latter MLP is used to parameterize one head for each distribution539

PF (si|si−1;ψ). We use a hidden unit dimension of 128 and leaky rectified linear unit (Leaky ReLU)540

activation functions for the PF (si|si−1;ψ) MLP architecture. We use a uniform backward policy541

for PB(si−1|si;ψ). To parameterize hϕ, we use a 3 layer MLP with hidden layer dimensions of542

{64, 64, 64} and exponential linear unit activations (ELU). We consider two parametrizations for fθ:543

14

Table 7: Hyper-parameters for DynGFN. We define learning rate as ϵ, mtrain as number of training
samples, and meval the number of evaluation samples.

Linear System
Model ϵ λ0 T mtrain meval

ℓ-DynGFN 0.0001 100 0.01 1024 5000
h-DynGFN 0.00001 100 0.005 256 3000

Non-linear System
Model ϵ λ0 T mtrain meval

ℓ-DynGFN 0.0001 150 0.01 1024 5000
h-DynGFN 0.00001 150 0.005 256 3000

Cellular System
Model ϵ λ0 T mtrain meval

ℓ-DynGFN 0.00005 45 0.01 1024 1000
h-DynGFN 0.0001 10 0.1 1024 1000

single linear parameters, i.e dx = θx, and a single hidden layer neural network dx = fθ(x). We use544

these parametrizations to model linear and non-linear node-wise parent-child structural equations,545

where x ∈ Rd are the node-wise input observations.546

B.5 Hyper-parameters for DynGFN547

DynGFN requires setting a variety of hyper-parameters that lead to different trade offs in model548

performance. In particular, λ0 (sparsity encouragement for identified graphs), a temperature parameter549

T that scales the magnitude of the reward likelihood (e.g. 1
T 2 MSE(dx, d̂x)), learning rate ϵ, softmax550

tempering c (we always use a cosine schedule for c, with a discrete period of 5 epochs), and number551

of training epochs. In our experiments we select hyper-parameter values that lead to competitive552

performance (this pertains to ℓ-DynGFN and h-DynGFN models) by observing performance over a553

few values. We outline the selected hyper-parameters for each respective model in Table 7. Due to554

computational limits, we use less training samples than evaluation samples for DynGFN. We train555

DynGFN for 1000 epochs.556

B.6 GFlowNet Exploration vs. Exploitation557

The general procedure for training GFlowNets is inspired from reinforcement learning where the558

primary objective is to learn a stochastic policy π(a|s) to sample actions from an action space given559

a current state. In our setting, the action space represents possible locations where an additional edge560

can be placed to an existing graph and each state is represented by a current graph. Since under this561

training procedure we are sampling from the GFlowNet policy PF (si|si−1;ψ) at every iteration then562

attributing a reward associated to the sampled state/graph, the policy is susceptible to exploitation: if563

PF (si|si−1;ψ) samples a graph(s) with a high reward, it becomes easy for the policy to focus on564

sampling said graphs since they yield high reward. To alleviate this we encourage exploration using565

softmax tempering on our stochastic policy, by multiplying the logits of our forward policy by 1/c566

before applying the softmax function. A larger c flattens the stochastic policy such that exploration567

within the action space is encouraged. However, setting the parameters c is challenging and there568

exists a trade-off between exploring and exploiting the stochastic policy during optimization. We569

address this by using a cosine schedule for c such that 1 ≤ c ≤ 1000. We treat the period of the570

cosine schedule as a hyper-parameter.571

B.7 Discussion of Training Dynamics572

GFlowNets are a relatively recent class of models that can be challenging to optimize. We discuss573

some of the challenges with training them especially in the context of a learned energy function.574

We observed that in settings where the energy reward is fixed and we could proportionally penalize575

missing edges as well as the addition of incorrect edges (e.g. ℓ-DynGFN), we were able to better learn576

15

posteriors over admissible graphs over models that require sparse priors and/or trainable energies.577

This suggests that DynGFN may be limited by an inadequate energy reward. However, we found578

training DynGFN with a trainable energy function challenging since the GFlowNet stochastic policy579

depends on the rewards, and vice versa. Further investigation and experimentation into this alternating580

optimization procedure is required.581

B.8 Evaluating Quality of Learned Posteriors582

Using our indeterminacy model defined in section 5, we can determine P (G∗) for a given set of583

correlated variables, where G∗ denotes the set of true equally admissible structures. Here we assume584

P (G∗) is a uniform distribution over G∗ and determine the KL between Q(G) and P (G∗). We585

compute the KL considering only the probabilities of a trained models to generate all structures in586

G∗, i.e. Q(G∗). This is due to the computational constraints for calculating the KL for DynGFN587

since even for sparse graphs of moderate size this is a combinatorial computation. Nonetheless,588

this approach allows us to directly compare the learned posteriors Q(G) to a ground truth discrete589

distribution over structure G to evaluate the effectiveness of Bayesian structure learning approaches.590

B.9 Implementation Details591

Our model is implemented in Pytorch and Pytorch Lightning and is available at https://github.592

com/anonymous/anonymous. Models were trained on a heterogeneous mix of HPC clusters for a593

total of ~1,000 GPU hours primarily on NVIDIA RTX8000 GPUs.594

C Additional Details595

C.1 Single-cell Biology and Gene Regulatory Network Inference596

C.1.1 Gene Regulatory Networks and Cell Dynamics597

One dynamical system of interest is that of cells. Cellular response to environmental stimuli or genetic598

perturbations can be modelled as a complex time-varying dynamical system [16, 1]. In general,599

dynamical system models are a useful tool for downstream scientific reasoning. In this work we are600

primarily interested in identifying the underlying cell dynamics from data. A reasonable model for cell601

dynamics is as a stochastic dynamical system with many, possibly unobserved, components. There602

are many data collection models for gaining insight into this system from single-cell RNA-sequencing603

data. We will primarily focus on RNA velocity type methods, where both x and an estimate of dx are604

available in each cell, but note that there are other assumptions to infer dynamics and regulation such as605

pseudotime-based methods [47, 1], and optimal transport methods [16, 48, 51, 21, 22]. After learning606

a possible explanatory regulation, this is used in downstream tasks, but the resulting conclusions607

drawn from these models are necessarily conditional on the inferred regulation. Motivated by gene608

regulatory networks, we explicitly model uncertainty over graphs which allows us to propagate the609

resulting uncertainty to downstream conclusions.610

C.1.2 Learning Gene Regulatory Networks From Single-cell Data611

Single-cell transcriptomics has an interesting property in that from a single measurement we can612

estimate both the current state x and the current velocity dx. Because mechanistically RNA undergoes613

a splicing process, we can measure the quantities of both the unspliced (early) and spliced (late) RNA614

in the cell. From these two quantities we can estimate the current RNA content for each gene and the615

current transcription rate. There exist many models for denoising and interpreting this data [27, 8, 45].616

Furthermore, there exist more elaborate measurement techniques to extract more accurate velocity617

estimates [45]. The fact that we have an estimate of the current velocity is exceptionally useful for618

continuous time structure discovery because it allows us to avoid explicitly unrolling the dynamical619

system.620

Learning the underlying causal structure from data is one of the open problems in biology. There are621

many works that attempt to learn the effect of a change in a gene, or the addition of a drug. These622

works often build models that directly predict the outcome of an intervention. This may be useful for623

certain applications, but often does not generalize well out of distribution. We would like to learn a624

16

https://github.com/anonymous/anonymous
https://github.com/anonymous/anonymous
https://github.com/anonymous/anonymous
~

model of the underlying instantaneous dynamics that give rise to effects at longer time scales. This625

approach has a number of advantages. (1) it is closer to the mechanistic model; it may be easier to626

learn a model of the instantaneous dynamics rather than the dynamics over long time scales (details627

in Appendix C.2). (2) One model can be trained and applied to data from many sources including628

RNA-velocity, Pseudotime, Single-cell time series, and steady state perturbational data. (3) The629

instantaneous graph may be significantly sparser (and therefore easier to learn) than the summary630

graph or the equilibrium graph.631

C.1.3 Further Details on Experiments with Single-cell RNA-velocity Data632

The process of Eukaryotic cell division can be divided into four well regulated stages based on the633

phenotype, Gap 1 (G1), Synthesis (S), Gap 2 (G2), and Mitosis (M). This process is a good starting634

point for GRN discovery as it is (1) relatively well understood, (2) deterministic, and (3) well studied635

with plentiful data. While there is an underlying control loop controlling the progression of the cell636

cycle, there are many other genes that also change during this cycle. To rediscover the true control637

process from data we must disentangle the true causal genes from the downstream correlated genes.638

This may become very difficult when we only observe dynamics at longer time scales. We hide a cell639

cycle regulator among two downstream genes that are highly correlated (Spearman ρ > 0.75) and640

test whether we can model the Bayesian posterior – namely that we are uncertain about which of the641

three genes (Cdc25A, Mcm2, or Mcm5) is the true causal parent of Cdk1.642

C.2 Instantaneous Graph and Long-horizon Graph643

The graph recovered depends on the time scale considered. We make a distinction between the644

conditional structure of the graph based on the time scale. Consider a system governed by dx(t)
dt =645

f(x(t)). We define the instantaneous graph as:646

gi,j := ∪x1
(
df(x)j
dxi

)
, i = 1, . . . , d, j = 1, . . . , d. (6)

Here, 1(z) = 1 if z ̸= 0, otherwise 1(z) = 0. We can define the temporal summary of the system647

drift f as:648

F (T, x) = x0 +

∫ T

0

f(x(t))dt. (7)

Then, we can define a long-horizon graph over long time-scales as:649

Gi,j := ∪x1
(
∂F (T, x)j

∂xi

)
, i = 1, . . . , d, j = 1, . . . , d. (8)

If we are integrating the drift f over long time-scales, the long-horizon graph may be less sparse650

than the instantaneous graph. In cellular systems, this equates to observing cell dynamics over long651

time-scales, in turn observing increase quantities of correlations between variables of the system.652

Thus, trying to delineate the instantaneous dynamics from long time-scales may be difficult depending653

on the underlying system dynamics.654

C.3 Further Discussion on Future Work655

Although DynGFN is currently limited to smaller systems, we foresee approaches that would enable656

some degree of scaling DynGFN to larger systems. One approach is to leverage biological information657

of known gene-gene connections as a more informative prior for DynGFN. Currently, DynGFN learns658

a forward stochastic policy for Q(G|D) starting from an initialized state s0 of all zeros. Instead, we659

can define s̃0 using a prior of high confidence biological connections and sequentially add edges660

starting from this new initial state. This would reduce the number of possible structures DynGFN661

would need to search over, thus improving the potentially scalability of DynGFN. Another approach662

is to learn structure between sets of genes (variables) rather than single genes. Since GRNs are663

generally very sparse, it makes sense to group genes in sets. Consequently, we can then learn structure664

between these grouped genes, rather than just individual genes. In turn, DynGFN can explore/learn665

the structure over a smaller space while effectively capturing structure between a significantly larger666

set of genes. To group genes, we would use prior biological information, either form existing literature667

or expert domain knowledge.668

17

In this work we exploit the use of a minimal prior, i.e. L0 sparsity prior, for learning Bayesian669

dynamic structure between variables. In general, the aforementioned approaches for scaling DynGFN670

to larger systems involve the use of more informative priors on G. Although we mention two ways671

we foresee approaching this in the biological context of GRN inference, the general approach of672

using more informative priors can help scale DynGFN to larger systems across applications.673

C.4 Broader Impacts674

While it is important to acknowledge the potential risks of drawing incorrect scientific conclusions675

due to incorrect assumptions, our work embraces a Bayesian perspective for structure learning. A676

key component of our work is to account for uncertainty within our method, aiming to minimize the677

chances of incorrect conclusions. It is important to note that the accuracy of conclusions relies on678

applying the method in settings that align with the underlying assumptions, such as causal sufficiency679

and the use of dynamic observational data. By adhering to these guidelines, our approach holds680

promise for producing robust and reliable scientific outcomes.681

18

	Introduction
	Related Work
	Preliminaries
	Bayesian Dynamic Structure Learning
	Generative Flow Networks

	DynGFN for Bayesian Dynamic Structure Learning
	Graph Sampler
	HyperNetwork and Structural Model

	A Useful Model of Indeterminacy
	Experimental Results
	Experiments with Synthetic Data
	Ablations Over Sparsity and Linearity of Dynamic Systems
	Experiments on Single-Cell RNA-velocity Data

	Conclusion
	Proof of Proposition 1
	Experimental Details
	Single Cell Dataset Preprocessing
	Baselines for Bayesian Dynamic Structure Learning
	Hyper-parameters for Baselines
	Neural Network Architectures and Hyper-parameters
	Hyper-parameters for DynGFN
	GFlowNet Exploration vs. Exploitation
	Discussion of Training Dynamics
	Evaluating Quality of Learned Posteriors
	Implementation Details

	Additional Details
	Single-cell Biology and Gene Regulatory Network Inference
	Gene Regulatory Networks and Cell Dynamics
	Learning Gene Regulatory Networks From Single-cell Data
	Further Details on Experiments with Single-cell RNA-velocity Data

	Instantaneous Graph and Long-horizon Graph
	Further Discussion on Future Work
	Broader Impacts

