
Supplementary Material: Planning with Object Creation

Primary Keywords: None

Choosing Fresh Objects
We present here a choice function for fresh objects more sys-
tematic than the one presented in the paper. Given a state s
and an action schema A, this choice function guarantees that
no two objects created by eff(A) have the same name, while5

avoid keeping of the other created objects while evaluating
the function changes.

Assume that all objects in Us are represented as non-
empty strings over some alphabet Σ. Let Γ be a set of special
symbols not present in Σ. For example, Γ could contain the10

symbols @, !,#, [, ] etc. So we can assume that symbols of
Γ are “reserved” for our own use. All created objects receive
names over the alphabet Σ ∪ Γ.

We start by creating a prefix P = @⟨X⟩ where ⟨X⟩ is the
smallest natural number composed from the digits 0, . . . , 915

such that no object has @⟨X⟩ as a prefix. We only create
objects with the prefix P in this eff(A), so all fresh objects
are guaranteed to be distinct from the already existing ones.
We still need to guarantee that any two objects created in
eff(A) are distinct from each other.20

This can be done by extending the prefix in a way that pre-
serves uniqueness of the prefixes as changes recurses over
the effect. For a conjunctive effect (e1 ∧ e2), the recursion
over e1 gets @1 appended to its prefix, and the recursion over
e2 gets @2 appended to it. For conditional effects we do not25

need to append anything. For a universal effect ∀v : e, in
the recursion that binds the object o to v, we add [o] to the
prefix.

In a creation effect, we use the current prefix as the name
of the new object and add @0 to the prefix in the subeffect.30

To illustrate, consider the simple effect

eff(A) := (⊕v : P(v)) ∧ (⊕w : Q(w)),

and let’s say that the minimum value for X is 5 (i.e., there
are objects in Us with prefix @⟨4⟩ but none with @⟨5⟩). Ev-
ery object created from this effect will have prefix @⟨5⟩.
Let us say we also have an assignment function σ. As
free(eff(A)) = ∅, the specifics of function σ will not impact
anything. To compute changes(s, σ, eff(A)) we will com-
pute

changes(s, σ, (⊕v : P(v))) ∪ changes(s, σ, (⊕w : Q(w))).

Let e1 be the left-hand side (⊕v : P(v)), and e2 be the
right-hand side (⊕v : Q(v)). When recursing through e1,

we append @1 to the prefix for fresh object name. Now, ev-
ery object created in e1 will start with @⟨5⟩@1. As e1 is
an object creation itself, we append @0 to the prefix. So 35

v = @⟨5⟩@1@0.
When recursing through e2, the same will happen, but

now w = @⟨5⟩@2@0. So the two objects created by As,σ

are @⟨5⟩@1@0 and @⟨5⟩@2@0.
Note that during this computation we only had to keep 40

track of the structure of the effect (e.g., left or right hand side
of a conjunctive effect) and of the current existing objects
(to define the initial prefix). In contrast to the choice func-
tion explained in the paper, we did not have to keep track of
the other objects created by the same action. However, one 45

drawback of this choice function is that object names get
longer and longer as the plan progresses.


