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Abstract

Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation
(LoRA) optimize federated training by reducing computational and communication
costs. We propose RoLoRA, a federated framework using alternating optimization
to fine-tune LoRA adapters. Our approach emphasizes the importance of learning
up and down projection matrices to enhance expressiveness and robustness. We use
both theoretical analysis and extensive experiments to demonstrate the advantages
of RoLoRA over prior approaches that either generate imperfect model updates
or limit expressiveness of the model. We provide a theoretical analysis on a lin-
ear model to highlight the importance of learning both the down-projection and
up-projection matrices in LoRA. We validate the insights on a non-linear model
and separately provide a convergence proof under general conditions. To bridge
theory and practice, we conducted extensive experimental evaluations on language
models including RoBERTa-Large, Llama-2-7B on diverse tasks and FL settings
to demonstrate the advantages of RoLoRA over other methods.

1 Introduction

The remarkable performance of large language models (LLMs) stems from their ability to learn
at scale. With their broad adaptability and extensive scope, LLMs depend on vast and diverse
datasets to effectively generalize across a wide range of tasks and domains. Federated learning [28]
offers a promising solution for leveraging data from multiple sources, which could be particularly
advantageous for LLMs.

Recently, Parameter-Efficient Fine-Tuning (PEFT) has emerged as an innovative training strategy
that updates only a small subset of model parameters, substantially reducing computational and
memory demands. A notable method in this category is LoRA [21], which utilizes low-rank matrices
to approximate weight changes during fine-tuning. These matrices are integrated with pre-trained
weights for inference, facilitating reduced data transfer in scenarios such as federated learning, where
update size directly impacts communication efficiency. Many works integrate LoRA into federated
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Figure 1: (Left) Overview of the RoLoRA framework. (Right) Performance comparison with
baselines on QQP in a 50-client setting, showing RoLoRA’s superior convergence speed and final
accuracy.

setting [45, 1, 24, 6, 32]. FedPETuning [45] compares various PEFT methods in a federated setting.
SLoRA [1] presents a hybrid approach that combines sparse fine-tuning with LoRA to address data
heterogeneity in federated settings. Furthermore, FS-LLM [24] presents a framework for fine-tuning
LLMs in federated environments. However, these studies typically apply the FedAVG algorithm
directly to LoRA modules, resulting in in-exact model updates: the server average of LoRA-A and
LoRA-B does not equal the effective adapter.

To address the issue of in-exact model updates, a few recent works have proposed modifications to
the down-projection and up-projection components in LoRA. In FlexLoRA [2], the authors propose
updating these projections with matrix multiplication followed by truncated SVD. A related method
is also considered in FLoRA [40]. Another approach, by Sun et al., introduces a federated finetuning
framework named FFA-LoRA [32], which builds on LoRA by freezing the down-projection matrices
across all clients and updating only the up-projection matrices. They apply differential privacy [13] to
provide privacy guarantees for clients’ data. With a sufficient number of finetuning parameters, FFA-
LoRA, using a larger learning rate, can achieve performance comparable to FedAVG of LoRA while
reducing communication costs by half. However, we observe that with fewer finetuning parameters,
FFA-LoRA is less robust than FedAVG of LoRA, primarily due to its reduced expressiveness from
freezing down-projections. In this work, we explore the necessity of learning down-projection
matrices and propose a federated fine-tuning framework with computational and communication
advantages.

We connect the objective of learning down-projection matrices in a federated setting to multitask
linear representation learning (MLRL), an approach in which a shared low-rank representation is
jointly learned across multiple tasks. While, to the best of our knowledge, the alternating optimization
of down- and up-projection matrices has not been explored within the context of LoRA, prior works
on MLRL [9, 34] have demonstrated the importance of alternately updating low-rank representations
and task-specific heads, demonstrating the necessity of learning a shared representation. Inspired
by MLRL, we tackle this challenge by employing alternating optimization for LoRA adapters. We
theoretically establish that alternating updates to the two components of LoRA, while maintaining a
common global model, enable effective optimization of down-projections and ensure convergence to
the global minimizer in a tractable setting.

1.1 Main Contributions

• RoLoRA framework. We propose RoLoRA, a robust federated fine-tuning framework
based on the alternating optimization of LoRA as shown in Figure 1. RoLoRA fully leverages
the expressiveness of LoRA adapters while keeping the computational and communication
advantages.

• Theoretical Insights. We prove that RoLoRA achieves exponential convergence to the
global optimum for federated linear regression, reaching arbitrarily small errors, whereas
FFA-LoRA’s fixed down-projections result in suboptimality proportional to the initialization
error. Simple non-linear model experiments further validate the theoretical importance of
updating the down-projections in practice. For the case of smooth non-convex loss functions
we also provide a proof of convergence of our proposed method.

• Empirical results. Through evaluations on language models (RoBERTa-Large, Llama-2-
7B) across various tasks (GLUE, HumanEval, MMLU, Commonsense reasoning tasks), we
demonstrate that RoLoRA maintains robustness against reductions in fine-tuning parameters
and increases in client numbers compared to prior approaches.

In summary, RoLoRA outperforms baselines with strong theoretical guarantees and robust perfor-
mance across tasks and scales. It provides new insights into the role of down-projections, advancing
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the frontier of parameter-efficient federated learning, while its simple yet effective design ensures
scalability and communication efficiency.

1.2 Notations
We adopt the notation that lower-case letters represent scalar variables, lower-case bold-face letters
denote column vectors, and upper-case bold-face letters denote matrices. The d× d identity matrix is
represented by Id. Depending on the context, ∥.∥ denotes the l2 norm of a vector or the Frobenius
norm of a matrix, ∥.∥op denotes the operator norm of a matrix, |.| denotes the absolute value of a
scalar, ⊤ denotes matrix or vector transpose. For a number N , [N ] = {1, . . . , N}.

2 Preliminaries and Related Works
2.1 LoRA and Its Variants
Low-Rank Adaptation (LoRA) [21] fine-tunes large language models efficiently by keeping the
original weights fixed and adding small trainable matrices that apply low-rank updates. Specifically,
for a pre-trained weight matrix W0 ∈ Rd×d, the update is expressed as W = W0 + αAB, where
A ∈ Rd×r and B ∈ Rr×d with r ≪ d, and only A and B are trained. Many variants of LoRA
have been developed to further improve efficiency and performance. In Zhang et al. [44], the
authors propose a memory-efficient fine-tuning method, LoRA-FA, which keeps the projection-down
weight fixed and updates the projection-up weight during fine-tuning. In Zhu et al. [46], the authors
highlight the asymmetry between the projection-up and projection-down matrices and focus solely
on comparing the effects of freezing either the projection-up or projection-down matrices. Hao et al.
[16] introduce the idea of resampling the projection-down matrices, aligning with our observation
that freezing projection-down matrices negatively impacts a model’s expressiveness. Furthermore,
LoRA+ [17] explore the distinct roles of projection-up and projection-down matrices, enhancing
performance by assigning different learning rates to each.

2.2 LoRA in Federated Setting
In federated settings, LoRA is practical: clients fine-tune models efficiently with minimal resources,
and only the small adapter matrices need to be communicated, sharply reducing transmission costs
compared to full model finetuning. Zhang et al. consider FedAVG of LoRA, named FedIT[43].
Zhang et al. [45] compare multiple PEFT methods in the federated setting, including Adapter[20],
LoRA[21], Prompt tuning[26] and Bit-Fit[42]. SLoRA[1], which combines sparse finetuning and
LoRA, is proposed to address the data heterogeneity in federated setting. As discussed before, Sun et
al. [32] design a federated finetuning framework FFA-LoRA by freezing projection-down matrices
for all the clients and only updating projection-up matrices. FlexLoRA[2] and FLoRA [40] consider
clients with heterogeneous-rank LoRA adapters and proposes federated finetuning approaches. After
we completed our work, we noticed a concurrent study, LoRA-A2 [23], which combines alternating
optimization with adaptive rank selection for federated finetuning. While their focus is mainly
empirical, the use of alternating optimization in their algorithm is similar to ours.

2.3 FedAVG of LoRA Introduces Interference
Integrating LoRA within a federated setting presents challenges. In such a setup, each of the N clients
is provided with the pretrained model weights W0, which remain fixed during finetuning. Clients are
required only to send the updated matrices Bi and Ai to a central server for aggregation. While most
current studies, such as FedIT[43], SLoRA [1] and FedPETuning [45], commonly apply FedAVG
directly to these matrices as shown in (2), this approach might not be optimal. The precise update for
each client’s model, ∆Wi, should be calculated as the product of the low-rank matrices Ai and Bi.
Consequently, aggregation on the individual matrices leads to inaccurate model aggregation.

1

N

N∑
i=1

∆Wi =
1

N
(A1B1 +A2B2 + ...+ANBN ) (1)

̸= 1

N
(A1 +A2 + ...+AN)

1

N
(B1 +B2 + ...+BN) (2)

There are a few options to avoid it.

Updating B and A by matrix multiplication and truncated-SVD. One approach [40, 2] involves
first computing the product of local matrices Bi and Ai to accurately recover ∆Wi. Then, the global
B and A of next iteration are obtained by performing truncated SVD on the averaged set of ∆Wi.
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However, this method introduces computational overhead due to the matrix multiplication and SVD
operations.

Freezing A (B) during finetuning. Another method is to make clients freeze B or A as in Sun et
al. [32], leading to precise computation of ∆W. However, this method limits the expressiveness of
the adapter.

With these considerations, we propose a federated finetuning framework, named RoLoRA, based on
alternating optimization of LoRA.

3 RoLoRA Framework
In this section, we describe the framework design of RoLoRA and discuss its practical advantages.

Alternating Optimization and Corresponding Aggregation Motivated by the observations dis-
cussed in Section 2.3, we propose applying alternating optimization to the local LoRA adapters of
each client in a setting with N clients. Unlike the approach in FFA-LoRA, where A is consistently
frozen, we suggest an alternating update strategy. There are alternating odd and even communication
rounds designated for updating, aggregating A and B, respectively.

In the odd-numbered comm. round:

1

N

N∑
i=1

∆W2t+1
i =

1

N
(At

1B
t+1
1 + ...+At

NBt+1
N ) =

1

N
At(Bt+1

1 + ...+Bt+1
N ) (3)

In the even-numbered comm. round:

1

N

N∑
i=1

∆W2t+2
i =

1

N
(At+1

1 Bt+1
1 + ...+At+1

N Bt+1
N ) =

1

N
(At+1

1 + ...+At+1
N )Bt+1 (4)

As in Algorithm 1 in Appendix, all clients freeze At and update Bt in the odd communication round.
The central server then aggregates these updates to compute Bt+1 = 1

N

∑N
i=1 B

t+1
i and distributes

Bt+1 back to the clients. In the subsequent communication round, clients freeze Bt+1 and update
At. The server aggregates these to obtain At+1 = 1

N

∑N
i=1 A

t+1
i and returns At+1 to the clients. It

is important to note that in round 2t + 1, the frozen At
i are identical across all clients, as they are

synchronized with At from the central server at the beginning of the round. This strategy ensures
that the update and aggregation method introduces no interference, as demonstrated in (3) and (4).

Computation and Communication Cost. The parameter-freezing nature of RoLoRA enhances
computational and communication efficiency. In each communication round, the number of trainable
parameters in the model is effectively halved compared to FedAVG of LoRA. The only additional
cost for RoLoRA compared to FFA-LoRA is the alternating freezing of the corresponding parameters.
We remark this additional cost is negligible because it is applied to the clients’ models and can be
executed concurrently during the server’s aggregation.

4 Analysis
In this section, we provide an intuitive analysis of why training the down-projection in the LoRA
module is essential in a federated setting. We first present a theoretical comparison between RoLoRA
and FFA-LoRA on a linear model. While simplified, this comparison offers a direct and rigorous
examination of their solutions, clearly highlighting the limitations of FFA-LoRA in this fundamental
case. We then empirically validate the theoretical findings using a two-layer non-linear neural network.
Finally, we provide a convergence analysis for RoLoRA in non-convex loss landscapes, establishing
standard federated learning guarantees.

4.1 Theoretical Insights into Down-Projection Learning: Linear Model Analysis

We start by analyzing RoLoRA and FFA-LoRA within a simplified linear model, offering a clear
and rigorous comparison that reveals the inherent limitations of FFA-LoRA’s approach. Consider a
federated setting with N clients, each with the following local linear model fi(Xi) = Xiab

⊤ where
Yi ∈ Rm×d, Xi ∈ Rm×d with the sample size m, a ∈ Rd (a unit vector) and b ∈ Rd are the LoRA
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weights corresponding to rank r = 1. In this setting, we model the local data of i-th client such that

Yi = Xia
∗b∗⊤

(5)

for some ground truth LoRA weights a∗ ∈ Rd (a unit vector) and b∗ ∈ Rd. We consider the
following objective

min
a∈Rd,b∈Rd

1

N

N∑
i=1

li(a,b) (6)

where the local loss is li(a,b) = 1
m∥Xia

∗b∗⊤ −Xiab
⊤∥2. Each Xi is assumed to be a Gaussian

random matrix, where each entry is independently and identically distributed according to a standard
Gaussian distribution.

We remind the reader that Section 1.2 provides a summary of mathematical notations and also point
to Table 5 in Appendix A3.1 for a summary of the symbols used throughout the theoretical analysis.

Results. In this section, we assume homogeneous clients where there is a single target model as
in (5). In the linear model case, we modify RoLoRA from Algorithm 1 to Algorithm 2, employing
alternating minimization for b (line 5) and gradient descent for a (line 9). Details are described
in Algorithm 2 in Appendix. We note that the analysis of the alternating minimization-gradient
descent algorithm is inspired by [9, 31, 36] for a different setting of MLRL. See further discussion in
Appendix A2.

We aim to show that the training procedure described in Algorithm 2 learns the target model (a∗,b∗)
by showing the angle distance (Definition 4.2) between a and a∗ is decreasing in each iteration.
Since b is solved exactly at each iteration via local minimization, it is always optimal with respect to
the current a. This allows us to isolate and analyze the convergence behavior of a using the angle
distance, eliminating the potential impact of insufficient local updates of b on the convergence of a.
First, we make typical assumptions on the ground truth b∗ and formally define the angle distance.

Assumption 4.1. There exists Lmax <∞ (known a priori), s.t. ∥b∗∥ ≤ Lmax.
Definition 4.2. (Angle Distance) For two unit vectors a,a∗ ∈ Rd, the angle distance between a and
a∗ is defined as

| sin θ(a,a∗)| = ∥(Id − aa⊤)a∗∥ (7)

where Id − aa⊤ is the projection operator to the direction orthogonal to a.

Let δt = ∥(Id − a∗a∗
⊤
)at∥ = ∥(Id − atat

⊤
)a∗∥ denote the angle distance between a∗ and at of

t-th iteration. We initialize a0 such that | sin θ(a∗,a0)| = δ0, where 0 < δ0 < 1, and b0 is zero. All
clients obtain the same initialization for parameters. Now we are ready to state our main results.

Lemma 4.3. Let δt = ∥(Id − a∗a∗
⊤
)at∥ be the angle distance between a∗ and at of t-th iteration.

Assume that Assumption 4.1 holds and δt ≤ δt−1 ≤ · · · ≤ δ0. Let m be the number of samples for
each updating step, let auxiliary error thresholds ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , ϵ̃ = ϵ3
1−ϵ0 for ϵ0, ϵ1, ϵ2, ϵ3 ∈

(0, 1), if m = Ω(q) for q = max

(
log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

)
, and auxiliary error thresholds are small

such that ϵ′, ϵ̃ < 1−(δ0)2

16 , for any t and η ≤ 1
L2

max
, then we have,

δt+1 ≤ δt
√
1− η(1− δ02)∥b∗∥2 (8)

with probability at least 1− 2q−10.

Theorem 4.5 follows by recursively applying Lemma 4.3 and taking a union bound over all t ∈ [T ].
Remark 4.4. The decreasing angle assumption in Lemma 4.3 is a technical tool to simplify the
proof. In Theorem 4.5, this condition is not required: the inductive hypothesis inherently enforces the
necessary bounds on angles, bypassing the need for explicit monotonicity.

Theorem 4.5. (Convergence of RoLoRA for linear regressor) Suppose we are in the setting described
in Section 4.1 and apply Algorithm 2 for optimization. Given a random initial a0, an initial angle
distance δ0 ∈ (0, 1), we set step size η ≤ 1

L2
max

and the number of iterations T ≥ 2
c(1−(δ0)2) log(

δ0

ϵ ),
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for c ∈ (0, 1). Under these conditions, if with sufficient number of samples m = Ω(q) and small
auxiliary error thresholds ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , ϵ̃ =
ϵ3

1−ϵ0 , such that ϵ′, ϵ̃ < 1−(δ0)2

16 , we achieve that

with probability at least 1− 2Tq−10 for q = max

(
log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

)
,

sin θ(aT ,a∗) ≤ ϵ

which we refer to as ϵ-accurate recovery. In addition,

∥aT (bT+1)⊤ − a∗(b∗)⊤∥ ≤ (1 + ϵ′)ϵ∥a∗b∗⊤
∥.

Theorem 4.5 and Lemma 4.3 show that with a random initialization for the unit vector a (δ0 ∈ (0, 1)),
RoLoRA makes the global model converge to the target model exponentially fast with large q.
The requirement for sample complexity is well-supported, as demonstrated in [10, 12]. While the
proof of the above results are relegated to the Appendix, we provide a brief outline of the proof. In
Appendices A3.3, we first analyze the minimization step for updating bti (Lemma A3.9), then establish
a bound on the deviation of the gradient from its expectation with respect to a (Lemma A3.10),
and finally derive a bound for | sin θ(at+1,a∗)| based on the gradient descent update rule for a
(Lemma 4.3). The proof of Theorem 4.5 is in Section A3.4.

Intuition on Freezing-A Scheme (FFA-LoRA) can Saturate. We begin by applying the FFA-
LoRA scheme to a centralized setting, aiming to solve the following optimization problem:

min
b∈Rd
∥Xa∗b∗⊤

−Xa0b⊤∥2

where a∗ ∈ Rd and b∗ ∈ Rd represent the ground truth parameters, and a0 ∈ Rd is the random
initialization. The objective can be transformed to

∑d
p=1(a

∗b∗p − a0bp)
⊤X⊤X(a∗b∗p − a0bp), with

bp as the p-th entry of b, b∗p as the p-th entry of b∗. In FFA-LoRA scheme, a0 remains fixed during
training. If a0 is not initialized to be parallel to a∗, the objective can never be reduced to zero. This
is because optimizing b only scales the vector a0bp along the direction of a0, without altering the
angular distance between a0 and a∗.

Suppose we are in the federated setting described in Section 4.1, we apply FFA-LoRA, to optimize
the objective in (6). In FFA-LoRA scheme, we fix a of all clients to a random unit vector a0, where
the initial angle distance δ0 = | sin θ(a∗,a0)|, δ0 ∈ (0, 1). And we only update bi by minimizing li
and aggregate them.
Proposition 4.6. (FFA-LoRA lower bound) Suppose we are in the setting described in Section 4.1.
For any set of ground truth parameters (a∗,b∗), the initialization a0, initial angle distance δ0 ∈ (0, 1),
we apply FFA-LoRA scheme to obtain a shared global model (a0,bFFA), yielding an expected global
loss of

E[
1

Nm

N∑
i=1

∥Xia
∗b∗⊤

−Xia
0(bFFA)⊤∥2] = (1 + c̃)∥b∗∥2(δ0)2 (9)

where the expectation is over all the randomness in the Xi, and c̃ = O( 1
Nm ).

See Appendix A3.4.1 for the proof.
Remark 4.7. Proposition 4.6 holds for any unit vector a and corresponding b obtained by fully
minimizing the local loss. The same expected loss applies to RoLoRA by substituting RoLoRA’s
reduced angle into Eq. 9.

Comparison of RoLoRA and FFA-LoRA. Proposition 4.6 shows that for any choice of δ0 ∈ (0, 1),
the global objective reached by FFA-LoRA is shown as in (9). The global objective of FFA-LoRA is
dominated by ∥b∗∥2(δ0)2 which is due to the angular distance between a0 and a∗.

By Theorem 4.5, we demonstrate that RoLoRA achieves ϵ-accurate recovery of the global minimizer.
Specifically, the expected global loss of RoLoRA can be upper bounded by (1 + c̃)∥b∗∥2ϵ2. Under
the same initialization and ground truth parameters for both FFA-LoRA and RoLoRA, RoLoRA’s
ability to update a reduces the global loss caused by the angle distance between a and a∗ from
∥b∗∥2(δ0)2 to ∥b∗∥2ϵ2. By increasing the number of iterations, ϵ can be made arbitrarily small.
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Heterogeneous Case. In Appendix A3.5, we analyze the convergence of RoLoRA with single
LoRA structure in a federated setting with heterogeneous clients. By showing the decreasing of the
angle distance between the ground truth a∗ and the shared down-projection a, we demonstrate that
RoLoRA allows the global model to converge to global minimum while the global loss of FFA-LoRA
can be dominated by the term caused by the angle distance between the random initialization a0 and
a∗.

4.2 Verifying Insights On a Non-Linear Model

Figure 2: (Left) Comparison of three methods on
a toy model with 5 clients. (Right) Comparison of
three methods on a toy model with 10 clients.

The previous analysis considers a linear model
for each client. To assess the validity of the
theorem in a non-linear model, we consider a
two-layer neural network model on each client
given by

fi(xi) = ReLU(xiAB)Wout (10)

where Wout ∈ Rd×c, A ∈ Rd×r and B ∈
Rr×d are weights. We train the model on
MNIST [11]. We consider two different ways
to distribute training images to clients. The first
is to distribute the images to 5 clients and each
client gets access to training images of two specific labels, while the second is to distribute the images
to 10 clients and each client only has training images of one specific label. There is no overlap in the
training samples each client can access. Only weights matrices B and A are tunable, while Wout are
fixed. We use c = 10, d = 784, r = 16 and make each client train 5 epochs locally with batch-size
64 and aggregate clients’ update following three methods: FedAVG of LoRA, referred as LoRA;
FFA-LoRA [32], which freezes A during training, and RoLoRA, which alternately updates B and A.

As shown in Figure 2, we evaluate the performance of the model in each iteration on the test set. We
observe that the accuracy of FFA-LoRA plateaus around 55% in both settings, which aligns with
our theoretical analysis. The decline in LoRA’s performance with an increasing number of clients is
most likely due to less accurate model aggregation, as demonstrated in (1) and (2). Notably, RoLoRA
demonstrates greater robustness in these settings. To study the impact of non-linearity on RoLoRA,
we repeat the two-layer experiment on a linear network without ReLU. As shown in Figure 7 in the
Appendix, RoLoRA benefits more from the added expressiveness of ReLU.

4.3 Convergence in Smooth Non-Convex Settings
We follow the approach of Li et al.[25] to analyze the convergence behavior of RoLoRA in smooth,
non-convex settings, and derive TheoremA4.4 in Appendix. As shown in TheoremA4.4, RoLoRA
achieves an O(1/

√
T ) convergence rate toward a stationary point under smooth, non-convex condi-

tions, matching the convergence rate established for FedAVG in the same regime.

5 Experiments on Language Models
In this section, we evaluate the performance of RoLoRA in various federated settings. Considering
all clients will participate in each round, we will explore the following methods: FedAVG of LoRA
(referred as LoRA) [43], FFA-LoRA [32], FlexLoRA[2], FloRA[40], and RoLoRA (ours).
Implementation & Configurations. We implement all the methods based on FederatedScope-LLM
[24]. We use NVIDIA GeForce RTX 4090 or NVIDIA A40 for all the experiments. To make a fair
comparison, for each dataset, we obtain the best performance on test set and report the average over
multiple seeds. Specifically, the learning rate is chosen from the set {5e− 4, 1e− 3, 2e− 3, 5e−
3, 1e− 2, 2e− 2, 5e− 2, 1e− 1}. Other hyper-parameters for experiments are specified in Table 6
in Appendix A5.2. Please note that in all tasks, we compare the performance of the three methods
under the same number of communication rounds.

5.1 Language Understanding Tasks
Model and Datasets. We take the pre-trained RoBERTa-Large (355M) [27] models from the
HuggingFace Transformers library, and evaluate the performance of federated finetuning methods on
5 datasets (SST-2, QNLI, MNLI, QQP, RTE) from the GLUE [38].
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Rank Clients Num Method SST-2 QNLI MNLI QQP RTE Avg.

4 3

LoRA 95.62±0.17 91.59±0.21 86.20±0.05 86.13±0.10 81.46±1.22 88.20
FFA-LoRA 95.18±0.09 91.35±0.32 84.58±0.21 85.50±0.25 81.10±0.33 87.48
FlexLoRA 94.91±0.18 90.16±0.49 85.16±0.69 85.69±0.17 79.3±1.05 87.04
RoLoRA 95.49±0.16 91.64±0.30 85.70±0.04 86.14±0.06 82.43±0.84 88.28

4 20

LoRA 94.3±0.27 86.67±2.02 78.55±7.31 83.1±0.04 51.87±3.24 78.90
FFA-LoRA 93.88±0.06 89.11±0.19 80.99±1.74 83.92±0.2 57.16±1.46 80.01
FlexLoRA 90.97±1.78 54.36±0.36 53.30±14.59 69.18±10.39 53.19±1.45 64.20
RoLoRA 94.88±0.18 90.35±0.37 85.28±1.04 85.83±0.1 78.82±1.7 87.03

4 50

LoRA 93.00±0.35 78.13±5.13 52.64±15.07 77.60±1.47 52.23±1.1 70.72
FFA-LoRA 93.23±0.12 85.05±0.34 69.97±5.57 78.44±0.41 55.72±1.99 76.48
FlexLoRA 54.08±5.5 55.4±2.03 39.14±2.35 72.00±7.64 52.71±0.00 54.67
RoLoRA 94.80±0.17 90.00±0.63 82.98±3.36 85.71±0.18 75.57±2.88 85.81

8 50

LoRA 93.00±0.23 79.87±1.52 56.96±2.02 77.45±1.97 53.79±6.57 64.03
FFA-LoRA 92.74±0.13 83.69±0.75 64.51±1.92 79.71±2.04 53.07±1.3 72.46
FlexLoRA 50.92±0.00 56.92±1.04 37.43±2.80 66.40±4.74 52.59±0.21 52.85
RoLoRA 94.53±0.17 90.1±0.45 85.17±0.41 85.25±0.13 76.3±4.9 86.27

Table 1: Results for four methods with RoBERTa-Large models across varying client numbers (3, 20,
50), maintaining a constant sample count during fine-tuning.

Figure 3: Accuracies over rounds with RoBERTa-
Large models on SST-2, QNLI, MNLI, and QQP.
It involves 50 clients using rank 4.

Effect of Number of Clients. In Table 1, we
increased the number of clients from 3 to 20,
and then to 50, ensuring that there is no overlap
in the training samples each client can access.
Consequently, each client receives a smaller frac-
tion of the total dataset. The configurations are
presented in Table 7 in Appendix. We observe
that as the number of clients increases, while
maintaining the same number of fine-tuning
samples, the performance of the LoRA method
significantly deteriorates for most datasets. In
contrast, RoLoRA maintains its accuracy lev-
els. The performance of FFA-LoRA also de-
clines, attributed to the limited expressiveness
of the random initialization of A for clients’ het-
erogeneous data. FlexLoRA shows significant
degradation especially under high client counts.
Notably, RoLoRA achieves this accuracy while
incurring only half the communication costs as-
sociated with LoRA and FlexLoRA. A comparison when using rank-2 LoRA adapter is shown in
Table 8 in Appendix.

Furthermore, we have provided performance comparison of FLoRA and RoLoRA in the same settings
in Table 11 in Appendix. RoLoRA consistently outperforms FLoRA across tasks and client counts.
Additionally, Figure 3 illustrates the finetuning dynamics, highlighting that RoLoRA converges
substantially faster than the other methods. An extended 100-round version is provided in Figure 8 in
the Appendix, further demonstrating RoLoRA’s superior accuracy when all baselines have converged.

Dir(0.5), #Clients = 10 Dir(1.0), #Clients = 15

MNLI QQP MNLI QQP

LoRA 81.19 ±0.23 82.60 ±0.41 74.54 ±1.19 81.49 ±0.60
FFA-LoRA 75.60 ±0.21 81.47 ±0.87 74.83 ±0.59 78.62 ±1.67
FlexLoRA 35.45 ±0.00 63.24 ±0.09 35.45 ±0.00 66.56 ±4.48
RoLoRA 82.60 ±0.69 84.16 ±0.65 81.55 ±0.44 84.26 ±0.26

Table 2: Performance comparison of methods on MNLI and
QQP under different dirichlet distributions and client settings.
We report the average and std. over three seeds.

Effect of Non-IID Data Distribu-
tion. Table 2 presents a perfor-
mance comparison of LoRA, FFA-
LoRA, FlexLoRA, and RoLoRA on
the MNLI and QQP tasks under two
federated settings: Dirichlet(0.5) with
10 clients and Dirichlet(1.0) with 15
clients. Here, the Dirichlet(α) pa-
rameter controls how non-iid the data
is across clients: a smaller α pro-
duces highly skewed and heteroge-
neous client data distributions, while
a larger α yields more balanced, moderately non-iid splits. Across both tasks and settings, RoLoRA
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Figure 4: Results with RoBERTa-Large models on GLUE under different fine-tuning parameter
budgets, involving three clients with rank 4.

consistently achieves the highest performance. The configurations are presented in Table 7 in
Appendix.

Effect of Number of Finetuning Parameters. In Figure 4, we compare three methods across five
GLUE datasets. We apply LoRA module to every weight matrix of the selected layers, given different
budgets of LoRA parameters. For each dataset, we experiment with three budgets (P1,P2,P3)
ranging from low to high. The corresponding layer sets that are attached with LoRA adapters,
P1,P2,P3, are detailed in Table 12 in Appendix A5.2. The figures indicates that with sufficient
number of finetuning parameters, FFA-LoRA can achieve comparable best accuracy as LoRA
and RoLoRA, aligning with the results in [32]; as the number of LoRA parameters is reduced,
the performance of the three methods deteriorates to varying degrees. However, RoLoRA, which
achieves performance comparable to LoRA, demonstrates greater robustness compared to FFA-LoRA,
especially under conditions of limited fine-tuning parameters. It is important to note that with the
same finetuning parameters, the communication cost of RoLoRA and FFA-LoRA is always half of
that of LoRA due to their parameter freezing nature. This implies that RoLoRA not only sustains its
performance but also enhances communication efficiency. Additional results of varying ranks are
provided in Figure 9, 10, and 11 in Appendix A5.4.

BoolQ PIQA SIQA HellaSwag

LoRA 61.42±0.29 33.19±9.8 31.88±3.95 21.23±2.82
FFA-LoRA 53.43±4.3 35.49±9.55 10.63±8.44 11.81±4.53
RoLoRA 61.83±0.22 61.26±3.3 39.76±0.41 27.49±2.34

WinoGrande ARC-e ARC-c OBQA

LoRA 31.36±5.02 27.36±0.89 32.03±1.14 26.07±2.32
FFA-LoRA 1.61±2.14 6.88±0.42 7.93±0.89 15.0±5.41
RoLoRA 47.67±0.75 33.19±1.29 40.13±1.73 31.67±1.4

Table 3: Results with Llama-2-7B models on common-
sense reasoning tasks. This involves 50 clients using rank
8.

Figure 5: Ablation study on learning
vs. freezing A on MNLI task.

5.2 Commonsense Reasoning Tasks

Results. We evaluate RoLoRA against FFA-LoRA and LoRA on Llama-2-7B[35] for commonsense
reasoning tasks. In Table 3, we compare the results of three methods with Llama-2-7B models
on 8 commonsense reasoning tasks. The configurations are presented in Appendix A5.7. The
performance is reported as the mean accuracy with standard deviations across 3 trials. RoLoRA
consistently achieves the highest accuracy across all tasks, demonstrating significant improvements
over both LoRA and FFA-LoRA. We also highlights that FFA-LoRA exhibits large performance
variances across trials, such as a standard deviation of 9.55 for PIQA and 8.44 for SIQA, respectively.
This significant variability is likely due to the initialization quality of parameter A, as different
initializations could lead to varying optimization trajectories and final performance outcomes as
discussed in Section 4. Additional results on this task are presented in Table 16 in Appendix A5.7.
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5.3 Ablation Study

Learning vs. Freezing A we conducted an experiment comparing performance of FFA-LoRA,
RoLoRA, and different mixing strategies under the setting with 50 clients. In these strategies, for
example, 20%RoLoRA+80%FFA-LoRA means we finetune with RoLoRA (where A is learned) for
the first 20% of communication rounds, followed by FFA-LoRA (where A is frozen) for the remaining
80%. The results are shown in the Figure 5. We observe that finetuning with RoLoRA generally leads
to faster convergence and higher final accuracy. This highlights the benefits of learning A, especially
in early training.

Figure 6: Asymmetry vs. Symmetry in
LoRA updates. Accuracy vs. round.

Symmetry vs. Asymmetry Update In standard LoRA
implementations, LoRA-A is randomly initialized while
LoRA-B is set to zero, which implicitly assigns asymmet-
ric roles. In our study, we view LoRA-A as a learnable
basis and LoRA-B as coefficients on that basis. Motivated
by this, we investigated whether an asymmetric update
policy might be preferred. We systematically compare
four strategies: (i) the symmetric alternation used in stan-
dard RoLoRA, (ii) B-prioritized multi-step updates (B,
B, B, A, . . . ), (iii) A-prioritized multi-step updates (B,
A, A, A, . . . ), and (iv) unequal learning rates (e.g., set-
ting lrB = 2lrA or lrB = 4lrA). As shown in Figure 6,
balanced AB alternation yields the highest accuracy and
the most stable trajectory, while aggressively prioritizing
either A or B degrades performance.

Effect of Local Steps on RoLoRA and FFA-LoRA To evaluate the effect of local steps, we have
conducted an ablation study on the number of local steps in a 50-client setting with rank-4 adapters,
as shown in Table 4. For a fair comparison, we kept the total computational budget (#Local Steps ×
#Total Rounds) constant across all settings. FFA-LoRA’s performance consistently degrades on both
datasets as the number of local steps increases. This indicates that with more local work per round,
FFA-LoRA suffers severely from client drift, where local models overfit to their own data. RoLoRA
maintains high performance across all settings.

(Local Steps, Total Rounds) (1,600) (5,120) (10,60) (20,30)

MNLI FFA-LoRA 72.52 ±0.68 71.73 ±1.17 69.64 ±4.31 69.97 ±5.57
RoLoRA 84.39 ±0.34 84.96 ±0.18 84.79 ±0.23 82.98 ±3.36

QQP FFA-LoRA 80.51 ±1.38 80.2 ±1.65 79.07 ±1.21 78.44 ±0.41
RoLoRA 85.24 ±0.56 85.44 ±0.8 84.77 ±0.77 85.71 ±0.18

Table 4: Results on RoBERTa-Large on MNLI and QQP with different local steps while keeping total
computational budget constant.

5.4 More Results

We provide additional experimental results in the Appendix, including: (1) evaluations of Llama-2-7B
on HumanEval and MMLU tasks (Appendix A5.8); (2) comparisons of communication and time
costs in Table 19; and (3) evaluations under a fixed communication budget in Figure 12.

6 Conclusion
In this work, we introduced RoLoRA, a federated finetuning framework based on alternating opti-
mization for LoRA adapters. Our approach addresses key limitations of prior methods by jointly
learning both the down-projection and up-projection matrices, thereby enhancing the expressiveness
and robustness of the adapted models. Through a combination of theoretical analysis on linear models
and validation on nonlinear models, we established the importance of optimizing both components
in LoRA. Extensive experimental evaluations across various language models tasks, and diverse
federated learning settings confirmed that RoLoRA consistently outperforms existing baselines,
particularly in large-scale scenarios under constrained communication and resource conditions.
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A1 Algorithms

Algorithm 1 RoLoRA iterations

1: Input: number of iterations T , number of clients N
2: for t = 1 to T do
3: for i = 1 to N do
4: Fix At, Bt+1

i = GD-update(At,Bt)

5: Transmits Bt+1
i to server

6: end for
7: Server aggregates Bt+1 = 1

N

∑N
i=1 B

t+1
i , broadcasts Bt+1

8: for i = 1 to N do
9: Fix Bt+1, At+1

i = GD-update(At,Bt+1)

10: Transmits At+1
i to server

11: end for
12: Server aggregates At+1 = 1

N

∑N
i=1 A

t+1
i , broadcasts At+1

13: end for

Algorithm 2 RoLoRA for linear regressor, Alt-min-GD iterations

1: Input: GD Step size η, number of iterations T , number of clients N
2: for t = 1 to T do
3: Let a← at−1,b← bt−1.
4: for i = 1 to N do
5: set b̃i ← argminb li(a,b)
6: end for
7: b̄ = 1

N

∑N
i=1 b̃i

8: for i = 1 to N do
9: Compute∇ali(a, b̄)

10: end for
11: â+ ← a− η

N

∑N
i=1∇ali(a, b̄), â← â+

∥â+∥
12: at ← â, bt ← b̄
13: end for

A2 Discussion

While Algorithm 2 is conceptually inspired by alternating optimization techniques in matrix sensing
and multi-task linear representation learning (MLRL), but it differs in the algorithmic design, and
application focus.

Connection to Matrix Sensing. The problem in Eq. (6) is an instance of matrix sensing. Traditional
matrix sensing methods [22] focus on recovering low-rank structures from centralized data, whereas
RoLoRA is designed for a federated setting, where both data and computation are decentralized
across multiple clients. A related line of work is federated matrix factorization, which also applies
alternating minimization techniques in distributed environments. Wang et al. [39] perform alternating
minimization between local matrix factors within each communication round but do not alternate
the aggregation steps. In contrast, RoLoRA alternates both the updates and aggregations of down-
and up-projection matrices across rounds, fundamentally changing the communication pattern and
mitigating interference between matrix components during aggregation.

Connection to MLRL. As discussed in Section 1, we connect the objective of learning down-
projection matrices in a federated setting to multitask linear representation learning (MLRL)[9, 34, 36,
12]. We follow a similar derivation framework to MLRL works that employ alternating optimization,
such as FedRep[9] and Vaswani et al. [36]. However, their focus is on a multi-task setting, where
the heads are kept diverse and not aggregated. As a result, they perform alternating minimization
and gradient descent between the local representation and head within each communication round
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but do not perform the aggregation steps for the local heads. Furthermore, there are fundamental
differences in model structure: in FedRep, the local head acts as a down-projection, whereas in
RoLoRA, the corresponding component B serves as an up-projection. This distinction stems from
RoLoRA’s foundation in the LoRA framework, where adaptation uses a down-projection followed by
an up-projection, with B mapping back to the original feature space.

Connection to Personalized FL. While RoLoRA is positioned within the global model paradigm,
it is worth noting that certain algorithmic structures share interesting similarities. For instance,
Mishchenko et al. [29] and Pillutla et al. [30] fall under the category of personalized federated
learning, but their update mechanism bears resemblance to RoLoRA’s alternating optimization. In
[29], clients compute the gradient of their local loss with respect to the global parameters, holding
the personalized parameters fixed, and send only this gradient to the server for aggregation. Pillutla
et al. [30] adopt an alternating update strategy in the proposed FedAlt algorithm, where clients
update personal parameters while holding global parameters fixed, followed by updating the global
parameters. Both resemble the alternating structure in RoLoRA. However, RoLoRA operates entirely
under a global model setting without personalized components. Furthermore, our alternating scheme
is motivated by the decomposition of low-rank adaptation matrices, separating the optimization and
also the aggregation of up- and down-projection matrices. Moreover, the underlying proof techniques
differ entirely: they employ standard FL convergence analysis, whereas our approach draws on
techniques from matrix sensing to highlight the importance of learning the down-projection.

Limitations and Future Works. While RoLoRA demonstrates robust performance across various
federated learning settings, our work has a few limitations. The study of learning down-projections has
primarily focused on linear models, which may not fully capture the complexities of highly non-linear
language models. While empirical validation has been conducted on non-linear models, a rigorous
theoretical proof is still lacking. We leave the theoretical extension to simple non-linear models as
important future work, although empirical results suggest the method remains effective. Second,
the current analysis assumes full client participation in each communication round, which may not
hold in real-world federated deployments with intermittent connectivity or resource constraints. A
theoretical guarantee for partial client participation is needed.

A3 Theoretical Analysis on Linear Model

A3.1 Notation

Table 5 provides a summary of the symbols used throughout this theoretical analysis.

Notation Description

a∗,b∗
i Ground truth parameters of client i

b̄∗ Average of b∗
i

at,bt Global model parameters of t-th iteration
δt The angle distance between a∗ and at, | sin θ(a∗,at)|
η Step size
Id d× d identity matrix
∥·∥ l2 norm of a vector
∥ · ∥op Operator norm (l2 norm) of a matrix
| · | Absolute value of a scalar
∥ · ∥ψ2

Sub-Gaussian norm of a sub-Gaussian random variable
∥ · ∥ψ1

Sub-exponential norm of a sub-exponential random variable
N Total number of clients
â+ Updated a by gradient descent
â Normalized â+

b̃i analytic solution for b in the local objective function
b̄ Average of b̃i

Table 5: Notations

17



A3.2 Auxiliary

Definition A3.1 (Sub-Gaussian Norm). The sub-Gaussian norm of a random variable ξ, denoted as
∥ξ∥ψ2 , is defined as:

∥ξ∥ψ2
= inf{t > 0 : E[exp(ξ2/t2)] ≤ 2}.

A random variable is said to be sub-Gaussian if its sub-Gaussian norm is finite. Gaussian random
variables are sub-Gaussian. The sub-Gaussian norm of a standard Gaussian random variable ξ ∼
N (0, 1) is ∥ξ∥ψ2 =

√
8/3.

Definition A3.2 (Sub-Exponential Norm). The sub-exponential norm of a random variable ξ, denoted
as ∥ξ∥ψ1 , is defined as:

∥ξ∥ψ1 = inf{t > 0 : E[exp(|ξ|/t)] ≤ 2}.

A random variable is said to be sub-exponential if its sub-exponential norm is finite.

Lemma A3.3 (The product of sub-Gaussians is sub-exponential). Let ξ and υ be sub-Gaussian
random variables. Then ξυ is sub-exponential. Moreover,

∥ξυ∥ψ1
≤ ∥ξ∥ψ2

· ∥υ∥ψ2

Lemma A3.4 (Sum of independent sub-Gaussians). Let X1, · · · , XN be independent mean-zero
sub-Gaussian random variables. Then

∑N
i=1 Xi is also sub-Gaussian with∥∥∥∥∥

N∑
i=1

Xi

∥∥∥∥∥
2

ψ2

≤ C

N∑
i=1

∥Xi∥2ψ2
,

where C is some absolute constant.

Proof. See proof of Lemma 2.6.1 of [37].

Corollary A3.5. For random vector x ∈ Rd with entries being independent standard Gaussian
random variables, the inner product a⊤x is sub-Gaussian for any fixed a ∈ Rd, and∥∥a⊤x∥∥

ψ2
≤ C ′∥a∥

where C ′ is some absolute constant.

Proof. Note that a⊤x =
∑d
i=1 aiξi, where ξi ∼ N (0, 1) is the i-th entry of the random vector

x. Choose C to be the absolute constant specified in Lemma A3.4 for standard Gaussian random
variables, and set C ′ =

√
8C/3. We have

∥∥a⊤x∥∥2
ψ2
≤ C

N∑
i=1

∥aiξi∥2ψ2

(a)
= C

N∑
i=1

a2i ∥ξi∥2ψ2

(b)
=

8

3
·C∥a∥2 ⇒

∥∥a⊤x∥∥
ψ2
≤
√

8C

3
∥a∥ = C ′∥a∥.

Step (a) makes use of the homogeneity of the sub-Gaussian norm, and step (b) uses the fact that
∥ξ∥ψ2

=
√
8/3 for ξ ∼ N (0, 1).

Definition A3.6 (ϵ-net). Consider a subset A ⊆ Rd in the d-dimensional Euclidean space. Let ϵ > 0.
A subset N ⊆ A is called an ϵ-net of A if every point of A is within a distance ϵ of some point in N ,
i.e.,

∀x ∈ A, ∃x′ ∈ N , ∥x− x′∥ ≤ ϵ.

Lemma A3.7 (Computing the operator norm on a net). Let a ∈ Rd and ϵ ∈ [0, 1). Then, for any
ϵ-net N of the sphere Sd−1, we have

∥a∥ ≤ 1

1− ϵ
sup
x∈N
⟨a,x⟩

Proof. See proof of Lemma 4.4.1 of [37].
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Theorem A3.8 (Bernstein’s inequality). Let X1, . . . , XN be independent mean-zero sub-exponential
random variables. Then, for every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

(
t2∑N

i=1 ∥Xi∥2ψ1

,
t

maxi ∥Xi∥ψ1

))
,

where c > 0 is an absolute constant.

Proof. See proof of Theorem 2.8.1 of [37].

A3.3 Homogeneous Case

Outline of Proof. In this section, we first analyze the minimization step for updating bti
(Lemma A3.9), then establish a bound on the deviation of the gradient from its expectation with
respect to a (Lemma A3.10), and finally derive a bound on | sin θ(at+1,a∗)| based on the gradient
descent update rule for a (Lemma 4.3 or Lemma A3.11). The proof of Theorem 4.5 is provided in
Section A3.4, where the result is obtained by recursively applying Lemma 4.3 over T iterations.

Lemma A3.9. Let a = at. Let δt = ∥(Id − a∗a∗
⊤
)a∥ = ∥(Id − aa⊤)a∗∥ denote the angle

distance between a∗ and a. Let g⊤ = a⊤a∗b∗⊤
, b̄ = 1

N

∑N
i=1 bi, If m = Ω(q), and q =

max( log(N)
[min(ϵ1,ϵ2)]2

,
d log( 2

ϵ0
)

ϵ22
), then with probability 1− q−10,

∥b̄− g∥ ≤ ϵ′δt∥b∗∥ (11)

where ϵ′ = ϵ2
(1−ϵ0)(1−ϵ1) , for ϵ0, ϵ1, ϵ2 ∈ (0, 1).

Proof. We drop superscript t for simplicity. Following Algorithm 2, we start by computing the update
for b̃i. With g⊤ = a⊤a∗b∗⊤

, we get:

b̃⊤
i =

a⊤X⊤
i Xia

∗b∗⊤

a⊤X⊤
i Xia

(12)

=
a⊤X⊤

i Xiaa
⊤a∗b∗⊤

+ a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

a⊤X⊤
i Xia

(13)

= g⊤ +
a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤

a⊤X⊤
i Xia

. (14)

Therefore,

∥b̃i−g∥ ≤ |a⊤X⊤
i Xia|−1·∥a⊤X⊤

i Xi(Id−aa⊤)a∗b∗⊤
∥ = ∥Xia∥−2·∥a⊤X⊤

i Xi(Id−aa⊤)a∗b∗⊤
∥.

(15)
Note that since each entry of Xi is independent and identically distributed according to a standard
Gaussian, and ∥a∥ = 1, Xia is a random standard Gaussian vector. By Theorem 3.1.1 of [37], the
following is true for any ϵ1 ∈ (0, 1)

P
{
∥Xia∥2 ≤ (1− ϵ1)m

}
≤ exp (−c1ϵ

2
1m

K4
) (16)

where K = ∥ξ∥ψ2
≥ 1 for ξ ∼ N (0, 1) and c1 is some large absolute constant that makes

(16) holds. Next we upper bound ∥a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤∥. Note that E[a⊤X⊤

i Xi(Id −
aa⊤)a∗b∗⊤

] = a⊤E[X⊤
i Xi](Id − aa⊤)a∗b∗⊤

= ma⊤(Id − aa⊤)a∗b∗⊤
= 0. First we need to

apply sub-exponential Berstein inequality to bound the deviation from this mean, and then apply
epsilon net argument. LetN be any ϵ0-net of the unit sphere Sd−1 in the d-dimensional real Euclidean
space, then by Lemma A3.7, we have

∥a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

∥ ≤ 1

1− ϵ0
max
w∈N

a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w (17)

≤ 1

1− ϵ0
max
w∈N

|a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w| (18)

19



Meanwhile, denote the j-th row of Xi by x⊤
i,j , for every w ∈ N , we have

a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w =

m∑
j=1

(a⊤xi,j)(x
⊤
i,j(Id − aa⊤)a∗b∗⊤

w) (19)

On the right hand side of (19), a⊤xi,j and x⊤
i,j(Id−aa⊤)a∗b∗⊤

w are sub-Gaussian random variables.
Thus, the summands on the right-hand side of (19) are products of sub-Gaussian random variables,
making them sub-exponential. Now by choosing c2 = (C ′)2 for the C ′ in Corollary A3.5, we have
the following chain of inequalities for all i, j:

∥(a⊤xi,j)(x⊤
i,j(Id − aa⊤)a∗b∗⊤

w)∥ψ1
≤ ∥a⊤xi,j∥ψ2

· ∥x⊤
i,j(Id − aa⊤)a∗b∗⊤

w∥ψ2
(20)

≤ c2 · ∥a∥ · ∥(Id − aa⊤)a∗b∗⊤w∥ (21)

≤ c2 · ∥a∥ · ∥(Id − aa⊤)a∗b∗⊤∥op∥w∥ (22)

≤ c2 · ∥(Id − aa⊤)a∗b∗⊤∥op (23)

Equation (20) is due to Lemma A3.3, (21) is due to Corollary A3.5, (23) is by the fact that ∥a∥ =
∥w∥ = 1.

Furthermore, these summands are mutually independent and have zero mean. By applying sub-
exponential Bernstein’s inequality (Theorem A3.8) with t = ϵ2m∥(Id − aa⊤)a∗b∗⊤∥op, we get

P
{∣∣∣a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤
w
∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤

∥op
}

(24)

= P


∣∣∣∣∣∣
m∑
j=1

(a⊤xi,j)(x
⊤
i,j(Id − aa⊤)a∗b∗⊤

w)

∣∣∣∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤
∥op

 (25)

= 2 exp (−c3ϵ22m) (26)

for any fixed w ∈ N , ϵ2 ∈ (0, 1), and some absolute constant c3. (26) follows because

ϵ22m
2∥(Id − aa⊤)a∗b∗⊤∥2op∑m

j=1 ∥(a⊤xi,j)(x⊤
i,j(Id − aa⊤)a∗b∗⊤w)∥2ψ1

≥ ϵ22m

c22
(27)

ϵ2m∥(Id − aa⊤)a∗b∗⊤∥op
maxj ∥(a⊤xi,j)(x⊤

i,j(Id − aa⊤)a∗b∗⊤w)∥ψ1

≥ ϵ2m

c2
(28)

And ϵ22m

c22
≤ ϵ2m

c2
. Now we apply union bound over all elements in N . By Corollary 4.2.13 in [37],

there exists an ϵ0-net N with |N | ≤ ( 2
ϵ0

+ 1)d, therefore for this choice of N ,

P
{
max
w∈N

∣∣∣a⊤X⊤
i Xi(Id − aa⊤)a∗b∗⊤

w
∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤

∥op
}

(29)

≤
∑
w∈N

P
{∣∣∣a⊤X⊤

i Xi(Id − aa⊤)a∗b∗⊤
w
∣∣∣ ≥ ϵ2m∥(Id − aa⊤)a∗b∗⊤

∥op
}

(30)

≤
(

2

ϵ0
+ 1

)d
· 2 exp (−c3ϵ22m) (31)

= 2 exp (d log(1 + 2
ϵ0
)− c3ϵ

2
2m) (32)

Combining (15),(16), (18), and (32), we get

P
{
∥b̃i − g∥ ≤ ϵ′∥(Id − aa⊤)a∗b∗⊤

∥op
}
≥ 1− p0 (33)

where ϵ′ = ϵ2
(1−ϵ0)(1−ϵ1) and p0 = 2 exp (d log(1 + 2

ϵ0
)− c3ϵ

2
2m) + exp (− c1ϵ

2
1m

K4 ). Using a union
bound over i ∈ [N ], we have

P

{
N⋂
i=1

∥b̃i − g∥ ≤ ϵ′∥(Id − aa⊤)a∗b∗⊤
∥op

}
≥ 1−Np0. (34)
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Next we bound ∥b̄− g∥ where b̄ is the average of {bi}Ni=1.

∥b̄− g∥ = ∥ 1
N

N∑
i=1

(b̃i − g)∥ (35)

≤ 1

N

N∑
i=1

∥b̃i − g∥ (36)

≤ ϵ′∥(Id − aa⊤)a∗b∗⊤
∥op (37)

= ϵ′∥(Id − aa⊤)a∗∥ · ∥b∗⊤
∥ (38)

= ϵ′δt∥b∗∥ (39)

with probability 1 − Np0. (36) follows by Jensen’s inequality. (38) follows since ∥uv⊤∥op =
∥u∥ · ∥v∥. (39) follows since δt = ∥(Id − aa⊤)a∗∥.

If m = Ω(q), where q = max( log(N)
[min(ϵ1,ϵ2)]2

,
d log( 2

ϵ0
)

ϵ22
), then 1−Np0 > 1− exp(−Cq) > 1− q−10

for large absolute constant C. Then with probability at least 1− q−10,

∥b̄− g∥ ≤ ϵ′δt∥b∗∥ (40)

Lemma A3.10. Let a = at. Let δt = ∥(Id − a∗a∗
⊤
)a∥ = ∥(Id − aa⊤)a∗∥ denote the angle

distance between a∗ and a. Then for Nm = Ω(
d log( 2

ϵ0
)

ϵ23
) and q = max( log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22
), with

probability at least 1− 2q−10,

∥∇al(a, b̄)− E[∇al(a, b̄)]∥ ≤ 2ϵ̃((ϵ′)2 + ϵ′)δt∥b∗∥2 (41)

where ϵ̃ = ϵ3
1−ϵ0 , and ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , for ϵ0, ϵ1, ϵ2, ϵ3 ∈ (0, 1).

Proof. Based on the loss function l(a,b) = 1
N

∑N
i=1 li(a,b) =

1
Nm

∑N
i=1∥Xia

∗b∗⊤ −Xiab
⊤∥2,

we bound the expected gradient with respect to a and the deviation from it. The gradient with respect
to a and its expectation are computed as:

∇al(a, b̄) =
2

Nm

N∑
i=1

(X⊤
i Xiab̄

⊤b̄−X⊤
i Yib̄) (42)

=
2

Nm

N∑
i=1

(X⊤
i Xiab̄

⊤b̄−X⊤
i Xia

∗b∗⊤
b̄) (43)

=
2

Nm

N∑
i=1

X⊤
i Xi(ab̄

⊤ − a∗b∗⊤
)b̄ (44)

E[∇al(a, b̄)] =
2

Nm

N∑
i=1

m(ab̄⊤ − a∗b∗⊤
)b̄ (45)

= 2(ab̄⊤ − a∗b∗⊤
)b̄ (46)

Next, we bound ∥∇al(a, b̄)− E[∇al(a, b̄)]∥. Construct ϵ0-net N over d dimensional unit spheres
Sd−1, by Lemma A3.7, we have

∥∇al(a, b̄)− E[∇al(a, b̄)]∥ (47)

≤ 1

1− ϵ0
max
w∈N

∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]
∣∣ (48)

≤ 1

1− ϵ0

2

Nm
max
w∈N

∣∣∣∣∣∣
N∑
i=1

m∑
j=1

(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄−w⊤(ab̄⊤ − a∗b∗⊤

)b̄

∣∣∣∣∣∣ (49)
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where x⊤
i,j is the j-th row of Xi. Observe that x⊤

i,jw and xi,j(ab̄
⊤ − a∗b∗⊤

)b̄ are sub-Gaussian
variables. Thus the product of them are sub-exponentials. For the right hand side of (49), the
summands are sub-exponential random variables with sub-exponential norm

∥(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄−w⊤(ab̄⊤ − a∗b∗⊤

)b̄∥ψ1
(50)

≤ ∥(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄∥ψ1

+ ∥w⊤(ab̄⊤ − a∗b∗⊤
)b̄∥ψ1

(51)

≤ ∥(x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))b̄∥ψ1

+
|w⊤(ab̄⊤ − a∗b∗⊤

)b̄|
log 2

(52)

≤ c2 · ∥w∥ · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥+

|w⊤(ab̄⊤ − a∗b∗⊤
)b̄|

log 2
(53)

≤ c2 · ∥w∥ · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥+

∥w∥ · ∥(ab̄⊤ − a∗b∗⊤
)b̄∥

log 2
(54)

≤ c2 · ∥w∥ · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥+

∥w∥ · ∥ab̄⊤ − a∗b∗⊤∥op · ∥b̄∥
log 2

(55)

= c4 · ∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥ (56)

where c4 = c2 +
1

log 2 is some absolute constant greater than 1. Equation (52) is due to the fact that
for a constant c ∈ R,

∥c∥ψ1 = inf
t
exp

{
|c|
t
≤ 2

}
=
|c|
log 2

.

Equation (53) is derived similarly as (20)-(22).

The summands in (49) are mutually independent and have zero mean. Applying sub-exponential
Bernstein inequality (Theorem A3.8) with t = ϵ3Nm∥ab̄⊤ − a∗b∗⊤∥op · ∥b̄∥,

P


∣∣∣∣∣∣
N∑
i=1

m∑
j=1

[((x⊤
i,jw)(xi,j(ab̄

⊤ − a∗b∗⊤
))−w⊤(ab̄⊤ − a∗b∗⊤

))b̄]

∣∣∣∣∣∣ ≥ t

 (57)

≤ 2 exp

(
−cmin(

ϵ23Nm

c24
,
ϵ3Nm

c4
)

)
(58)

= 2 exp (−c5ϵ23Nm) (59)

for any fixed w ∈ N , ϵ3 ∈ (0, 1) and some absolute constant c5.

Now we apply union bound over all w ∈ N using Corollary 4.2.13 of [37]. We can conclude that

P
{
max
w∈N

∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]
∣∣ ≥ 2ϵ3∥ab̄⊤ − a∗b∗⊤

∥op · ∥b̄∥
}

(60)

≤
∑
w∈N

P
{∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]

∣∣ ≥ 2ϵ3∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥

}
(61)

≤ 2 exp (d log(1 +
2

ϵ0
)− c5ϵ

2
3Nm) (62)
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Combining (39), (48) , and (60), with probability at least 1−2 exp (d log(1 + 2
ϵ0
)− c5ϵ

2
3Nm)−q−10,

∥∇al(a, b̄)− E[∇al(a, b̄)]∥ ≤
1

1− ϵ0
max
w∈N

∣∣w⊤∇al(a, b̄)−w⊤E[∇al(a, b̄)]
∣∣ (63)

≤ 2ϵ3
1− ϵ0

∥ab̄⊤ − a∗b∗⊤
∥op · ∥b̄∥ (64)

=
2ϵ3

1− ϵ0
∥a(b̄− g)⊤ − (Id − aa⊤)a∗b∗⊤

∥op · ∥b̄∥ (65)

≤ 2ϵ3
1− ϵ0

(∥a⊤(b̄− g)∥+ ∥(Id − aa⊤)a∗b∗⊤
∥op)∥b̄∥ (66)

≤ 2ϵ3
1− ϵ0

(∥b̄− g∥+ ∥(Id − aa⊤)a∗∥ · ∥b∗∥)∥b̄∥ (67)

=
2ϵ3

1− ϵ0
(∥b̄− g∥+ δt∥b∗∥)∥b̄− g + g∥ (68)

≤ 2ϵ3
1− ϵ0

(∥b̄− g∥+ δt∥b∗∥)(∥b̄− g∥+ ∥g∥) (69)

≤ 2ϵ3
1− ϵ0

(∥b̄− g∥+ δt∥b∗∥)(∥b̄− g∥+ ∥b∗∥) (70)

=
2ϵ3

1− ϵ0
(∥b̄− g∥2 + δt∥b̄− g∥∥b∗∥+ ∥b̄− g∥∥b∗∥+ δt∥b∗∥2)

(71)

≤ 2ϵ3
1− ϵ0

((ϵ′)2(δt)2 + ϵ′(δt)2 + ϵ′δt + δt)∥b∗∥2 (72)

≤ 2ϵ3
1− ϵ0

(ϵ′ + 1)2δt∥b∗∥2 (73)

= 2ϵ̃(ϵ′ + 1)2δt∥b∗∥2 (74)

with ϵ̃ = ϵ3
1−ϵ0 . (64) uses (60). (66) follows by triangle inequality. (68) follows by δt = ∥(Id −

aa⊤)a∗∥. (70) uses ∥g∥ = ∥b∗a∗
⊤
a∥ ≤ ∥b∗∥. (73) follows by (δt)2 < δt since δt ∈ (0, 1).

If Nm = Ω(
d log( 2

ϵ0
)

ϵ23
), then existing large constant C,

1− 2 exp (d log(1 +
2

ϵ0
)− c5ϵ

2
3Nm)− q−10 > 1− exp(−Cd)− q−10 (75)

> 1− d−10 − q−10 (76)

> 1− 2q−10 (77)

Thus with probability at least 1− 2q−10, (74) holds.

Lemma A3.11 (Lemma 4.3). Let a = at. Let δt = ∥(Id − a∗a∗
⊤
)a∥ = ∥(Id − aa⊤)a∗∥ denote

the angle distance between a∗ and a. Assume that Assumption 4.1 holds and δt ≤ δt−1 ≤ · · · ≤ δ0.
Let m be the number of samples for each updating step, let ϵ′ = ϵ2

(1−ϵ0)(1−ϵ1) , ϵ̃ = ϵ3
1−ϵ0 for

ϵ0, ϵ1, ϵ2, ϵ3 ∈ (0, 1), if

m = Ω

(
max

{
log(N)

[min(ϵ1, ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

})

and ϵ′, ϵ̃ < 1−(δ0)2

16 , for any t and η ≤ 1
L2

max
, then we have,

δt+1 ≤ δt
√
1− η(1− δ02)∥b∗∥2 (78)

with probability at least 1− 2q−10 for q = max

{
log(N)

[min(ϵ1,ϵ2)]2
,
d log( 2

ϵ0
)

ϵ22

}
.
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Proof. Recall that â+ = a− η∇al(a, b̄). We substract and add E[∇al(a, b̄)], obtain
â+ = a− ηE[∇al(a, b̄)] + η(E[∇al(a, b̄)]−∇al(a, b̄)) (79)

Multiply both sides by the projection operator P = Id − a∗(a∗)⊤,
Pâ+ = Pa− ηPE[∇al(a, b̄)] + ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (80)

= Pa− 2ηP(ab̄⊤ − a∗b∗⊤
)b̄+ ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (81)

= Pa− 2ηPab̄⊤b̄+ ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (82)

= Pa(1− 2ηb̄⊤b̄) + ηP(E[∇al(a, b̄)]−∇al(a, b̄)) (83)

where (81) uses E[∇al(a, b̄)] = 2(ab̄⊤ − a∗b∗⊤
)b̄, (82) follows by Pa∗ = 0. Thus, we get

∥Pâ+∥ ≤ ∥Pa∥|1− 2ηb̄⊤b̄|+ η∥(E[∇al(a, b̄)]−∇al(a, b̄))∥ (84)
Normalizing the left hand side, we obtain

∥Pâ+∥
∥â+∥

≤ ∥Pa∥|1− 2ηb̄⊤b̄|+ η∥(E[∇al(a, b̄)]−∇al(a, b̄))∥
∥â+∥

(85)

⇒ δt+1 ≤ δt|1− 2ηb̄⊤b̄|+ η∥E[∇al(a, b̄)]−∇al(a, b̄)∥
∥â+∥

(86)

=
E1 + E2

∥â+∥
(87)

where (86) follows by δt+1 = ∥Pâ+∥
∥â+∥ and δt = ∥Pa∥. We need to upper bound E1 and E2

accordingly. E2 is upper bounded based on Lemma A3.10. With probability at least 1− 2q−10,
E2 = η∥E[∇al(a, b̄)]−∇al(a, b̄)∥ (88)

≤ 2ηϵ̃(ϵ′ + 1)2δt∥b∗∥2 (89)

To upper bound E1, we need to lower bound ∥b̄∥2. We can first lower bound ∥b̄∥ by:
∥b̄∥ = ∥g − (g − b̄)∥ (90)

≥ ∥g∥ − ∥g − b̄∥ (91)

=
√

1− (δt)2∥b∗∥ − ∥g − b̄∥ (92)

≥
√

1− (δt)2∥b∗∥ − ϵ′δt∥b∗∥ (93)

with probability at least 1 − q−10. (92) follows by g⊤ = a⊤a∗b∗⊤
and a⊤a∗ = cos θ(a,a∗),

(93) follows by Lemma A3.9. Assuming δt ≤ · · · ≤ δ0, we choose ϵ′ < 1−(δ0)2

16 to make√
1− (δt)2∥b∗∥ − ϵ′δt∥b∗∥ ≥ 0. Hence ∥b̄∥2 is lower bounded by:

∥b̄∥2 ≥ (
√
1− (δt)2∥b∗∥ − ϵ′δt∥b∗∥)2 (94)

= (1− (δt)2)∥b∗∥2 + (ϵ′)2(δt)2∥b∗∥2 − 2ϵ′δt
√
1− (δt)2∥b∗∥2 (95)

≥ (1− (δt)2)∥b∗∥2 + (ϵ′)2(δt)2∥b∗∥2 − ϵ′∥b∗∥2 (96)

≥ (1− (δ0)2)∥b∗∥2 − ϵ′∥b∗∥2 (97)

with probability at least 1− q−10. (96) follows by xy ≤ 1
2 for x2+y2 = 1, (97) follows by assuming

δt ≤ δt−1 ≤ · · · ≤ δ0. E1 is upper bounded below.
E1 = δt|1− 2ηb̄⊤b̄| (98)

≤ δt|1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2| (99)

with probability at least 1− q−10. Next we lower bound ∥â+∥.
∥â+∥2 = ∥a− η∇al(a, b̄)∥2 (100)

= a⊤a+ η2∥∇al(a, b̄)∥2 − 2ηa⊤∇al(a, b̄) (101)

≥ a⊤a− 2ηa⊤∇al(a, b̄) (102)

= 1− 2ηa⊤∇al(a, b̄) (103)

= 1− 2ηa⊤(∇al(a, b̄)− E[∇al(a, b̄)])− 2ηa⊤E[∇al(a, b̄)] (104)
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where (102) follows by η2∥∇al(a, b̄)∥2 ≥ 0, and (103) follows by a⊤a = 1. The first subtrahend
2ηa⊤(∇al(a, b̄)− E[∇al(a, b̄)]) is upper bounded such that

2ηa⊤(∇al(a, b̄)− E[∇al(a, b̄)]) ≤ 2η∥a∥ · ∥(∇al(a, b̄)− E[∇al(a, b̄)])∥ (105)

= 2η∥(∇al(a, b̄)− E[∇al(a, b̄)])∥ (106)

≤ 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 (107)

with probability at least 1−2q−10. (107) uses Lemma A3.9. The second subtrahend is upper bounded
such that

2ηa⊤E[∇al(a, b̄)] = 4ηa⊤(ab̄⊤ − a∗b∗⊤
)b̄ (108)

= 4ηa⊤(ab̄⊤ − a∗b∗⊤
)g − 4ηa⊤(ab̄⊤ − a∗b∗⊤

)(g − b̄) (109)

where a⊤(ab̄⊤ − a∗b∗⊤
)g = −a⊤((Id − aa⊤)a∗b∗⊤

+ a(g − b̄)⊤)g = (b̄− g)⊤g. The second
term is simplified via a⊤(ab̄⊤− a∗b∗⊤

)(g− b̄) = a⊤((Id− aa⊤)a∗b∗⊤
+ a(g− b̄)⊤)(b̄− g) =

−(g − b̄)2. Both simplifications use a⊤(Id − aa⊤) = 0 and a⊤a = 1. (109) becomes

2ηa⊤E[∇al(a, b̄)] = 4η(b̄− g)⊤g + 4η(g − b̄)2 (110)

≤ 4η∥g − b̄∥∥b∗∥+ 4η∥g − b̄∥2 (111)

≤ 4ηϵ′δt∥b∗∥2 + 4η(ϵ′)2(δt)2∥b∗∥2 (112)

≤ 4η((ϵ′)2 + ϵ′)∥b∗∥2 (113)

with probability at least 1− q−10. (112) uses Lemma A3.9. Combining (107) and (113), we obtain

∥â+∥2 ≥ 1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2 (114)

with probability at least 1− 2q−10. Combining (99), (89) and (114), we obtain

δt+1 ≤ E1 + E2

∥â+∥
≤ δt(1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2)√

1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2
= δtC (115)

We can choose ϵ′, ϵ̃ < 1−(δ0)2

16 such that (1−(δ0)2) > max(4(ϵ̃(ϵ′+1)2+(ϵ′)2+ϵ′), 2ϵ′+2ϵ̃(ϵ′+1)2)
holds. Then we obtain

C =
1− 2η((1− (δ0)2)− ϵ′)∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2√

1− 4ηϵ̃(ϵ′ + 1)2∥b∗∥2 − 4η((ϵ′)2 + ϵ′)∥b∗∥2
(116)

=
1− 2η(1− (δ0)2)∥b∗∥2 + 2ηϵ′∥b∗∥2 + 2ηϵ̃(ϵ′ + 1)2∥b∗∥2√

1− 4η(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′)∥b∗∥2
(117)

≤ 1− 2η(1− (δ0)2)∥b∗∥2 + η(2ϵ′ + 2ϵ̃(ϵ′ + 1)2)∥b∗∥2√
1− 4η(ϵ̃(ϵ′ + 1)2 + (ϵ′)2 + ϵ′)∥b∗∥2

(118)

≤ 1− η(1− (δ0)2)∥b∗∥2√
1− η(1− (δ0)2)∥b∗∥2

(119)

=
√

1− η(1− (δ0)2)∥b∗∥2 (120)

Assuming η ≤ 1
L2

max
≤ 1

∥b∗∥2 , 1− η(1− (δ0)2)∥b∗∥2 is strictly positive. Therefore we obtain, with
probability at least 1− 2q−10,

δt+1 ≤ δt
√
1− η(1− (δ0)2)∥b∗∥2. (121)

A3.4 Proof of Theorem 5.4

Proof. In Lemma 4.3, we have shown the angle distance between a and a∗ decreasing in t-th
iteration such that with probability at least 1 − 2q−10 for q = max{log(N), d}, δt+1 ≤ δtC for
c ∈ (0, 1), C =

√
1− c(1− (δ0)2) with proper choice of step size η.
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Proving δ1 ≤ δ0C . Now we are to prove that for the first iteration, δ1 ≤ δ0C with certain
probability.

By Lemma A3.9, we get ∥b̄− g∥ ≤ ϵ′δ0∥b∗∥ with probability at least 1− q−10.

By Lemma A3.10, we get ∥∇al(a, b̄)− E[∇al(a, b̄)]∥ ≤ 2ϵ̃((ϵ′)2 + ϵ′)δ0∥b∗∥2 with probability at
least 1− 2q−10.

By Lemma A3.11, without assuming decreasing angles, we obtain, with probability at least 1−2q−10,

δ1 ≤ δ0
√

1− η(1− (δ0)2)∥b∗∥2. (122)

Inductive Hypothesis. Based on inductive hypothesis, by proving δ1 ≤ δ0C, the assumption that
δt ≤ δt−1C ≤ · · · ≤ δ1Ct−1, and proving δt+1 ≤ δtC, we conclude that δt ≤ δt−1C holds for all
t ∈ [T ] iterations. We take a union bound over all t ∈ [T ] such that,

P

{
T−1⋂
t=0

δt+1 ≤ δt
√

1− c(1− (δ0)2)

}
≥ 1− 2Tq−10. (123)

Solve for T . In order to achieve ϵ-recovery of a∗, we need

δ0(1− c(1− (δ0)2))
T
2 ≤ ϵ (124)

(1− c(1− (δ0)2))
T
2 ≤ ϵ

δ0
(125)

T

2
log (1− c(1− (δ0)2)) ≤ log(

ϵ

δ0
) (126)

(127)

We proceed such that

T ≥
2 log( ϵδ0 )

log (1− c(1− (δ0)2))
(128)

>
2 log( ϵδ0 )

−c(1− (δ0)2)
(129)

=
2

c(1− (δ0)2)
log(

δ0

ϵ
) (130)

where (129) follows by using log(1−x) < −x for |x| < 1. Thus, with probability at least 1−2Tq−10,
δT = sin θ(aT ,a∗) ≤ ϵ.

Convergence to the target model. We now aim to upper bound ∥aT (bT+1)⊤ − a∗(b∗)⊤∥. Recall
that (gT )⊤ = (aT )⊤a∗b∗⊤

and δT = ∥(Id − aT (aT )⊤)a∗∥, we have

∥aT (bT+1)⊤ − a∗b∗⊤
∥ = ∥aT (bT+1)⊤ − aT (gT )⊤ + aT (gT )⊤ − a∗b∗⊤

∥ (131)

≤ ∥aT (bT+1)⊤ − aT (gT )⊤∥+ ∥aT (gT )⊤ − a∗b∗⊤
∥ (132)

= ∥aT (bT+1 − gT )⊤∥+ ∥(aT (aT )⊤ − Id)a
∗b∗⊤

∥ (133)

= ∥aT ∥∥bT+1 − gT ∥+ ∥(Id − aT (aT )⊤)a∗∥∥b∗∥ (134)

≤ ϵ′δT ∥b∗∥+ δT ∥b∗∥ (135)

= (1 + ϵ′)ϵ∥b∗∥ (136)

= (1 + ϵ′)ϵ∥a∗b∗⊤
∥ (137)

where (135) is by Lemma A3.9 and the fact that ∥aT ∥ = 1, and (137) is due to the fact that
∥xy⊤∥ = ∥x∥∥y∥ and ∥a∗∥ = 1.
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A3.4.1 Proof of Proposition 5.5

Proof. We start by fixing a0 and updating bi to minimize the objective. Let a = a0. We obtain

b⊤
i =

a⊤X⊤
i Xia

∗b∗⊤

a⊤X⊤
i Xia

(138)

(bFFA)⊤ =
1

N

N∑
i=1

a⊤X⊤
i Xia

∗b∗⊤

a⊤X⊤
i Xia

(139)

let b̄ = bFFA. We aim to compute the expected value of 1
N

∑N
i=1

1
m∥Xia

∗b∗⊤ −Xiab̄
⊤∥2 where

the expectation is over all the randomness in the Xi. We define

si =
a⊤X⊤

i Xia
∗

a⊤X⊤
i Xia

=
(Xia)

⊤(Xia
∗)

∥Xia∥2
(140)

so that b̄ = 1
N

∑N
i=1 sib

∗ = s̄b∗. For each i, the norm becomes

∥Xia
∗b∗⊤

−Xiab̄
⊤∥2 = ∥(Xia

∗ − s̄Xia)b
∗⊤
∥2 (141)

= ∥Xia
∗ − s̄Xia∥2∥b∗∥2 (142)

using the fact that ∥uv⊤∥2 = ∥u∥2∥v∥2 for vectors u and v. Therefore, E[ 1N
∑N
i=1

1
m∥Xia

∗b∗⊤ −
Xiab̄

⊤∥2] is reduced to E[ 1N
∑N
i=1

1
m∥Xia

∗ −Xia∥2] · ∥b∗∥2.

Since each entry of Xi is independently and identically distributed according to a standard Gaussian
distribution, both a∗ and a are unit vectors, the vectors Xia

∗ and Xia are N (0, Im). The cross-
covariance is αIm where α = a⊤a∗.

By linearity, we can show that 1
N

∑N
i=1

1
m∥Xia

∗ − s̄Xia∥2 has the same expectation as 1
m∥X1a

∗ −
s̄X1a∥2 because all (Xia

∗,Xia) are i.i.d. pairs. Let z1 = s1
N and z2 = s2+···+sN

N , we have
∥X1a

∗ − z1X1a− z2X1a∥2. Let v = X1a
∗,u1 = z1X1a and u2 = z2X1a. Thus,

∥X1a
∗ − z1X1a− z2X1a∥2 = ∥v − u1 − u2∥2 (143)

= v⊤v + u⊤
1 u1 + u⊤

2 u2 − 2v⊤u1 − 2v⊤u2 + 2u⊤
1 u2 (144)

Now we compute the expectation term by term.

Expected value of v⊤v We have E[v⊤v] = E[∥X1a
∗∥2] = m.

Expected value of u⊤
1 u1 We have

u⊤
1 u1 = z21∥X1a∥2 (145)

=
s21
N2
∥X1a∥2 (146)

=
1

N2

((X1a)
⊤(X1a

∗))2

∥X1a∥4
∥X1a∥2 (147)

=
1

N2

((X1a)
⊤(X1a

∗))2

∥X1a∥2
(148)

Note that (X1a
∗,X1a) is a correlated Gaussian pair with correlation α = a⊤a∗. Without loss of

generality, we assume a = e1 thus a∗ = αe1 +
√
1− α2e2, where e1 and e2 are standard basis

vectors in Rd. So we can get X1a = X1e1 = x1,1, where x1,1 denotes the first column of X1.
Accordingly X1a

∗ = αX1e1 +
√
1− α2X1e2 = αx1,1 +

√
1− α2x1,2 where x1,2 denotes the

second column of X1. Therefore (148) can be written as 1
N2

(x⊤
1,1(αx1,1+βx1,2))

2

∥x1,1∥2 . Now we take
expectation of it.

E
[

1

N2

((X1a)
⊤(X1a

∗))2

∥X1a∥2

]
= E

[
1

N2

(x⊤
1,1(αx1,1 + βx1,2))

2

∥x1,1∥2

]
=

1

N2
E

[
(x⊤

1,1(αx1,1 + βx1,2))
2

∥x1,1∥2

]
(149)
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Let r1 = ∥x1,1∥2 and r2 = x⊤
1,1x1,2. We have

E

[
(x⊤

1,1(αx1,1 + βx1,2))
2

∥x1,1∥2

]
= E

[
(αr1 + βr2)

2

r1

]
(150)

= E
[
α2r21 + β2r22 + 2αβr1r2

r1

]
(151)

= E
[
α2r1

]
+ E

[
β2r22
r1

]
+ E [2αβr2] (152)

where E
[
α2r1

]
= α2E

[
∥x1,1∥2

]
= α2m, and E [2αβr2] = 2αβE [r2] = 2αβE

[
x⊤
1,1x1,2

]
= 0

because x1,1 and x1,2 are independent standard Gaussian vectors. Then we analyze E
[
β2r22
r1

]
=

β2E
[
r22
r1

]
. Condition on x1,1,

E [r2|x1,1] = E
[
x⊤
1,1x1,2|x1,1

]
= x⊤

1,1E [x1,2] = 0 (153)

and Var(r2|x1,1) = ∥x1,1∥2 = r1, thus

r2|x1,1 = x⊤
1,1x1,2|x1,1 ∼ N (0, r1) (154)

Then we obtain

E
[
r22|x1,1

]
= r1 (155)

Therefore E
[
r22
r1
|x1,1

]
=

E[r22 |x1,1]
r1

= 1. We take total expectation E
[
r22
r1

]
= E

[
E
[
r22
r1
|x1,1

]]
= 1.

Summarizing,

E
[
((X1a)

⊤(X1a
∗))2

∥X1a∥2

]
= E

[
(αr1 + βr2)

2

r1

]
(156)

= E
[
α2r1

]
+ E

[
β2r22
r1

]
+ E [2αβr2] (157)

= α2m+ β2 (158)

E
[
u⊤
1 u1

]
=

1

N2
E
[
((X1a)

⊤(X1a
∗))2

∥X1a∥2

]
(159)

=
α2m+ (1− α2)

N2
(160)

Expected value of u⊤
2 u2 We have u⊤

2 u2 = z22∥X1a∥2 where z2 = s2+···+sN
N is independent of

pair (X1a
∗,X1a). To compute E

[
z22∥X1a∥2

]
, first we condition on z2 to obtain,

E
[
z22∥X1a∥2|z2

]
= z22E

[
∥X1a∥2

]
= z22m (161)

Then we take total expectation E
[
z22∥X1a∥2

]
= E

[
E
[
z22∥X1a∥2|z2

]]
= E

[
z22m

]
= mE

[
z22
]
.

E
[
z22
]
= E

[
(s2 + · · ·+ sN )2

N2

]
(162)

=
1

N2
E

 N∑
i=2

s2i +

N∑
i=1,j=1
i ̸=j

sisj

 (163)

=
1

N2

 N∑
i=2

E
[
s2i
]
+

N∑
i=1,j=1
i ̸=j

E [sisj ]

 (164)
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Write si =
(Xia)

⊤(Xia
∗)

∥Xia∥2 . Without loss of generality, we assume a = e1 thus a∗ = αe1+
√
1− α2e2,

where e1 and e2 are standard basis vectors in Rd. Thus, we have Xia = Xie1 = xi,1, where
xi,1 represents the first column of Xi. Similarly, Xia

∗ = αXie1 +
√
1− α2Xie2 = αxi,1 +√

1− α2xi,2, where xi,2 denotes the second column of Xi.

Hence,

(Xia)
⊤(Xia

∗) = x⊤
i,1(αxi,1 +

√
1− α2xi,2) = α∥xi,1∥2 +

√
1− α2(x⊤

i,1xi,2) (165)

With ∥Xia∥2 = ∥xi,1∥2, we have

si =
α∥xi,1∥2 +

√
1− α2(x⊤

i,1xi,2)

∥xi,1∥2
= α+

√
1− α2

x⊤
i,1xi,2

∥xi,1∥2
(166)

Let R =
x⊤
i,1xi,2

∥xi,1∥2 . Then

E
[
s2i
]
= E

[(
α+

√
1− α2R

)2]
(167)

= E
[
α2 + (1− α2)R2 + 2α

√
1− α2R

]
(168)

= α2 + (1− α2)E
[
R2
]
+ 2α

√
1− α2E [R] (169)

For E [R] = E
[
x⊤
i,1xi,2

∥xi,1∥2

]
, similarly as in (154), x⊤

i,1xi,2|xi,1 ∼ N (0, ∥xi,1∥2), thus
x⊤
i,1xi,2

∥xi,1∥2 |xi,1 ∼

N (0, 1
∥xi,1∥2 ), then

E [R] = E [E [R|xi,1]] = 0 (170)

For E
[
R2
]
, since x⊤

i,1xi,2|xi,1 ∼ N (0, ∥xi,1∥2), so E
[
(x⊤
i,1xi,2)

2|xi,1
]
= ∥xi,1∥2. Thus, with

R2 =
(x⊤

i,1xi,2)
2

∥xi,1∥4 ,

E
[
R2|xi,1

]
=

E
[
(x⊤
i,1xi,2)

2|xi,1
]

∥xi,1∥4
=

1

∥xi,1∥2
(171)

E
[
R2
]
= E

[
1

∥xi,1∥2

]
(172)

For a m-dimensional standard Gaussian vector, ∥xi,1∥2 follows a chi-squared distribution with m
degrees of freedom. Therefore, E

[
R2
]
= 1

m−2 . (169) becomes

E
[
s2i
]
= α2 + (1− α2)E

[
R2
]
+ 2α

√
1− α2E [R] (173)

= α2 + (1− α2)
1

m− 2
(174)

Now we compute E [sisj ] for i ̸= j. By independence of si and sj , E [sisj ] = E [si] ·E [sj ] = E [si]
2.

Take expectation of (166),

E [si] = E

[
α+

√
1− α2

x⊤
i,1xi,2

∥xi,1∥2

]
(175)

= α+
√
1− α2E

[
x⊤
i,1xi,2

∥xi,1∥2

]
(176)

= α+
√
1− α2E [R] (177)

= α (178)
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Hence, E [sisj ] = α2. Summarizing,

E
[
u⊤
2 u2

]
= mE

[
z22
]

(179)

=
m

N2

(
(N − 1)E

[
s2i
]
+ (N − 1)(N − 2)E [sisj ]

)
(180)

=
m

N2

(
(N − 1)(α2 + (1− α2)

1

m− 2
) + (N − 1)(N − 2)α2

)
(181)

=
m

N2

[
(N − 1)2α2 + (N − 1)

1− α2

m− 2

]
(182)

Expected value of v⊤u1 We have v⊤u1 = z1(X1a
∗)⊤(X1a) =

s1
N (X1a

∗)⊤(X1a). We factor
out 1

N , E
[
v⊤u1

]
= 1

NE
[
s1(X1a

∗)⊤(X1a)
]
. By (158),

E
[
s1(X1a

∗)⊤(X1a)
]
= E

[
((X1a)

⊤(X1a
∗))2

∥X1a∥2

]
(183)

= α2m+ (1− α2) (184)
Then

E
[
v⊤u1

]
=

α2m+ (1− α2)

N
(185)

Expected value of v⊤u2 We have v⊤u2 = z2(X1a
∗)⊤(X1a). Condition on z2 which is indepen-

dent of (X1a
∗)⊤(X1a), we obtain

E
[
z2(X1a

∗)⊤(X1a)|z2
]
= z2E

[
(X1a

∗)⊤(X1a)
]

(186)

Still we assume a = e1 thus a∗ = αe1 +
√
1− α2e2, where e1 and e2 are standard basis vectors

in Rd. With X1a = X1e1 = x1,1, where x1,1 denotes the first column of X1, and X1a
∗ =

αX1e1 +
√
1− α2X1e2 = αx1,1 +

√
1− α2x1,2 where x1,2 denotes the second column of X1,

using (165),

E
[
(X1a

∗)⊤(X1a)
]
= E

[
α∥x1,1∥2 +

√
1− α2(x⊤

1,1x1,2)
]

(187)

= αE
[
∥x1,1∥2

]
+ z2

√
1− α2E

[
x⊤
1,1x1,2

]
(188)

= αm (189)

Thus z2E
[
(X1a

∗)⊤(X1a)
]
= z2αm, Then we take total expectation

E
[
E
[
z2(X1a

∗)⊤(X1a)|z2
]]

= E [z2αm] (190)

= αmE [z2] (191)

where z2 = s2+···+sN
N . Therefore,

αmE [z2] =
αm

N

N∑
i=2

E [si] =
m

N
(N − 1)α2 (192)

where (192) follows by E [si] = α. Summarizing, we obtain E
[
v⊤u2

]
= m

N (N − 1)α2.

Expected value of u⊤
1 u2 We have u⊤

1 u2 = z1z2∥X1a∥2. By definition of z1 and z2, we obtain

z1z2∥X1a∥2 =
1

N2
((X1a

∗)⊤(X1a))

N∑
i=2

si (193)

Since (X1a
∗)⊤(X1a) depends only on X1 ,

∑N
i=2 si is independent of X1, we obtain

E

[
1

N2
((X1a

∗)⊤(X1a))

N∑
i=2

si

]
=

1

N2
E
[
(X1a

∗)⊤(X1a)
]
· E

[
N∑
i=2

si

]
(194)

=
1

N2
E
[
(X1a

∗)⊤(X1a)
]
· (N − 1)E [si] (195)

=
(N − 1)mα2

N2
(196)
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where (196) follows by E
[
(X1a

∗)⊤(X1a)
]
= αm and E [si] = α.

Combining (160), (182),(185),(192),(196) and (144),

1

m
∥X1a

∗ − s̄X1a∥2 =
1

m
(v⊤v + u⊤

1 u1 + u⊤
2 u2 − 2v⊤u1 − 2v⊤u2 + 2u⊤

1 u2) (197)

= (1− α2)

[
1 +

N(4−m)− 2

N2m(m− 2)

]
(198)

= (δ0)2(1 + c̃) (199)

where δ0 is the angle distance between a and a∗. The quantity c̃ = N(4−m)−2
N2m(m−2) = O( 1

Nm ) as N and
m approach infinity. Therefore,

E

[
1

N

N∑
i=1

1

m
∥Xia

∗b∗⊤
−Xiab̄

⊤∥2
]
= (1 + c̃)(δ0)2∥b∗∥2 (200)

A3.5 Heterogeneous Case

Consider a federated setting with N clients, each with the following local linear model

fi(Xi) = Xiab
⊤ (201)

where a ∈ Rd is a unit vector and b ∈ Rd are the LoRA weights corresponding to rank r = 1. In this
setting, we model the local data of i-th client such that Yi = Xia

∗b∗⊤

i for some ground truth LoRA
weights a∗ ∈ Rd, which is a unit vector, and local b∗

i ∈ Rd. We consider the following objective

min
a∈Rd,b∈Rd

1

N

N∑
i=1

li(a,b) (202)

We consider the local population loss li(a,b) = ∥a∗b∗⊤

i − ab⊤∥2.

We aim to learn a shared model (a,b) for all the clients. It is straightforward to observe that (a′,b′)
is a global minimizer of if and only if a′b′⊤ = a∗b̄∗, where b̄∗ = 1

N

∑N
i=1 b

∗
i . The solution is

unique and satisfies a′ = a∗ and b′ = b̄∗. With this global minimizer, we obtain the corresponding
minimum global error of 1

N

∑N
i=1∥a∗(b∗

i − b̄∗)⊤∥2.

We aim to show that the training procedure described in Algorithm 2 learns the global minimizer
(a∗, b̄∗). First, we make typical assumption and definition.
Assumption A3.12. There exists Lmax <∞ (known a priori), s.t. ∥b̄∗∥ ≤ Lmax.

Definition A3.13. (Client variance) For γ > 0, we define γ2 := 1
N

∑N
i=1∥b∗

i − b̄∗∥2, where
b̄∗ = 1

N

∑N
i=1 b

∗
i .

Theorem A3.14. (Convergence of RoLoRA for linear regressor in heterogeneous setting) Let δt =
∥(Id − a∗a∗

⊤
)at∥ be the angle distance between a∗ and at of t-th iteration. Suppose we are in the

setting described in Section A3.5 and apply Algorithm 2 for optimization. Given a random initial
a0, an initial angle distance δ0 ∈ (0, 1), we set the step size η ≤ 1

2L2
max

and the number of iterations

T ≥ 1
c(1−(δ0)2) log(

δ0

ϵ ) for c ∈ (0, 1). Under these conditions, we achieve the following

sin θ(aT ,a∗) ≤ ϵ, and ∥aT (bT+1)⊤ − a∗(b̄∗)⊤∥ ≤ ϵ∥a∗(b̄∗)⊤∥
which we refer to as ϵ-accurate recovery of the global minimizer.

Theorem A3.14 follows by recursively applying Lemma A3.16 for T iterations. We start by computing
the update rule for a as in Lemma A3.15. Using Lemma A3.15, we analyze the convergence of a in
Lemma A3.16. We also show the global error that can be achieved by FFA-LoRA within this setting
in Proposition A3.17.
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Lemma A3.15. (Update for a) In RoLoRA for linear regressor, the update for a and b in each
iteration is:

bt+1 = b̄ = b̄∗a∗⊤at (203)

at+1 = â =
at − 2η(atb̄⊤b̄− a∗b̄∗⊤

b̄)

∥â+∥
(204)

where b̄∗ =
∑N
i=1 b

∗
i , ∥â+∥ = ∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤

b̄)∥.

Proof. Minimization for bi. At the start of each iteration, each client computes the analytic solution
for bi by fixing a and solving their local objective argminbi

∥a∗b∗⊤

i − ab⊤
i ∥2, where a∗ and a are

both unit vectors. Setting a = at, we obtain bi such that

bi =
b∗
i a

∗⊤
a

a⊤a
= b∗

i a
∗⊤

a (205)

(205) follows since a⊤a = 1.

Aggregation for bi. The server simply computes the average of {bi}Ni=1 and gets

b̄ =

N∑
i=1

bi =

N∑
i=1

b∗
i a

∗⊤a = b̄∗a∗⊤a (206)

The server then sends b̄ to clients for synchronization.

Gradient Descent for â. In this step, each client fixes bi to b̄ received from the server and update a
using gradient descent. With the following gradient

∇ali(a, b̄) = 2(ab̄⊤b̄− a∗b∗⊤

i b̄) (207)
Thus, with step size η, a is updated such as

â+ = a− η

N

N∑
i=1

∇ali(a, b̄)

= a− 2
η

N

N∑
i=1

(ab̄⊤b̄− a∗b∗⊤

i b̄)

= a− 2η(ab̄⊤b̄− a∗b̄∗⊤
b̄) (208)

â =
a− 2η(ab̄⊤b̄− a∗b̄∗⊤

b̄)

∥â+∥
(209)

Lemma A3.16. Let δt = | sin θ(a∗,at)| be the angle distance between a∗ and at. Assume that
Assumption A3.12 holds and δt ≤ δt−1 ≤ · · · ≤ δ0, if η ≤ 1

2L2
max

, then

| sin θ(at+1,a∗)| = δt+1 ≤ δt · (1− 2η(1− (δ0)2)∥b̄∗∥2) (210)

Proof. From Lemma A3.15, at+1 and bt+1 are computed as follows:

bt+1 = b̄ = b̄∗a∗⊤at (211)

at+1 =
at − 2η(atb̄⊤b̄− a∗b̄∗⊤

b̄)

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(212)

Note that at and at+1 are both unit vectors. Now, we multiply both sides of Equation (212) by the
projection operator P = Id − a∗(a∗)⊤, which is the projection to the direction orthogonal to a∗. We
obtain:

Pat+1 =
Pat − 2ηPatb̄⊤b̄+Pa∗b̄∗⊤

b̄

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(213)

=
Pat − 2ηPatb̄⊤b̄

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(214)
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The third term of the numerator is canceled since Pa∗ = (Id − a∗(a∗)⊤)a∗ = 0. Thus,

∥Pat+1∥ ≤ ∥Pat∥|1− 2ηb̄⊤b̄|
∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥

(215)

Let δt = | sin θ(a∗,at)|. Equation (213) becomes:

δt+1 ≤ δt
|1− 2ηb̄⊤b̄|

∥at − 2η(atb̄⊤b̄− a∗b̄∗⊤ b̄)∥
(216)

= δt
|1− 2ηb̄⊤b̄|

∥at(1− 2ηb̄⊤b̄) + 2ηa∗b̄∗⊤ b̄∥
(217)

= δtC (218)

Obviously C ≥ 0. We drop the superscript t when it is clear from context. Note that we have

C2 =
|1− 2ηb̄⊤b̄|2

∥a(1− 2ηb̄⊤b̄) + 2ηa∗b̄∗⊤ b̄∥2
(219)

=
|1− 2ηb̄⊤b̄|2

(1− 2ηb̄⊤b̄)2a⊤a+ 4η2(b̄∗⊤ b̄)2 + 4η(1− 2ηb̄⊤b̄)a⊤a∗b̄∗⊤ b̄
(220)

=
|1− 2ηb̄⊤b̄|2

(1− 2ηb̄⊤b̄)2 + 4η2(b̄∗⊤ b̄)2 + 4η(1− 2ηb̄⊤b̄)a⊤a∗b̄∗⊤ b̄
(221)

Recall that b̄ = b̄∗a∗
⊤
a = b̄∗ cos θ(a∗,a), (221) becomes:

C2 =
|1− 2ηb̄⊤b̄|2

(1− 2ηb̄⊤b̄)2 + 4η2(b̄∗⊤ b̄)2 + 4η(1− 2ηb̄⊤b̄)a⊤a∗b̄∗⊤ b̄
(222)

=
|1− 2ηb̄⊤b̄|2

1 + 4η2b̄⊤b̄(b̄∗⊤ b̄∗ − b̄⊤b̄)
(223)

≤ (1− 2ηb̄⊤b̄)2 (224)

= (1− 2η∥b̄∥2)2 (225)

where (224) holds because b̄∗⊤
b̄∗ − b̄⊤b̄ = (1 − cos2 θ(a∗,a))b̄∗⊤

b̄∗ ≥ 0. Equation (225)
implies C ≤ 1 − 2η∥b̄∥2 if 2η∥b̄∥2 ≤ 1, which can be ensured by choosing a proper step size
η ≤ 1

2L2
max
≤ 1

2∥b̄∥2 . Now by the assumption that δt ≤ δt−1 ≤ · · · ≤ δ0,

C ≤ 1− 2η∥b̄∥2 (226)

= 1− 2η cos2 θ(a∗,a)∥b̄∗∥2 (227)

= 1− 2η(1− (δt)2)∥b̄∗∥2 (228)

≤ 1− 2η(1− (δ0)2)∥b̄∗∥2 (229)

Summarizing, we obtain δt+1 ≤ δtC ≤ δt(1− 2η(1− (δ0)2)∥b̄∗∥2).

Proposition A3.17. (FFA-LoRA lower bound) Suppose we are in the setting described in Section A3.5.
For any set of ground truth parameters (a∗, {b∗

i }Ni=1), initialization a0, initial angle distance δ0 ∈
(0, 1), we apply Freezing-A scheme to obtain a shared global model (a0,bFFA), where bFFA =

b∗a∗⊤a0. The global loss is

1

N

N∑
i=1

li(a
0,bFFA) = γ2 + ∥b̄∗∥2δ20 (230)

Proof. Through single step of minimization on bi and corresponding aggregation, the minimum of
the global objective is reached by FFA-LoRA. bFFA is obtained through:

bi =
b∗
i a

∗⊤a0

a0⊤a0
= b∗

i a
∗⊤a0 (231)

bFFA =
1

N

N∑
i=1

bi = b̄∗a∗⊤a0 (232)
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Next we compute the global loss with a shared global model (a0, b̄FFA). Note that we use Tr(.) to
denote the trace of a matrix.

1

N

N∑
i=1

li(a
0,bFFA) (233)

=
1

N

N∑
i=1

∥a∗(b∗
i )

⊤ − a0(bFFA)⊤∥2 (234)

=
1

N

N∑
i=1

∥a∗(b∗
i )

⊤ − a∗(b̄∗)⊤ + a∗(b̄∗)⊤ − a0(bFFA)⊤∥2 (235)

=
1

N

N∑
i=1

(∥a∗(b∗
i )

⊤ − a∗(b̄∗)⊤∥2 + ∥a∗(b̄∗)⊤ − a0(bFFA)⊤∥2

+ 2Tr((a∗(b∗
i )

⊤ − a∗(b̄∗)⊤)⊤(a∗(b̄∗)⊤ − a0(bFFA)⊤)) (236)

=
1

N

N∑
i=1

(∥a∗(b∗
i )

⊤ − a∗(b̄∗)⊤∥2 + ∥a∗(b̄∗)⊤ − a0(bFFA)⊤∥2)

+ 2Tr((a∗
1

N

N∑
i=1

(b∗
i )

⊤ − a∗(b̄∗)⊤)⊤(a∗(b̄∗)⊤ − a0(bFFA)⊤)) (237)

=
1

N

N∑
i=1

(∥a(b∗
i − b̄∗)⊤∥2 + ∥a∗(b̄∗)⊤ − a0a0

⊤
a∗(b̄∗)⊤∥2) (238)

=
1

N

N∑
i=1

∥b∗
i − b̄∗∥2 + 1

N

N∑
i=1

∥(Id − a0a0
⊤
)a∗(b̄∗)⊤∥2 (239)

=
1

N

N∑
i=1

∥b∗
i − b̄∗∥2 + 1

N

N∑
i=1

∥(Id − a0a0
⊤
)a∗∥2∥b̄∗∥2 (240)

= γ2 + ∥b̄∗∥2δ20 (241)

where (238) holds since the last term is 0, (239) and (240) hold since ∥uv⊤∥ = ∥u∥ · ∥v⊤∥ for
vector u and v, (241) holds because of Definition A3.13.

Proof of Theorem A.14

Proof. In order to achieve ϵ-recovery of a∗, we need

δ0(1− c(1− (δ0)2))T ≤ ϵ (242)

(1− c(1− (δ0)2))T ≤ ϵ

δ0
(243)

T log (1− c(1− (δ0)2)) ≤ log(
ϵ

δ0
) (244)

(245)

We proceed such that

T ≥
log( ϵδ0 )

log (1− c(1− (δ0)2))
(246)

>
log( ϵδ0 )

−c(1− (δ0)2)
(247)

=
1

c(1− (δ0)2)
log(

δ0

ϵ
) (248)

where (247) follows by using log(1− x) < −x for |x| < 1.
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Now we show the convergence to the global minimizer. Recall that bT+1 = b̄∗a∗
⊤
aT and δT =

∥(Id − aT (aT )⊤)a∗∥, we have

∥aT (bT+1)⊤ − a∗b̄∗⊤
∥ = ∥aT (aT )⊤a∗b̄∗⊤

− a∗b̄∗⊤
∥ (249)

= ∥(aT (aT )⊤ − Id)a
∗b̄∗⊤

∥ (250)

= ∥(Id − aT (aT )⊤)a∗∥ · ∥b̄∗∥ (251)

≤ ϵ∥b̄∗∥ (252)

= ϵ∥a∗b̄∗⊤
∥ (253)

where (253) is due to the fact that ∥xy⊤∥ = ∥x∥∥y∥ and ∥a∗∥ = 1.

Proposition A3.17 shows that for any δ0 ∈ (0, 1), the global objective of FFA-LoRA is given by
(241), comprising two terms: γ2, reflecting the heterogeneity of {b∗

i }Ni=1, and ∥b̄∗∥2δ20 , due to the
angular distance between a0 and a∗. By Theorem A3.14, RoLoRA achieves ϵ-accurate recovery of
the global minimizer, with global loss upper bounded by γ2 + ∥b̄∗∥2ϵ2, since RoLoRA reduces the
angular distance loss from ∥b̄∗∥2δ20 to ∥b̄∗∥2ϵ2. We can make ϵ arbitrarily small by increasing the
iterations.
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A4 Convergence Analysis of Non-Convex Case

We follow the approach of Li et al. [25] to demonstrate the convergence of RoLoRA (Algorithm 1) in
smooth, non-convex landscapes. Assumptions A4.1 and A4.2 are standard and commonly employed in
the convergence analysis of federated learning. Assumption A4.3 is adapted from FedSA-LoRA [15],
which proposes a personalized federated fine-tuning framework that maintains local diversity in B
while aggregating only A through simultaneous updates of both A and B. In contrast, our work
focuses on a single global model with alternating optimization of A and B.

In Assumption A4.3, bounding Frobenius norms of A and B is a standard weight-regularity require-
ment in LoRA fine-tuning practice, where small rank and scaling factors keep the adapters from
exploding. The inner-product conditions simply posit that each adapter has enough non-degenerate
singular values, requiring that the low-rank updates retain sufficient rank and alignment with local
gradient directions. Formally, we require the smallest singular values of At

i and Bt
i to be lower

bounded by
√
cA and

√
cB .

Assumption A4.1 (Bounded Stochastic Gradient). Let a mini-batch xi, be drawn uniformly at
random from client i’s dataset, meaning Exi

[∇Wi
li
(
Wi, xi

)
] = ∇Wi

li
(
Wi

)
. We assume that the

expected squared norm of any stochastic gradient is uniformly bounded, that is,

Exi

∥∥∇W li
(
W, xi

)∥∥2 ≤ G2

where the expectation is over the random draw of the mini-batch xi, and G > 0 is a constant.
Assumption A4.2 (Lipschitz smooth). Loss functions l1, · · · , lN are all L-smooth. For all weights
W and U:

li(V) ≤ li(W) + ⟨∇Wli(W),V −W⟩F +
L

2
∥V −W∥2F ,∀i ∈ [N ]

Assumption A4.3. Let Wi = W0 +BiAi represent the model parameters for the i-th client. There
exist constants CB > 0, CA > 0, cB > 0, and cA > 0 such that:

∥Bi∥F ≤ CB ,

∥Ai∥F ≤ CA,

⟨AiAi
⊤,∇Wli(Wi)∇Wli(Wi)

⊤⟩F ≥ cA∥∇Wli(Wi)∥2F ,
⟨Bi

⊤Bi,∇Wli(Wi)
⊤∇Wli(Wi)⟩F ≥ cB∥∇Wli(Wi)∥2F ,

for all i ∈ [N ].
Theorem A4.4 (Convergence to the stationary point). Let Assumption A4.1, A4.2, and A4.3
hold. Suppose each client runs 2T rounds, each consisting of Q local epochs, using a learning rate
η ∝ O(1/

√
T ), then we obtain:

min
0≤t≤2T

E[∥∇Wli(W
t)∥2F ] ≤

∆i

2Tηcmin
+

Dη

2cmin
(254)

where ∆i = E[li(W0)] − l∗i , cmin = min(cA, cB), D is chosen such that Dη2 ≥ DA + DB ,
and DA = LηC2

AQ
2G2 + 1

2ηG
2 + 2Lη2C2

AQ
2G2 + L

2 η
2C4

AG
2, DB = LηC2

BQ
2G2 + 1

2ηG
2 +

2Lη2C2
BQ

2G2 + L
2 η

2C4
BG

2.

According to Theorem A4.4, we achieve an O
(

1√
T

)
convergence rate toward a stationary point

under smooth, non-convex conditions, matching the convergence rate of FedAVG in the same setting.
We follow a similar derivation framework to [15], adopting similar proof techniques, such as applying
Assumption A4.2 to the global and local models (Eq.(262) and Eq.(276)). However, due to structural
differences between our algorithm and that of [15]—in particular, our use of alternating optimization
rather than simultaneous updates—the derivation diverges in how key gradient bounds are applied
and combined. As a result, even though the proof steps are analogous, our final convergence bound
depends on min(cA, cB) and features decoupled A- and B-related terms, in contrast to the cA + cB
dependence along with cross-terms due to the simultaneous updates of A and B in [15]. Although
FedSA-LoRA reports the same O

(
1√
T

)
convergence rate, the two algorithms address fundamentally

different FL scenarios: FedSA-LoRA optimizes personalized client models, whereas RoLoRA learns
a single shared global model.
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Proof. Let W2t = W0 +AtBt be the global model parameters at the 2t-th communication round.
Let W2t

i,q = W0 +AtBt
i,q be the local model parameters of client i at the q-th local epoch of the

2t-th communication round, where each client performs a total of Q local epochs. We define the
following for convenience:

The 2t-th communication round:

W2t = W0 +AtBt (255)
The q-th local epoch of the 2t-th communication round:

W2t
i,q = W0 +AtBt

i,q (256)

The 2t+ 1-th communication round:

W2t+1 = W0 +AtBt+1 = W0 +
1

N

N∑
i=1

AtBt
i,Q (257)

The q-th local epoch of the 2t+ 1-th communication round:

W2t+1
i,q = W0 +At

i,qB
t+1 (258)

The 2t+ 2-th communication round:

W2t+2 = W0 +At+1Bt+1 = W0 +
1

N

N∑
i=1

At
i,QB

t+1 (259)

According to chain rule,

∇Bli(W) = A⊤∇Wli(W) (260)

∇Ali(W) = ∇Wli(W)B⊤ (261)

Now we apply Assumption A4.2 to local update of B, and get

li(W
2t
i,1) ≤ li(W

2t) + ⟨W2t
i,1 −W2t,∇Wli(W

2t)⟩F +
L

2
∥W2t

i,1 −W2t∥2F (262)

By (255) and (256),

W2t
i,1 −W2t = At(Bt

i,1 −Bt) (263)

= −ηAtAt⊤∇Wli(W
2t,x2t

i,1) (264)

where η is the learning rate. Then

li(W
2t
i,1) ≤ li(W

2t)− η⟨AtAt⊤∇Wli(W
2t,x2t

i,1),∇Wli(W
2t)⟩F

+
L

2
η2∥AtAt⊤∇Wli(W

2t,x2t
i,1)∥2F (265)

Taking expectation of (265),

E[li(W2t
i,1)] ≤ E[li(W2t)]− η⟨AtAt⊤∇Wli(W

2t),∇Wli(W
2t)⟩F +

L

2
η2E[∥AtAt⊤∇Wli(W

2t,x2t
i,1)∥2F ]

(266)

The inner product term is lower bounded such that

⟨AtAt⊤∇Wli(W
2t),∇Wli(W

2t)⟩F = Tr[∇Wli(W
2t)

⊤
AtAt⊤∇Wli(W

2t)] (267)

= Tr[AtAt⊤∇Wli(W
2t)∇Wli(W

2t)
⊤
] (268)

= ⟨AtAt⊤,∇Wli(W
2t)∇Wli(W

2t)
⊤⟩F (269)

≥ cA∥∇Wli(W
2t)∥2F (270)
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where (270) follows by Assumption A4.3. Moreover,
L

2
η2E[∥AtAt⊤∇Wli(W

2t,x2t
i,1)∥2F ] ≤

L

2
η2E[∥At∥4F · ∥∇Wli(W

2t,x2t
i,1)∥2F ] (271)

≤ L

2
η2E[C4

A · ∥∇Wli(W
2t,x2t

i,1)∥2F ] (272)

=
L

2
η2C4

AE[∥∇Wli(W
2t,x2t

i,1)∥2F ] (273)

≤ L

2
η2C4

AG
2 (274)

where (271) follows by Assumption A4.3, (274) follows by Assumption A4.1. Combining (266),
(270), and (274), we get

E[li(W2t
i,1)] ≤ E[li(W2t)]− ηcA∥∇Wli(W

2t)∥2F +
L

2
η2C4

AG
2 (275)

Next we apply Assumption A4.3 to aggregation step and take expectation on both sides,

E[li(W2t+1)] ≤ E[li(W2t
i,1)] + E[⟨W2t+1 −W2t

i,1,∇Wli(W
2t
i,1)⟩F ] +

L

2
E[∥W2t+1 −W2t

i,1∥2F ]
(276)

where

W2t+1 −W2t
i,1 =

1

N

N∑
j=1

AtBt
j,Q −AtBt

i,1 (277)

=
1

N

N∑
j=1

At(Bt
j,Q −Bt

i,1) (278)

We have

Bt
j,Q = Bt − η

Q−1∑
q=0

∇Blj(W
2t
j,q,x

2t
j,q) (279)

Bt
i,1 = Bt − η∇Bli(W

2t,x2t
i,1) (280)

Bt
j,Q −Bt

i,1 = η

Q−1∑
q=0

(∇Bli(W
2t,x2t

i,1)−∇Blj(W
2t
j,q,x

2t
j,q)) (281)

= ηAt⊤
Q−1∑
q=0

(∇Wli(W
2t,x2t

i,1)−∇Wlj(W
2t
j,q,x

2t
j,q)) (282)

Thus,

W2t+1 −W2t
i,1 =

η

N
At

N∑
j=1

Q−1∑
q=0

(∇Wli(W
2t,x2t

i,1)−∇Wlj(W
2t
j,q,x

2t
j,q)) (283)

Therefore,

∥∥W2t+1 −W2t
i,1

∥∥2
F
=

∥∥∥∥∥∥ η

N
At

N∑
j=1

Q−1∑
q=0

(
∇Wli(W

2t,x2t
i,1)−∇Wlj(W

2t
j,q,x

2t
j,q)
)∥∥∥∥∥∥

2

F

(284)

≤ η2

N2
∥At∥2F

∥∥∥∥∥∥
N∑
j=1

Q−1∑
q=0

(
∇Wli(W

2t,x2t
i,1)−∇Wlj(W

2t
j,q,x

2t
j,q)
)∥∥∥∥∥∥

2

F

(285)

≤ η2

N
C2
A

N∑
j=1

∥∥∥∥∥
Q−1∑
q=0

(
∇Wli(W

2t,x2t
i,1)−∇Wlj(W

2t
j,q,x

2t
j,q)
)∥∥∥∥∥

2

F

(286)

≤ η2

N
C2
AQ

N∑
j=1

Q−1∑
q=0

∥∥∇Wli(W
2t,x2t

i,1)−∇Wlj(W
2t
j,q,x

2t
j,q)
∥∥2
F

(287)
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Taking expectation,

E
[∥∥W2t+1 −W2t

i,1

∥∥2
F

]
≤ η2

N
C2
AQ

N∑
j=1

Q−1∑
q=0

E
[∥∥∇Wli(W

2t,x2t
i,1)−∇Wlj(W

2t
j,q,x

2t
j,q))

∥∥2
F

]
(288)

For any matrices A and B (or vectors), we have

∥A−B∥2F = ∥A∥2F+∥B∥2F−2⟨A,B⟩F ≤ ∥A∥2F+∥B∥2F+2∥A∥F ∥B∥F ≤ 2∥A∥2F+2∥B∥2F .
Thus,

E
[∥∥∇Wli(W

2t,x2t
i,1)−∇Wlj(W

2t
j,q,x

2t
j,q)
∥∥2
F

]
≤ 2E

[
∥∇Wli(W

2t,x2t
i,1)∥2F

]
+ 2E

[
∥∇Wlj(W

2t
j,q,x

2t
j,q)∥2F

]
(289)

≤ 4G2 (290)

Leading to

L

2
E
[∥∥W2t+1 −W2t

i,1

∥∥2
F

]
≤ 2Lη2C2

AQ
2G2 (291)

For the inner product term of (276), we have

E
[
⟨W2t+1 −W2t

i,1,∇Wli(W
2t
i,1)⟩F

]
≤ 1

2η
E
[∥∥W2t+1 −W2t

i,1

∥∥2
F

]
+

1

2
ηE
[∥∥∇Wli(W

2t
i,1)
∥∥2
F

]
(292)

≤ LηC2
AQ

2G2 +
1

2
ηG2 (293)

Combining (276), (291), and (293), we obtain

E[li(W2t+1)] ≤ E[li(W2t
i,1)] + LηC2

AQ
2G2 +

1

2
ηG2 + 2Lη2C2

AQ
2G2 (294)

Combining (275) and (294), we derive

ηcA∥∇Wli(W
2t)∥2F

≤ E[li(W2t)]− E[li(W2t+1)] + LηC2
AQ

2G2 +
1

2
ηG2 + 2Lη2C2

AQ
2G2 +

L

2
η2C4

AG
2 (295)

Analogously, applying the same analysis to the (2t+ 1)-th communication round, which fixes B and
updates A, introduces key modifications to steps such as Eq.(263) and Eq.(277), which govern the
weight updates. These changes propagate through the subsequent steps that depend on the updated
weights. As a result, we obtain

ηcB∥∇Wli(W
2t+1)∥2F

≤ E[li(W2t)]− E[li(W2t+1)] + LηC2
BQ

2G2 +
1

2
ηG2 + 2Lη2C2

BQ
2G2 +

L

2
η2C4

BG
2 (296)

Add the two inequalities and then sum over t = 0, 1, . . . , T − 1, we get
T−1∑
t=0

η(cA∥∇Wli(W
2t)∥2F + cB∥∇Wli(W

2t+1)∥2F ) ≤ E[li(W0)]− E[li(W2T )] + T (DA +DB)

(297)

where

DA = LηC2
AQ

2G2 +
1

2
ηG2 + 2Lη2C2

AQ
2G2 +

L

2
η2C4

AG
2 (298)

DB = LηC2
BQ

2G2 +
1

2
ηG2 + 2Lη2C2

BQ
2G2 +

L

2
η2C4

BG
2 (299)

Assume the per-client loss is bounded below by l∗i , let

∆i = E[li(W0)]− l∗i , cmin = min(cA, cB), (300)
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Choosing D such that Dη2 ≥ DA +DB , then

min
0≤t≤2T

E[∥∇Wli(W
t)∥2F ] ≤

∆i

2Tηcmin
+

Dη

2cmin
(301)

We choose η ∝ O(1/
√
T ) so that the overall convergence rate with a diminishing step size

is O(1/
√
T ) which matches the canonical convergence speed of stochastic gradient methods in

non-convex settings.
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A5 Experiments

A5.1 Impact of Non-Linearity on RoLoRA

Across both linear and non-linear settings, all methods perform similarly, with RoLoRA showing mod-
est improvement in the non-linear case, likely due to its better utilization of the added expressiveness
from ReLU.

Figure 7: Comparison of RoLoRA, LoRA, and FFA-LoRA on linear and non-linear networks. While
overall performance is similar, RoLoRA shows modest gains in the non-linear setting, likely benefiting
from ReLU’s added expressiveness.

A5.2 Hyper-parameters for GLUE task

SST-2 QNLI MNLI QQP RTE

Total comm. rounds 500 500 500 500 200
Batch Size 64 32 32 32 32

Local Epochs 20 20 20 20 20

Table 6: Hyper-parameters configurations. Note the total communication rounds are for the setting
with 3 clients. When increasing the number of clients, we decrease the total communication rounds
accordingly to maintain a constant sample count used during fine-tuning

We show the hyper-parameter configurations for each dataset in Table 6.

A5.3 Effect of Number of Clients
Configurations Table 7 shows the selected layer set attached with LoRA modules for Table 1. We
present Table 1 with the results of FlexLoRA [2] added in Table 1.

Layer Attributes SST-2 QNLI MNLI QQP RTE

P2
Type Wv,Wq Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {18, . . . , 23} {15, . . . , 23} {15, . . . , 23} {15, . . . , 23} {16, . . . , 23}

Table 7: The selected layer set attached with LoRA modules for Table 1 and Table 2

Rank-2 Results We show the effect of number of clients when using rank-2 LoRA modules in
Table 8.

Rank-32 Results In Table 9, we provide additional experiments with rank-32 LoRA adapters in the
20-client and 50-client setting.
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Client num Methods SST-2 QNLI MNLI QQP RTE

LoRA 95.64 92.04 85.85 86.16 82.19
3 FFA-LoRA 94.91 90.11 84.06 85.48 80.86

RoloRA 95.60 91.62 85.66 86.16 82.19

LoRA 94.27 86.91 81.22 82.07 46.21
20 FFA-LoRA 93.92 89.58 80.51 82.62 57.76

RoloRA 94.84 90.77 85.13 85.10 81.23

LoRA 93.23 82.57 58.96 76.96 49.10
50 FFA-LoRA 92.32 85.15 62.79 77.78 53.07

RoloRA 94.61 89.83 85.15 85.55 72.92

Table 8: Results with RoBERTa-Large models with varying client numbers (3, 20, 50) using rank-2
LoRA modules in federated setting, maintaining a constant sample count during fine-tuning.

Client num Methods MNLI QQP

LoRA 79.72 ±0.38 83.66 ±0.02

20 FFA-LoRA 80 ±0.47 84.08 ±0.31

RoLoRA 85.91 ±0.63 86.37 ±0.09

LoRA 70.84 ±4.63 79.75 ±0.31

50 FFA-LoRA 74.47 ±1.57 80.65 ±0.31

RoLoRA 85.46 ±0.08 86.15 ±0.26

Table 9: Results with RoBERTa-Large models in 20-client and 50-client setting using rank-32 LoRA
adapters.

10-Client Setting In Table 10, we provide results for 10-client setting with rank-4 adapter. The
results show that RoLoRA still outperform other methods. In the 10-client setting, RoLoRA’s
performance gain over other methods falls between the gains observed in the 3-client and 20-client
settings.

MNLI QQP QNLI

LoRA 81.48 ±2.19 84.1 ±0.14 87.73 ±0.67

FFA-LoRA 83.19 ±0.64 84.35 ±0.06 89.88 ±0.13

RoLoRA 84.95 ±0.8 95.25±0.39 90.3 ±0.76

Table 10: Results with RoBERTa-Large model with 10 clients using rank-4 LoRA adapters, running
for 150 rounds in total.

FLoRA vs. RoLoRA Table 11 shows a comparison between FLoRA and RoLoRA. In the 3-client
setting, we ran 500 rounds and scaled rounds down proportionally with more clients to keep the
total sample budget fixed. RoLoRA consistently outperforms FLoRA across tasks and client counts.
While FLoRA eventually converges (e.g., 83.3% on MNLI after 4000 rounds), it does so much more
slowly, highlighting RoLoRA’s faster convergence and better scalability.

Finetuning Dynamics within 100 Rounds Figure 8 presents the 100-round extension of Figure 3,
where RoLoRA consistently converges faster and achieves the highest accuracy.

We want to clarify that Figure 3 focuses on comparing convergence under a fixed sample budget
rather than full convergence, and Table 1 shows that this budget suffices for all methods when using 3
clients. However, as shown in Figure 3, with 50 clients, only RoLoRA fully converges, underscoring
its efficiency in low-resource settings.

A5.4 Effect of Number of LoRA Parameters
In Table 12, we include the details about layers attached with LoRA adapters for different budget of
finetuning parameters, for each dataset.
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Client num Method MNLI QQP QNLI

3 FLoRA 39.29 51.05 59.88
RoLoRA 85.70 86.14 91.64

20 FLoRA 32.01 51.58 49.89
RoLoRA 85.28 85.83 90.35

50 FLoRA 31.97 50.54 38.82
RoLoRA 82.98 85.71 90.00

Table 11: Results with RoBERTa-Large models with rank-4 LoRA adapter for varying numbers
of clients (3, 20, 50), comparing FLoRA with RoLoRA, maintaining a constant sample count
during finetuning. In the 3-client setting, while FLoRA eventually converges (e.g., 83.3% on MNLI
after 4000 rounds), the figure shows results for only 500 rounds, within which FLoRA has not yet
converged. This highlights RoLoRA’s faster convergence and better scalability.

Figure 8: Accuracies over 100 rounds. It involves 50 clients using rank 4.

Layer Attributes SST-2 QNLI MNLI QQP RTE

P1
Type Wv Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {21, . . . , 23} {21, . . . , 23} {21, . . . , 23} {21, . . . , 23} {21, . . . , 23}
P2

Type Wv,Wq Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {18, . . . , 23} {15, . . . , 23} {15, . . . , 23} {15, . . . , 23} {16, . . . , 23}
P3

Type Wv,Wq Wv,Wq Wv,Wq Wv,Wq Wv,Wq

Index {0, . . . , 23} {12, . . . , 23} {12, . . . , 23} {12, . . . , 23} {12, . . . , 23}

Table 12: The selected layer set attached with LoRA for the setup of Figure 4

Figure 9: Results with RoBERTa-Large models on GLUE of different budget of finetuning parameters.
It involves 3 clients using rank 8.

A5.5 Effect of Rank on RoLoRA and FFA-LoRA in the Centralized Setting

We evaluated FFA-LoRA and RoLoRA on MNLI and QQP using 8 LoRA adapters attached to query
and value projection of last 4 layers, and trained for 50000 iterations to ensure full convergence.
Increasing ranks can narrow the performance gap between the two schemes. Another related technique
to narrow the performance gap between the two schemes is by increasing the number of adapters, as
discussed in Section 5.1 (“Effect of Number of Fine-Tuning Parameters”). With sufficient adapters,
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Figure 10: Results with RoBERTa-Large models on GLUE of different budget of finetuning parame-
ters. It involves 3 clients using rank 2.

Figure 11: Results with RoBERTa-Large models on GLUE of different budget of finetuning parame-
ters. It involves 3 clients using rank 1.

FFA-LoRA can achieve comparable peak accuracy to RoLoRA. However, in federated settings where
resources are constraiend, RoLoRA is more advantageous.

rank-1 rank-2 rank-32 rank-64

FFA-LoRA 80.66 81.51 83.3 83.32
MNLI RoLoRA 83.93 84.59 85.78 85.79

Diff 3.27 +3.08 +2.51 +2.47

FFA-LoRA 69.61 74.01 75.53 75.51
QQP RoLoRA 77.26 77.41 78.03 78.05

Diff +7.65 +3.40 +2.5 +2.54

Table 13: Evaluation on FFA-LoRA and RoLoRA in the centralized setting using only 8 LoRA
adapters. Increasing ranks can narrow the performance gap between the two schemes.

A5.6 Align the Communication Cost

In Figure 12, we conduct a comparison of three methods under the constraint of identical communi-
cation costs under the assumption that the number of clients is small. To align the communication
costs across these methods, two approaches are considered. The first approach involves doubling the
rank of FFA-LoRA and RoLoRA, with results presented in Appendix A5.4. The second approach
requires doubling the number of layers equipped with LoRA modules. In Figure 12, the latter strategy
is employed. Specifically, for both FFA-LoRA and RoLoRA, we adjust the communication costs
by doubling the number of layers equipped with LoRA modules, thereby standardizing the size of
the transmitted messages. The configurations are presented in Table 14. Figure 12 demonstrates
that when operating within a constrained communication cost budget, the performance of RoLoRA
surpasses that of the other two methods for most of the tasks.

In Table 14, we include the details about layers attached with LoRA adapters.

A5.7 Commonsense Reasoning Tasks
We present the configurations for Table 3 in Table 15. We show the results under the same setup but
using rank-2 LoRA modules in Table 16.
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Figure 12: RoBERTa-Large accuracies on QQP, MNLI, QNLI, and RTE with specific uplink commu-
nication budget. It involves 3 clients using rank 4. Error bars reflect standard deviations.

Communication Cost LoRA FFA-LoRA RoLoRA

187.5 KB Type Wv,Wq Wv,Wq Wv,Wq

Index {21, . . . , 23} {18, . . . , 23} {18, . . . , 23}

250 KB Type Wv,Wq Wv,Wq Wv,Wq

Index {20, . . . , 23} {16, . . . , 23} {16, . . . , 23}

Table 14: The selected layer set attached with LoRA modules for the setup of Figure 12

A5.8 Language Generation Tasks
Model, Datasets and Metrics. We evaluate the performance of three federated finetuning methods
with the model Llama-2-7B [35], on two datasets: CodeAlpaca [4] for coding tasks, and Alpaca
[33] for general instruction-following tasks. Using HumanEval [5] as the metric for CodeAlpaca,
we assess the model’s ability to generate accurate code solutions. For Alpaca, we employ MMLU
(Massive Multitask Language Understanding) [18] to evaluate the model’s performance across diverse
domains. This provides an assessment of Llama-2-7B’s coding proficiency, and general language
capabilities when finetuning in the federated setting. We show the setup in Table 17.

Results Table 18 presents the evaluation results of the Llama-2-7B model using three methods,
across two tasks: HumanEval, and MMLU. The metrics reported include the average and standard
deviation of performance over five seeds, with 50 clients involved. The results show that RoLoRA
achieves the highest scores across most metrics, demonstrating slightly improved performance
compared to LoRA and FFA-LoRA. The improvements are more evident in certain subcategories of
the MMLU dataset.

A5.9 Communication and Time Cost Comparison

Table 19 compares the communication cost and time cost in a 50-client setting on MNLI task.
RoLoRA and FFA-LoRA have the lowest communication and time costs.

A5.10 Privacy-preserving FL

Beyond robustness, practical FL often requires privacy-preserving mechanisms, most notably cryp-
tographic approaches such as secure aggregation [3] or homomorphic encryption [19, 8, 7], and
statistical protections like differential privacy (DP) [14, 41]. While RoLoRA was not explicitly de-
signed with privacy mechanisms such as differential privacy, we recognize that its ability to mitigate
inexactness through alternating optimization and aggregation may help mitigate a key challenge
for DP-aware federated learning, where inexact model updates can be particularly problematic. In
Table 20, we itegrated NbAFL [41] with ϵ = 10 and δ = 1e − 6 in a 3-client setting. RoLoRA
outperform others across two tasks.
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Total comm. rounds Batch size Local Epochs Layer type attached with LoRA Layer index attached with LoRA

10 1 30 Wk,Wv,Wq,Wo {26, . . . , 31}

Table 15: Configurations for Commonsense Reasoning tasks.

BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

LoRA 34.36±16.90 42.87±14.05 19.12±4.22 26.21±1.91 47.2±0.64 10.31±5.96 9.84±6.13 12.33±7.46
FFA-LoRA 44.04±11.48 51.46±9.81 25.38±11.27 23.86±2.67 46.93±1.54 22.25±7.92 20.65±6.33 20.67±5.33
RoLoRA 61.3±0.99 60.81±6.35 37.97±5.39 29.62±2.62 49.59±1.2 37.05±2.92 29.09±3.33 28.93±4.64

Table 16: Results with Llama-2-7B models on commonsense reasoning tasks. It involves 50 clients
using rank 2.

Total comm. rounds Batch size Local Epochs Layer type attached with LoRA Layer index attached with LoRA

100 1 30 Wk,Wv,Wq,Wo {24, . . . , 31}

Table 17: Configurations for language generation tasks.

LoRA FFA-LoRA RoLoRA

HumanEval 12.96±0.37 13.29±0.21 13.45±0.28

MMLU 45.81±0.03 45.80±0.02 45.93±0.01
human 43.26±0.04 43.24±0.01 43.46±0.02

other 52.67±0.06 52.72±0.05 52.83±0.04
social 51.73±0.04 51.64±0.05 51.81±0.04
stem 37.10±0.03 37.12±0.01 37.05±0.02

Table 18: Results with Llama-2-7B model on HumanEval, and MMLU. We report the average and
std. over five seeds. The number of clients is 50. The metric used across all tasks is accuracy, where
higher values indicate better performance.

Method Comm. cost Time cost

LoRA 1500.8 KB 0.0415 sec
FFA-LoRA 750.4 KB 0.0163 sec
FlexLoRA 1500.8 KB 2.252 sec
FLoRA 193603.2 KB 2.2179 sec
RoLoRA 750.4 KB 0.0182 sec

Table 19: Communication and Time Cost Comparison

Comm. cost: Total message size sent and received by each client per communication round in the
MNLI experiment shown in Table 1.
Time cost: Mean server aggregation time per communication round for the MNLI experiment with
50 clients in Table 1, averaged over 30 runs.

MNLI QQP

LoRA 72.79 ±5.23 57.97 ±8.23

FFA-LoRA 79.65 ±0.56 78.16 ±0.6

RoLoRA 81.08 ±0.81 81.64 ±0.35

Table 20: Evaluation on differential privacy using ϵ = 10 and δ = 1e− 6 in a 3-client setting.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please see Section 3, Section 4 and Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix A2.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Please see Appendix A3 and Appendix A4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix A5.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets are all open-source. The code is uploaded.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix A5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See standard deviation reported in Section 5 and Appendix A5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Section 5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper discusses the broader societal implications of deploying federated
learning methods enhanced with LoRA adapters. On the positive side, we emphasize that
our approach can significantly improve the efficiency and scalability of federated learning,
thereby facilitating model training on decentralized data. We did not identify any direct
negative societal impacts, as our contribution is primarily methodological and does not
involve deployment or data collection.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This paper proposes a framework for federated finetuning, and does not pose
high risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: This paper is licensed under CC-BY-NC-SA 4.0. All other codes, datasets, and
references are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did not have any released new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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