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A Details from the main text

A.1 Notations

For a positive integer, we denote by [n] the set {1, 2, . . . , n}. For vectors u,v ∈ Rd, we denote
〈u,v〉 = u1v1 + . . . + udvd their scalar product, and ‖u‖2 = 〈u,u〉1/2 the `2 norm. Given a
matrix A ∈ Rn×m, we denote ‖A‖op = max‖u‖2=1 ‖Au‖2 its operator norm and by ‖A‖F =(∑

i,j A
2
ij

)1/2
its Frobenius norm. If A ∈ Rn×n is a square matrix, the trace of A is denoted by

Tr(A) =
∑
i∈[n]Aii.

We use Od( · ) (resp. od( · )) for the standard big-O (resp. little-o) relations, where the subscript d
emphasizes the asymptotic variable. Furthermore, we write f = Ωd(g) if g(d) = Od(f(d)), and
f = ωd(g) if g(d) = od(f(d)). Finally, f = Θd(g) if we have both f = Od(g) and f = Ωd(g).

We use Od,P( · ) (resp. od,P( · )) the big-O (resp. little-o) in probability relations. Namely, for h1(d)
and h2(d) two sequences of random variables, h1(d) = Od,P(h2(d)) if for any ε > 0, there exists
Cε > 0 and dε ∈ Z>0, such that

P(|h1(d)/h2(d)| > Cε) ≤ ε, ∀d ≥ dε,
and respectively: h1(d) = od,P(h2(d)), if h1(d)/h2(d) converges to 0 in probability. Similarly, we
will denote h1(d) = Ωd,P(h2(d)) if h2(d) = Od,P(h1(d)), and h1(d) = ωd,P(h2(d)) if h2(d) =
od,P(h1(d)). Finally, h1(d) = Θd,P(h2(d)) if we have both h1(d) = Od,P(h2(d)) and h1(d) =
Ωd,P(h2(d)).

A.2 Convolutional neural tangent kernel

In this section, we justify the expression of the convolutional neural tangent kernel HCK
w,∆

(CK-AP-DS), obtained as the tangent kernel of a neural network composed of a one convolution
layer followed by local average pooling and downsampling (CNN-AP-DS).
Proposition 3. Let σ ∈ C1(R) be an activation function. Consider the following one-layer convolu-
tional neural network with ω-local average pooling and ∆-downsampling:

fCNN
N (x; Θ) =

∑
i∈[N ]

∑
k∈[d/∆]

aik
∑
s∈[ω]

σ
(
〈wi,x(k∆+s)〉

)
. (14)

Let a0
ik ∼i.i.d. N(0, 1) and

√
qw0

i ∼i.i.d. Unif(Qq) independently, and Θ0 =

{(a0
ik)i∈[N ],k∈[d/∆], (w

0
i )i∈[N ]}. Then there exists h : [−1, 1] → R, such that for any x,y ∈ Qd,

we have almost surely

lim
N→∞

〈
∇Θf

CNN
N (x; Θ0),∇Θf

CNN
N (y; Θ0)

〉
/N =

∑
k∈[d/∆]

∑
s,s′∈[ω]

h
(
〈x(k∆+s),y(k∆+s′)〉/q

)
. (15)

Proof of Proposition 3. For u,v ∈ Qq , define

h(1)(〈u,v〉/q) = Ew∼Unif(Qq)

[
σ(〈u,w〉/√q)σ(〈v,w〉/√q)

]
,

h(2)(〈u,v〉/q) = Ew∼Unif(Qq)

[
σ′(〈u,w〉/√q)σ′(〈v,w〉/√q)〈u,v〉

]
/q .

The functions h(1), h(2) are well defined (the RHS only depend on the inner product 〈u,v〉) and can
be extended to functions h(1), h(2) : [−1, 1]→ R.

Computing the derivative of the convolutional neural network with respect to a = (a0
ik)i∈[N ],k∈[d/∆],

we have
1

N

〈
∇afCNN

N (x; Θ0),∇afCNN
N (y; Θ0)

〉
=

∑
k∈[d/∆]

∑
s,s′∈[ω]

1

N

∑
i∈[N ]

σ
(
〈w0

i ,x(k∆+s)〉
)
σ
(
〈w0

i ,x(k∆+s′)〉
)
.

Hence by law of large number, we have almost surely

lim
N→∞

1

N

〈
∇afCNN

N (x; Θ0),∇afCNN
N (y; Θ0)

〉
=

∑
k∈[d/∆]

∑
s,s′∈[ω]

h(1)
(
〈x(k∆+s),y(k∆+s′)〉/q

)
.
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Similarly, computing the derivative with respect to
√
qW = (

√
qw0

i )i∈[N ] gives

1

N

〈
∇W fCNN

N (x; Θ0),∇W fCNN
N (y; Θ0)

〉
=

∑
k,k′∈[d/∆]

∑
s,s′∈[ω]

1

N

∑
i∈[N ]

aikaik′σ
′(〈w0

i ,x(k∆+s)〉
)
σ′
(
〈w0

i ,x(k′∆+s′)〉
) 〈x(k∆+s),x(k′∆+s′)〉

q
.

By law of large number, using that aik and aik′ are independent of mean zero and variance 1, we get
almost surely

lim
N→∞

1

N

〈
∇W fCNN

N (x; Θ0),∇W fCNN
N (y; Θ0)

〉
=

∑
k∈[d/∆]

∑
s,s′∈[ω]

h(2)
(
〈x(k∆+s),y(k∆+s′)〉/q

)
.

Taking h = h(1) + h(2) concludes the proof.

A.3 Local average pooling operation

Consider a function f ∈ L2(Qd): we can decompose it as

f(x) =
1√
d

∑
j∈[d]

fj(x) , (16)

fj(x) =
1√
d

∑
k∈[d]

ρkj f(tk · x) , (17)

where ρj = e
2iπj
d and tk · x = (xk+1, . . . , xd, x1, . . . , xk) is the cyclic shift of x by k pixels. We

can think about fj(x) as the j-th component of the discrete Fourier transform of the function f(x)
seen as a d-dimensional vector {f(tk · x)}k∈[d] for any x ∈ Qd.

Notice furthermore that if f is a local function, i.e., f can be decomposed as a sum of functions on
patches f(x) =

∑
k∈[d] gk(x(k)), then we can write

fj(x) =
1√
d

∑
k∈[d]

ρkj f(tk · x) =
1√
d

∑
k,u∈[d]

ρkj gu(x(u+k)) =
1√
d

∑
k∈[d]

ρkj g̃j(x(k)) ,

where we denoted (v ∈ Qq)
g̃j(v) =

∑
u∈[d]

ρ−uj gu(v) .

In particular, decomposing g̃j in the Fourier basis, we get (denoting cS = 〈g̃j , YS〉L2 ),

fj(x) =
1√
d

∑
k∈[d]

ρkj g̃j(x(k)) =
∑
S⊆[q]

cS ·
1√
d

∑
k∈[d]

ρkjYk+S(x) ,

which shows that the j-th frequency component fj is in the span of {Yj,S}S⊆[q]. In particular,
applying average pooling operation in the kernel will reweight this eigenspace by a factor κj .

Let us further comment on the values of κj . First, we have

κj =

ω∑
k=−ω

(1− k/ω)ρkj .

In particular, the maximal eigenvalue is attained at j = d with κd = ω, which corresponds to the
subspace of cyclic invariant functions. Furthermore, κj = 0 if and only if d is a divisor of jω for
j ≤ d− 1, i.e., j is a multilple of gcd(ω, d). There are gcd(ω, d)− 1 such zero eigenvalues.

In convolutional kernels, a weighted average is often preferred to local average pooling [6, 35, 36]:
in that case we consider τ : R→ R and obtain the kernel

HCK
τ (x,y) =

1

d

∑
k,s,s′∈[d]

τ(d(s))τ(d(s′))h
(
〈x(k+s),y(k+s′)〉/q

)
,
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where d(s) = min(s, d− s) (the distance between k + s and k on [d] with cyclic convention). Note
that HCK

τ has the same eigendecomposition as HCK
ω but with different weights κj .

A popular choice for τ is the Gaussian filter τ(x) = 1√
2πσ

e−
x2

2σ2 . In Figure 2, we compare the
eigenvalues κj for local average pooling and Gaussian filter with different value of ω and σ2. Note
that the eigenvalue decay controls how much high-frequencies are penalized: faster decay induces
heavier penalty on the high-frequency components.
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Figure 2: Decay of the weights κj for different lenfths ω for local average pooling (on the left) and
bandwidths σ2 for pooling with Gaussian filter (on the right), for d = 101.

A.4 Downsampling operation

As mentioned in the main text, a downsampling operation is often added after pooling. The kernel is
given by

HCK
ω,∆(x,y) =

∆

dω

∑
k∈[d/∆]

∑
s,s′∈[ω]

h
(
〈x(k∆+s),y(k∆+s′)〉/q

)
. (18)

Let us introduce the family {M r}r∈[q] of block-circulant matrices defined by

Mr
ij =

∆

ω(q + 1− r)

∣∣∣{(k, s, s′, t) ∈ Iω,∆,r : k∆ + s+ t ≡ i[d], k∆ + s′ + t ≡ j[d]
}∣∣∣ , (19)

where we introduced the set of indices

Iω,∆,r =
{

(k, s, s′, t) : k ∈ [d/∆], s, s′ ∈ [ω], 0 ≤ t ≤ q − r
}
. (20)

We can now state the eigendecomposition of HCK
ω,∆ in terms of the eigenvalues and eigenvectors of

the matrices {M r}r∈[q].

Proposition 4 (Eigendecomposition of HCK
ω,∆). Let HCK

ω,∆ be a convolutional kernel with local
average pooling and downsampling, as defined in Eq. (18). Then HCK

ω,∆ admits the following
eigendecomposition:

HCK
ω (x,y) = ωξq,0 +

q∑
`=1

∑
S∈C`

∑
j∈[d]

ξq,`r(S)κSj
d

· ψj,S(x)ψj,S(y) , (21)

where ψ∆
j,S(x) =

∑d
k=1 v

S
j,kYk+S(x) with {κSj ,vSj }j∈[d] eigenvalues and eigenvectors ofMγ(S).

Let us make a few comments on these matrices Mγ(S). First because they only depend on S
through the diameter γ(S), the eigenvalues and eigenvectors {κSj ,vSj }j∈[d] only depend on γ(S).

Second, we see that Mγ(S)
(i+∆)(j+∆) = M

γ(S)
ij and M

γ(S)
ij = 0 if d(i, j) ≥ ω, where d(i, j) =

min(|i − j|, d − |i − j|) (i.e., the distance between i and j on the torus [d]). In words Mγ(S) is a
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symmetric block-circulant matrix with non-zero elements on a band of size ω − 1 on the left and
right of the diagonal, and on the upper-right and lower-left corners. Furthermore, notice that

Tr(Mγ(S)) =
∆

dωr(S)

∣∣∣{(k, s, t) : k ∈ [d/∆], s ∈ [ω], 0 ≤ t ≤ q − γ(S)
}∣∣∣ = 1 ,

which is independent of ω,∆, γ(S) and justify the chosen normalization. In particular, this implies
that (for ξq,0 = 0)

Tr(HCK
ω,∆) := Ex{HCK

ω,∆(x,x)} =
∑
`∈[q]

ξq,`
∑
S∈C`

r(S) =
∑
`∈[q]

ξq,`B(Qq; `) = h(1) , (22)

is also independent of the parameters (q, ω,∆).
Example 1. Take ∆ = 3, ω = 5, q = 11, then

M1 =
3

50



18 15 11 7 4 0
15 19 15 11 8 4 0 . . .
11 15 18 14 11 7 3 0
7 11 14 18 15 11 7 3 0
4 8 11 15 19 15 11 8 4 . . .
0 4 7 11 15 18 14 11 7

0 3

0
...

. . . . . .


,

and

M4 =
3

35



13 11 8 5 3 0
11 14 11 8 6 3 0
8 11 13 10 8 5 2 0
5 8 10

3 6 8
. . . . . .

0 3 5

...
...

. . .


.

Remark 1. Symmetric block-circulant matrices can be easily diagonalized as follows. Consider
M = Circulant(B1,B2, . . . ,Bm) where Bk ∈ R∆×∆, BT

1 = B1 and B2+k = BT
m−k for

k = 0, . . . ,m − 2. Denote ρj = e2iπj/m and γj(v) = [v, ρjv, · · · , ρm−1
j v]/

√
m ∈ Rm∆ for any

v ∈ R∆. Introduce for j = 0, . . . ,m− 1, the matrixHj ∈ R∆×∆ given by

Hj = B1 + ρjB2 + . . .+ ρm−1
j Bm . (23)

The matrix Hj is Hermitian and we denote (λj,s)s∈[∆] and (vj,s)s∈[∆] its eigenvalues and
eigenvectors. Then the eigenvalues and eigenvectors of M are given by {λj,s}j∈[m],s∈[∆] and
{γj(vj,s)}j∈[m],s∈[∆].

In particular, if ∆ = 1 andM = Circulant(b1, b2, . . . , bm) is a circulant matrix, then the eigenvalues
are simply given by

λj = b1 + ρjb2 + . . .+ ρm−1
j bm ,

and eigenvectors vj = [1, ρj , · · · , ρm−1
j ]/

√
m.

Here we will focus on the impact of downsampling for single-layer convolutional kernels. We expect
the downsampling operation to have a much more important role for the next layers: for example,
increasing the scale of interactions or reducing the dimensionality of the pixel space.

We will argue below that adding a downsampling operation after local pooling leaves the low-
frequency components approximately unchanged (while potentially modifying the high-frequency
eigenspaces). We consider ∆ ≤ ω: for ∆ > ω, some basis functions YS with S ∈ E` are in the null
space of HCK

ω,∆, which impact all frequencies.
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To emphasize the dependency on ω,∆, denoteM r
ω,∆ the matrix (19). We will study the change in

the matrixM r
ω,1 when adding downsampling ∆, and consider

M r
ω,∆ = M r

ω,1 +Ar
ω,∆ , (24)

where we denote Ar
ω,∆ = M r

ω,∆ −M
r
ω,1. Notice that Ar

ω,∆ is a symmetric block-circulant
matrix. Therefore, from Remark 1, the eigenvectors of Ar

ω,∆ are given by {γj(vj,s)}j∈[m],s∈[∆]

where d = m∆ and γj(vj,s) = [vj,s, ρm,jvj,s, . . . , ρ
m−1
m,j vj,s] with ρm,j = e

2iπj
m and (vj,s)s∈[∆]

eigenvectors ofHj (23). The eigenvectors ofM r
ω,1 are given by ut = [1, ρd,t, · · · , ρd−1

d,t ]/
√
d with

ρd,t = e
2iπt
d . Notice that

〈u∗t , γj(vj,s)〉 =
1√
dm

∑
k∈[m]

∑
u∈[∆]

ρk−1
m,j ρ

−(k−1)∆−(t−1)
d,t (vj,s)u

=
1√
dm

( ∑
u∈[∆]

ρ
−(u−1)
d,t (vj,s)u

)
·
∑
k∈[m]

(
ρm,jρ

−∆
d,t

)k−1
,

which is 0 except when t ≡ j[m]. Hence, we see thatAr
ω,∆ in Eq. (24) only modify the eigenspaces

of M r
ω,1 as follows: the eigendirections {γj(vj,s)}j∈[m],s∈[∆] coming from Hj (23) only modify

the eigenspaces ofM r
ω,1 spanned by {uam+j}a=0,...,∆−1.

For simplicity, we will focus on the popular choice ∆ = ω. Furthermore, we will only look at the
impact of the eigenvaluesH0 on the eigenspace spanned by {uam}a=0,...,∆−1, which contain the
cyclic invariant direction. We show below that H0 = 0 and therefore Ar

ω,ω does not modify the
cyclic invariant eigenspace ofM r

ω,1:

Proposition 5. Consider d = mω and the symmetric block-circulant matrixAr
ω,ω = M r

ω,ω−M
r
ω,1.

DenoteAr
ω,ω = Circulant(B1,B2, . . . ,Bm) and

H0 = B1 + . . .+Bm .

We have the following properties:

(a) If q + 1 − r ≡ 0[ω], then Ar
ω,ω = 0, and downsampling does not modify the matrix

M r
ω,ω = M r

ω,1.

(b) We have H0 = 0 and downsampling does not modify the cyclic invariant eigenspace
Ar
ω,ω1 = 0.

Proof of Proposition 5. Let us first start by proving point (a). Consider q + 1 − r = pω. Fix
i ∈ {0, . . . ,∆ − 1} and κ ∈ {0, . . . , ω − 1}. Let us compute the entry (i, i + κ) of the matrix
M r

ω,ω: this amounts to counting the number of quadruples (k, s, s′, t) with k ∈ [d/ω], s, s′ ∈ [ω]
and 0 ≤ t ≤ pω − 1, satisfying (kω + s+ t, kω + s′ + t) ≡ (i, i+ κ)[d]. Notice that we must have
s′ = s+ κ and therefore s ∈ {0, . . . , ω − 1− κ}. Notice that for each interval uω ≤ t < (u+ 1)ω
with u ∈ {0, . . . , p− 1}, there are exactly ω − κ ways of choosing s and then t and k to satisfy the
equality. We deduce that

(M r
ω,ω)i(i+κ) =

ω

ω(q + 1− r)
p(ω − κ) = 1− κ

ω
= (M r

ω,1)i(i+κ) .

By symmetry ofM r
ω,ω, this concludes the proof of point (a).

Consider now point (b). First notice, becauseM r
ω,ω has zero entries for min(|i− j|, d−|i− j|) ≥ ω,

the only non-zero blocks are B1,B2 and Bm. Furthermore, when computing H0, the diagonal
entries only have one contribution from the diagonal elements ofB1. The off-diagonal elements of
H0 have two contribution: one fromB1 and one fromB2 (if below the diagonal) orBm (if above
the diagonal), i.e.,

(H0)ii = (B1)ii (H0)i(i+κ) = (B1)i(i+κ) + (Bm)i(i+κ) .

Let us compute first the diagonal elements: we have easily, by a similar argument as above
(M r

ω,ω)ii = 1 = (M r
ω,1)ii, and therefore H0 has zero zero diagonal entries. For off-diagonal

18



elements, first notice that (M r
ω,ω)i(i+κ−ω) = (M r

ω,ω)i(i+ω−κ). Then for q + 1− r = pω + v, we
can consider each subsegment uω ≤ t < (u+1)ω separately, and by a simple counting argument, get
(M r

ω,ω)i(i+ω−κ) + (M r
ω,ω)i(i+κ) = 1− κ

ω . We deduce that (H0)i(i+κ) = 0, which by symmetry
impliesH0 = 0 and concludes the proof.

From the above result, we conjecture that more generally, for ∆ ≤ ω, the low-frequency eigenspaces
of HCK

ω remain approximately unchanged when applying a downsampling operation. We verify this
conjecture numerically in several examples. In Figure 3, we plot the eigenvalues κj with and without
downsampling. On the left, we compare κj for fixed ω = 25 and increasing ∆. We notice that the
eigenvalues do not change much for ∆ ≤ ω, and for ∆ > ω, some κj become null, as discussed
above. On the right, we plot κj for ∆ = 1 (continuous line) and ∆ = ω (dashed lines) for several ω.
As conjectured, the top eigenvalues (low-frequency) are left approximately unchanged. In Figure 4,
we plot a heatmap of the eigenvectors ordered vertically from highest associated eigenvalue (bottom)
to lowest (top) for a fixed ω = 25 and increasing downsampling ∆ ∈ {1, 25, 40}. First indeed
check that the top eigenvectors correspond to low-frequency functions and the bottom eigenvectors
correspond to high-frequency functions. Second, most eigenvectors are not much modified between
∆ = 1 and ∆ = ω = 25. For the case, ∆ > ω, the top eigenvectors corresponds still low-frequency
functions.
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Figure 3: Impact of downsampling on the eigenvalues κj . On the left, we fix ω = 25 (d = 200,
q = 30, r = 1) and increase δ from 1 (no downsampling) to 40. On the right, we compare ∆ = 1
(continuous line) and ∆ = ω (dashed lines), with d = 150,q = 20,r = 1.
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to lowest (top), for d = 200, q = 30, r = 1, ω = 25, and ∆ = 1 (left), ∆ = ω = 25 (middle) and
∆ = 40 (right).
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From these observations, we expect HCK
ω,∆ to have the same statistical properties as HCK

ω when
learning low-frequency functions. In Figure 5, we plot the test error of kernel ridge regression for
fitting cyclic q-local polynomials (see Section A.7) on the hypercube of dimension d = 30. We report
the test error of one realization, against the sample size n, and choose regularization λ = 10−6 and
noise σε = 0. We compare kernels with and without downsampling. On the left, we consider q = 10
and ω = ∆ = 5, and compare the test error with HCK

ω (continous line) and with HCK
ω,∆ (dashed line)

when learning degree 2, 3 and 4 polynomials. On the right, we fix the target function to be the cubic
local cyclic polynomial and consider the test error of learning with HCK

ω,∆ for q = 10, ω = 10, and
∆ ∈ {1, 3, 6, 10}. As expected, we observe in both simulations that the test error is almost identical
between the kernels with and without downsampling, when learning cyclic invariant functions.

In Section C.1, we further check that downsampling with ∆ > ω does not improve the high-
dimensional predictions for the test error of KRR.
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Figure 5: Test error of kernel ridge regression with and without downsampling. We report the test
error of one realization, against the sample size n. On the left, we consider a unique architecture
q = 10 and ω = ∆ = 5, and compare HCK

ω (continuous line) versus HCK
ω,∆ (dashed line) when

learning cyclic q-local polynomials of degree 2, 3 and 4. On the right, we consider a unique cyclic
q-local polynomial of degree 3 for fixed q = 10, ω = 10 and ∆ ∈ {1, 3, 6, 10}.

A.5 Multilayer convolutional kernels

For completeness, we briefly discuss here some intuitions of multilayer convolutional kernels. The
benefit of depth in convolutional kernels has been investigated in [6, 16, 40, 43]. In particular, [6]
observed that the top layer operation of a two-layers convolutional kernel can be replaced by a
low-degree polynomial without a performance change.

As an example, we will consider a two layers convolutional kernel with patch and local average
pooling sizes (q1, ω1) on the first layer and (q2, ω2) on the second layer. We consider a general
inner-product kernel for the first layer:

h1

(
〈u,v〉/q1

)
= 〈ψ(u), ψ(v)〉 , (25)

where the feature map is given explicitly ψ(u) = {ξq1,|S|YS(u)}S⊆[q1] ∈ R2q1 . Following the work
[6], we consider a degree-2 polynomial kernel on the second layer, i.e., h2(〈φ, φ′〉) = 〈φ, φ′〉2.

Let us decompose this two-layers convolutional kernel in the Fourier basis. Let Ψ(x) =
{Ψk(x)}k∈[d] be the output of the first layer, with

Ψk(x) =
∑
s∈[ω1]

ψ(x(k+s)) =
{
ξq1,|S|

∑
s∈[ω1]

Yk+s+S(x)
}
S⊆[q1]

∈ R2q1 . (26)

20



Then denoting Ψ(k)(x) = (Ψk+1(x), . . . ,Ψk+q2(x)), the two-layers convolutional kernel is given
by

H2CK
ω1,ω2

(x,y)

=
∑
k∈[d]

∑
s,s′∈[ω2]

〈Ψ(k+s)(x),Ψ(k+s′)(x)〉2

=
∑
k∈[d]

∑
s,s′∈[ω2]

∑
u,u′∈[q2]

∑
t,t′,r,r′∈[ω1]

〈ψ(x(k+s+u+t))⊗ ψ(x(k+s+u′+r)), ψ(y(k+s′+u+t′))⊗ ψ(y(k+s′+u′+r′))〉 .

(27)

We believe that techniques contained in this paper can be used to study kernels of the type (??) by a
careful combinatorial argument and a 2-dimensional Fourier transform on the second layer (see [6]).
We leave this problem to future work. Here we only comment on the structure of H2CK

ω1,ω2
:

1. Including a second convolutional layer allows interactions between patches. The associated
RKHS, which we will denote H2CK, contains all the homogeneous polynomials YS with
S = S1 ∪S2 with S1, S2 contained on segments of size q1, with the two segments separated
by at most q2 + ω2 − 2. In words, the RKHS contains interaction between patches x(k) and
x(k′) that are within some distance.

2. The eigenvalue associated to a degree-k homogeneous polynomials is still of order q−k
in high-dimension. To learn functions restricted to L2(Q2,Locq), it is statistically more
efficient to useHCK (smaller degeneracy of eigenvalues). HoweverH2CK will fit a richer class
of functions with two-patch interactions, while still not being plagued by dimensionality:
dim(H2CK) ≤ q2d22q1 . Hence we still expect H2CK to be much more statistically efficient
than a standard inner-product kernel.

3. Local pooling on the two layers plays different roles: pooling on the first layer encourages the
interactions to not depend strongly on the relative positions of the patches, while pooling on
the second layer penalizes functions that depend on the global position of these interactions.

For more layers and higher degree kernels, one obtain hierarchical interactions of higher-order, with
multi-scale absolute and relative local invariances brought by pooling layers.

A.6 Proofs diagonalization of convolutional kernels

In this section, we prove the diagonalization of the kernels HCK, HCK
ω and HCK

ω,∆ introduced in
Propositions 1, 2 and 4 respectively.

Recall that we can associate to a kernel function H : X × X → R defined on a probability space
(X , τ) (assume x 7→ H(x,x) square integrable), the integral operator H : L2(X , τ)→ L2(X , τ)

Hf(x) =

∫
X
H(x,x′)f(x′)τ(dx′) . (28)

By the spectral theorem of compact operators, there exists an orthonormal basis (ψj)j≥1 of L2(X , τ)
and eigenvalues (λj)j≥1, with nonincreasing values λ1 ≥ λ2 ≥ · · · ≥ 0 and

∑
j≥1 λj < ∞, such

that

H =

∞∑
j=1

λjψjψ
∗
j , H(x,x′) =

∞∑
j=1

λjψj(x)ψj(x
′) .

We first prove the diagonalization of HCK
ω,∆ in Proposition 4. The case of HCK

ω and HCK then follows
by setting ∆ = 1, and ∆ = ω = 1 respectively.

Proof of Proposition 4. Consider the inner-product kernel function h : R → R defined on the
hypercube Qq. By rotational symmetry (see Section 2.1 and Appendix D), h admits the following
diagonalization: for any u,v ∈ Qq ,

h (〈u,v〉/q) =

q∑
`=0

ξq,`
∑

S⊆[q],|S|=`

YS(u)YS(v) , (29)
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where (YS)S⊆[q] is the Fourier basis on Qq, and ξd,`(h) is the `-th Gegenbauer coefficient of h in
dimension q (see Sections 2.1 or D for background).

Recall that we defined S` = {S ⊆ [q] : |S| = `}, the equivalence relation S ∼ S′ if S′ is a
translated subset of S in [q] (without cyclic convention), and C` the quotient set of A` by ∼. For each
equivalence class S ∈ C`, consider S the unique subset in S that contains 1. Then the equivalence
class S contains the subsets u+ S = {u+ k : k ∈ S} ⊆ [q] with u = 0, . . . , q − γ(S). By a slight
abuse of notations, we will identify S and this subset S. Below we will denote u+ S the translated
subset with cyclic convention on [d] (e.g., 2 + {1, 3, d− 1} = {3, 5, 1}).
Using Eq. (29) and that YS(x(k)) = Yk+S(x), we have the following decomposition of HCK

ω,∆ in the
Fourier basis

HCK
ω,∆(x,y)

=
∆

ω

∑
k∈[d/∆]

∑
s,s′∈[ω]

h
(
〈x(k∆+s),y(k∆+s′)〉/q

)

= dωξq,0 +

q∑
`=1

ξq,`
∑
S∈C`

∆

ω

∑
(k,s,s′,t)∈Iω,∆,γ(S)

Yk∆+s+t+S(x)Yk∆+s′+t+S(y)

 ,

(30)

where we recall the definition of the set of indices

Iω,∆,γ(S) =
{

(k, s, s′, t) : k ∈ [d/∆], s, s′ ∈ [ω], 0 ≤ t ≤ q − γ(S)
}
. (31)

Note that the diagonalization of the kernel H can be obtained by computing the matrix M =

(MSS′)S,S′⊆[d] ∈ R2d×2d with M = Ex,y[YS(x)H(x,y)YS′(y)]: if λj and vj ∈ R2d are the
eigenvalues and eigenvectors of M , then λj and ψj(x) =

∑
S⊆[d] vj,SYS(x) are the eigenvalues

and eigenvectors of H .

From Eq. (30), we see 1) the basis functions YS with γ(S) > q (subset S not contained in a
segment of size q) are in the null space of HCK

ω,∆, 2) for S, S′ ⊆ [d] with S and S′ not translations of
each other, then Ex,y[YS(x)HCK

ω,∆(x,y)YS′(y)] = 0, and YS and YS′ are contained in orthogonal
eigenspaces. We deduce that it is sufficient to diagonalizeHCK

ω,∆ on each of the (orthogonal) subspaces
VS := span{Yk+S : k ∈ [d]} for 0 ≤ ` ≤ q and S ∈ C`.

For each S ∈ C`, define Mγ(S) ∈ Rd×d the matrix with entries M
γ(S)
ij =

1
r(S)Ex,y[Yi+S(x)HCK

ω,∆(x,y)Yj+S(y)]. From Eq. (30), we get

M
γ(S)
ij =

∆

ωr(S)

∣∣∣{(k, s, s′, t) ∈ Iω,∆,γ(S) : k∆ + s+ t ≡ i[d], k∆ + s′ + t ≡ j[d]
}∣∣∣ , (32)

which concludes the proof of Proposition 4.

We can now prove Propositions 1 and 2 by taking ω = ∆ = 1 and ∆ = 1 respectively.

Proof of Proposition 1. Set ∆ = ω = 1 in Proposition 4. We get

M
γ(S)
ij =

1

r(S)

∣∣∣{(k, t) : k ∈ [d], 0 ≤ t ≤ q − γ(S), k + 1 + t ≡ i[d], k + 1 + t ≡ j[d]
}∣∣∣

= δij .

In this case,Mγ(S) is simply equal to identity, which concludes the proof.

Proof of Proposition 2. Set ∆ = 1 in Proposition 4. We get

M
γ(S)
ij =

1

ωr(S)

∣∣∣{(k, s, s′, t) ∈ Iω,∆,γ(S) : k + s+ t ≡ i[d], k + s′ + t ≡ j[d]
}∣∣∣

=

(
1− d(i, j)

ω

)
+

,
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where d(i, j) is the distance between i and j on the torus [d] (i.e., if i > j, d(i, j) = min(i− j, d+

j − i)). Hence, Mγ(S) is a circulant matrix independent of γ(S), which has well known explicit
formula for eigenvalues and eigenvectors (see for example Remark 1).

A.7 Additional numerical simulations

Here, we consider a numerical experiment similar to Figure 1. We consider x ∼ Unif(Qd) with
d = 30 and consider three cyclic invariant target functions:

f2(x) =
1√
d

∑
i∈[d]

xixi+1 , f3(x) =
1√
d

∑
i∈[d]

xixi+1xi+2 ,

f4(x) =
1√
d

∑
i∈[d]

xixi+1xi+2xi+3 .

We consider a higher order polynomial kernel h(x) =
∑
k∈[7] 0.2 · xk than in Figure 1, which should

lead to higher self-induced regularization. We consider the same kernels as before, with q = 10 and
ω = 5.

In Figure 6, we report the test errors of fitting f2 (top), f3 (middle) and f4 (bottom) using kernel ridge
regression with the 5 kernels of interests in the main text. We choose a small regularization parameter
λ = 10−6, and the noise level σε = 0. The curves are averaged over 5 independent instances and
the error bar stands for the standard deviation of these instances. The results again match with our
overall theoretical predictions. We report the predicted thresholds for the three functions:

1. For f2 target: q < d < dq/ω < dq < d2 for HCK
GP < HFC

GP < HCK
ω < HCK < HFC.

2. For f3 target: q2 < dq2/ω < d2 < dq2 < d3 for HCK
GP < HCK

ω < HCK < HFC
GP < HFC.

3. For f4 target: q3 < dq3/ω < d3 < dq3 < d4 for HCK
GP < HCK

ω < HCK < HFC
GP < HFC.

We see that the kernels, especially for f4, perform much better than their theoretical high-dimension
predictions: this can be explained by the low-dimensionality of the experiment where q = 10.
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Figure 6: Learning cyclic polynomials of degree 2 (top), 3 (middle) and 4 (bottom) over the hypercube
d = 30, using KRR with HFC (FC), HFC

GP (FC-GP), HCK (CK), HCK
ω (CK-LP) and HCK

GP (CK-GP),
regularization parameter λ = 0+ and h(x) =

∑
k∈[7] 0.2 ·xk. We report the average and the standard

deviation of the test error over 5 realizations, against the sample size n.
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B Generalization error of kernel methods in fixed dimension

B.1 Bound on kernel methods using Rademacher complexities

We first consider the case of a Lipschitz bounded loss and uniform convergence, and make a few
simple remarks on the connection between generalization error and eigendecomposition in kernel
methods.

Consider i.i.d data (xi, yi) ∈ X × R with (x, y) ∼ P and a loss function ` : R × R → R that we
take 1-Lipschitz w.r.t second argument and bounded by 1. The goal is to minimize the expected loss
L(f̂) = Ey,x{`(y, f̂(x))}. Take a RKHS H with kernel function H : X × X → R and consider
following constrained empirical risk minimizer:

f̂B = arg min
‖f‖H≤B

{
n∑
i=1

`(yi, f(xi))

}
. (33)

The generalization error of f̂B has the following standard bound on the Rademacher complexity of
the kernel class {f : ‖f‖H ≤ B} [9, 44]: with probability 1− δ,

L(f̂B)− min
‖f‖H≤B

L(f) ≤ 8B√
n

√
Ex{H(x,x)}+

√
2 log 2

δ

n
. (34)

Note that instead of a constraint on the norm in Eq. (33), one might find more convenient to use a
penalty. In that case, there exists an equivalent to the bound (34) [3, 47], but we focus here on the
constrained formulation for simplicity.

From the bound (34), we see that the generalization error depends crucially on the choice of B. For
simplicity, let us forget about the approximation error and take ‖f?‖H ≤ B where f? = E{y|x}.
Recall that for a kernel H with eigenvalues {λj}j≥1 and eigenvectors {ψj}j≥1, we have

‖f‖2H =
∑
j≥1

λ−1
j 〈ψj , f〉

2
L2(P ) .

Consider HCK
ω,∆ as in Eq. (8) and assume ξq,0 = 0. From the normalization choice of the kernel (see

Eq. (22)), we have
Ex{HCK

ω,∆(x,x)} = h(1).

Consider now for simplicity ∆ = 1. From the eigendecomposition in Proposition 2, the RKHS norm
of f ∈ L2(Qd,Locq) is given by

‖f‖2H =
∑
`∈[q]

∑
j∈[d]

∑
S∈C`

〈ψj,S , f〉2L2

ξq,`r(S)κj/d
.

Consider the case where f ∈ L2(Qd,Locq) has a unique non-zero component in its discrete Fourier
transform, i.e., f(x) = 1√

d

∑
k∈[d] ρ

k
j g(x(k)) with E{g(x)} = 0 and ρj = e2iπj/d (see Section A.3).

Note that, denoting cS = 〈YS , g〉L2(Qq):

f(x) =

q∑
`=1

∑
S∈C`

r(S)−1∑
u=0

ρ−uj cu+S

ψj,S .

Hence,

‖f‖2H =

q∑
`=1

∑
S∈C`

〈ψj,S , f〉2L2

ξq,`r(S)κj/d
≤ d

q∑
`=1

∑
S∈C`

r(S)−1∑
u=0

c2u+S

ξq,`r(S)
≤ d‖g‖2h

κj
,

where ‖g‖2h is the RKHS norm associated to the inner-product kernel h : R → R in Qq, i.e.,
‖g‖2h =

∑
S⊆[q]

cS
ξq,|S|

. From the bound (34), we deduce the first generalization bound using a
convolutional kernel: with probability at least 1− δ,

L(f̂B)− min
‖f‖H≤B

L(f) ≤ 8

(
d‖g‖2hh(1)

nκj

)1/2

+

√
2 log 2

δ

n
.

We make the following two remarks on this bound:
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1. It depends on ‖g‖h, which is a RKHS norm on Qq instead of Qd, which has potentially
much lower dimension and contain less smooth function for balls of same radius.

2. There is a factor κj gain in sample complexity when learning functions that have j-th
frequency with κj > 1. In particular, for j = d (cyclic invariant functions), κj = ω, and
we need ω less samples to get the same (upper) bound on the generalization error. On the
contrary, when κj < 1, i.e., high-frequency oscillatory functions, the generalization bound
becomes worse.

B.2 Generalization error of KRR in the classical regime

We consider here the regression setting which allows for finer results. Several works have considered
bounding the generalization error of kernel ridge regression (KRR) [12, 29], [47, Theorem 13.17]. In
this section, we consider the following fully-explicit upper bound from [3].

Consider i.i.d data (xi, yi) ∈ X × R with xi ∼ P , and yi = f?(xi) + εi. Assume the noise
E[εi|xi] = 0 and E[ε2

i |xi] ≤ σ2
ε , and denote ε = (ε1, . . . , εn).

LetH be a RKHS with reproducing kernel H : X × X → R. The KRR solution with regularization
parameter λ ≥ 0 is given by

f̂λ = arg min
f∈H

{
n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H

}
,

which has the following analytical formula:

f̂λ(x) = h(x)(H + λIn)−1y ,

where H = (H(xi,xj))ij∈[n] is the empirical kernel matrix, h(x) = [H(x,x1), . . . ,H(x,xn)]
and y = (y1, . . . , yn). The risk is taken to be the test error with squared error loss

R(f?, f̂λ) = Ex
{(
f?(x)− f̂λ(x)

)2}
. (35)

Below, we give an upper bound on the expected risk over the noise ε in the training data, i.e.,
Eε{R(f?, f̂λ)} (it is also possible to give high probability bounds by concentration arguments, but
we restrict ourselves to bounding the expected risk).

Theorem 6. [3, Theorem 7.2] Assume H(x,x) ≤ R2 almost surely and let the regularization

parameter λ ≤ R2. If n ≥ 5R2

λ

(
1 + log R2

λ

)
, then

Eε{R(f?, f̂λ)} ≤ 16
σ2
ε

n
N (H,λ) + 16 inf

f∈H

{
‖f − f?‖2L2 + λ‖f‖2H

}
+

24

n2
‖f?‖2L∞ , (36)

where N (H,λ) = Tr[(H + λI)−1H].

Let us comment on the upper-bound in Eq. (36). The first term corresponds to an upper bound on the
variance: N (H,λ) is sometimes called the degrees of freedom or the effective dimension of the kernel
H . The second term bounds the bias term and corresponds to an approximation error. In particular,
for any r > 0,

inf
f∈H

{
‖f − f?‖2L2 + λ‖f‖2H

}
≤ λr‖H−r/2f?‖2L2 , (37)

where we recall that H is the integral operator associated to H (see Eq. (28)). The third term can be
removed by a more intricate analysis.

From the above discussion, it is natural to consider the following two assumptions on H and f?, that
are standard in the kernel literature:

(B1) Capacity condition: N (H,λ) ≤ CHλ−1/α with α > 1.

(B2) Source condition: there exists β > 0 such that ‖H−β/2f?‖2L2 =: B2
f?
<∞.
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Intuitively, the capacity condition (B1) characterizes the size of the RKHS: for increasing α, the
RKHS contains less and less functions. It is verified when the eigenvalues λj’s of H decay at the rate
j−α. For example, taking the Matern kernel of order s > d/2, whose RKHS is the Sobolev space of
order s (i.e., functions with bounded s-order derivatives), we have α = 2s/d (e.g., see [26]). The
source condition (B2) characterizes the regularity of the target function (the ‘source’) with respect to
the kernel: β = 1 is equivalent to f? ∈ H, while β > 1 corresponds to f? more smooth (and β < 1
less smooth f?).

Assuming (B1) and (B2) in Theorem 6, we get the bound

Eε{R(f?, f̂λ)} ≤ 16CH
σ2
ε

n
λ−1/α + 16B2

f?λ
β +

24

n2
‖f?‖2L∞

= 32σ2
εB

2
αβ+1

f?

(
CH
n

) αβ
αβ+1

+
24

n2
‖f?‖2L∞ ,

(38)

where in the second line, we balanced the two terms by taking λ∗ :=
(
CHσ

2
ε

B2
f?
n

) α
αβ+1

. Note that in

order to use Theorem 6, we need further to constrain n ≥ 5R2

λ

(
1 + log R2

λ

)
. For simplicity, we will

choose r > α−1
α , so that this condition is verified for n sufficiently large.

Remark 2. The rate in n in Eq. (38) is minmax optimal over all functions that verify assumptions
(A1) and (A2) [12]. However, for large d, the RKHS is composed of very smooth functions (e.g.,
Sobolev spaces of order s are RKHS if and only if s > d/2, i.e., if the order of the bounded derivatives
grows with the dimension d) and β will be small, such that βα ≈ κ/d for functions with bounded
derivatives up to order κ. In that case, the risk decreases at the rate n−O(κd ): KRR suffers from the
curse of dimensionality when κ does not scale with d. As a consequence, the bound (38) is vacuous
when n does not scale exponentially in d, which led several groups to derive finer bounds on KRR in
the high dimensional regime (see Section C).

Let us now apply Theorem 6 and Eq. (38) to our convolutional kernels to show Theorems 1 and 4.

Proof of Theorem 1. First notice that HCK(x,x) = h(1) =: R2 and we can therefore apply Theorem
6. The effective dimension of HCK is bounded by

N (HCK, λ) =
ξq,0

ξq,0 + λ
+

q∑
`=1

∑
S∈E`

ξq,`r(S)/d

ξq,`r(S)/d+ λ

≤ dξq,0
ξq,0 + d · λ

+

q∑
`=0

ξq,`
ξq,` + d · λ

∑
S∈E`

r(S)

= d

q∑
`=0

B(Qq, `)
ξq,`

ξq,` + d · λ
= dN (h, d · λ) ,

where we used that r(S) ≥ 1 in the second line and N (h, λ) is the effective dimension of the inner-
product kernel h on Qq. We deduce from (A1) that N (HCK, λ) ≤ Chd

1−1/αλ−1/α. Furthermore,
from (A2) and the assumption that E{gk(x)} = 0, we have

‖(HCK)−β/2f?‖2L2 = dβ
q∑
`=1

ξ−βq,`

∑
S∈C`

∑
k∈[d]

r(S)−β

r(S)−1∑
u=0

〈gk−u, Yu+S〉L2

2

≤ dβ
q∑
`=1

ξ−βq,`

∑
S∈C`

∑
k∈[d]

r(S)1−β
r(S)−1∑
u=0

〈gk−u, Yu+S〉2L2

≤ dβq1−β
d∑
k=1

‖h−β/2gk‖2L2 ≤ dβqB2 .

Injecting the two above bounds in Eq. (38), we deduce that there exists constants C1, C2, C3 that
only depends on the constants in (A1) and (A2), and h(1), σ2

ε (but independent of d), such that taking
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n ≥ C1 max(‖f?‖2L∞ , d) and λ∗ = C2

d (d/n)
α

αβ+1 , we get

Eε
{
R(f?, f̂λ?)

}
≤ C3

(
d

n

) αβ
αβ+1

.

Proof of Theorem 4. The proof is similar to the proof of Theorem 1. Notice that HCK
ω (x,x) ≤ h(1),

and that the effective dimension of HCK
ω is bounded by

N (HCK
ω , λ) =

d∑
j=1

q∑
`=1

∑
S∈C`

ξq,`r(S)κj/d

ξq,`r(S)κj/d+ λ

≤
d∑
j=1

q∑
`=1

∑
S∈C`

r(S)
ξq,`

ξq,` + dλ/κj
=

d∑
j=1

N (h, dλ/κj) ≤ Chd−1/αλ−1/α
d∑
j=1

κ
1/α
j ,

where we used condition (A1). Denoting deff =
∑d
j=1(κj/ω)1/α, the rest of the proof follows from

the proof of Theorem 1 with d replaced by deffω
1/α and B2 replaced by ωβB2.

Remark 3. Note that the requirement ‖(HCK
ω /ω)−β/2f?‖L2 ≤ B is to make the result comparable

to the other theorems when we consider target functions with low-frequencies. For a cyclic invariant
function, we get exactly ‖(HCK

ω /ω)−β/2f?‖L2 = ‖(HCK)−β/2f?‖L2 .

C Generalization error of KRR in high dimension

In Section B.2, we considered upper bounds on the test error of KRR using the standard capacity and
source conditions. However, these results suffer from several limitations:

1. They only provide an upper bound on the test error. While the decay rate with respect to n
is minmax optimal (see [12]), this is not strong enough to show, for example, a statistical
advantage of using local average pooling, which appears as a prefactor deff, and which would
require a lower bound matching the upper bound within a constant factor.

2. As mentioned in Remark 2, the bound is of order n−1/O(d), except when the target function
has smoothness order increasing with d. This bound is non-vacuous only if n = exp(O(d))
which is impractical in modern image datasets where typically d ≥ 100. This motivates a
new type of question: given n � dα, what is the prediction error achieved by KRR for a
given function?

3. In order to achieve the bound Eq. (38), one need to carefully balance the bias and the
variance terms by setting the regularization parameter. This is in contrast with modern
practice which usually train until interpolation (which corresponds to setting λ→ 0).

Given the above limitations, several recent works have instead considered a high-dimensional setting
where the number of samples scales with d, and derived asymptotic test errors, exact up to a vanishing
additive error [23, 24, 38]. In addition to these works, several papers have derived general estimates
for the test error using non-rigorous methods [11, 17, 29] that are believe to be correct in the high
dimensional limit and which show great agreement with numerical experiments. The picture that
emerges in this regime is much more precise than in the classical regime: KRR approximately acts
as a shrinkage operator on the target function (not assumed to be in a particular space anymore),
with shrinkage parameter that scales as a self-induced regularization parameter over the number of
samples.

More precisely, [38] shows the following: considers a kernel Hd : Rd × Rd → R with eigenvalues
(λd,j)j≥1 in nonincreasing order and n ≡ n(d) the number of samples. Let m ≡ m(d) be an integer
such that m ≤ n1−δ and

λd,m+1 · n1+δ ≤
∞∑

j=m+1

λd,j ,
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for some δ > 0. Then, assuming some additional conditions insuring that the kernelHd is ‘spread-out’
and well behaved, the KRR solution

f̂λ = arg min
f∈Hd

{
1

n

n∑
i=1

(
yi − f(xi)

)2
+
λ

n
‖f‖2Hd

}
, (39)

is equal up to a vanishing additive L2-error (as d→∞) to the following effective ridge regression
estimator

f̂ eff
λeff

= arg min
f∈Hd

{
‖f? − f‖2L2 +

λeff

n
‖f‖2Hd

}
, (40)

where λeff = λ+
∑∞
j=m+1 λd,j . The effective estimator (40) amounts to replacing the empirical risk

in Eq. (39) by its population counterpart ‖f? − f‖2L2 = Ex{(f?(x) − f(x))2}. In words, in high
dimension, KRR with a finite number of samples is the same as KRR with infinite number of samples
but with a larger ridge regularization.

The solution of Eq. (40) admits an explicit solution in terms of a shrinkage operator in the basis
(ψd,j)j≥1 of eigenfunctions of Hd:

f?(x) =

∞∑
j=1

cjψd,j(x) 7→ f̂ eff
λeff

=

∞∑
j=1

λd,j

λd,j + λeff
n

· cj · ψd,j(x) . (41)

Hence, KRR will fit better the target function along eigendirections associated to larger eigenvalues
of H . If λd,j � λeff/n, KRR fits perfectly f? along the eigendirection ψd,j , while if λd,j � λeff/n,
KRR does not fit this eigendirection at all. This phenomena has been referred as the spectral bias and
task-kernel alignment of kernel ridge regression in several works.

Finally, notice from Eq. (41) that the minimum test error is achieved for the regularization parameter
λ = 0, which corresponds to the KRR estimator fitting perfectly the training data. In other words, the
interpolating solution is optimal for kernel ridge regression in high dimension.

C.1 Generalization error of convolutional kernels in high dimension

Consider a sequence of integers {d(q)}q≥1 which corresponds to a sequence of image spaces x ∈ Qd

of increasing dimension, and assume d(q)/2 ≥ q ≥ d(q)δ for some constant δ > 0. For ease of
notations, we will keep the dependency on q implicit, i.e., d := d(q). Let {hq}q≥1 be a sequence of
inner-product kernels hq : R→ R.

Test error with one-layer convolutional kernel: we first consider a vanilla one-layer convolu-
tional kernel HCK as defined in Eq. (3). We will assume that the kernels {hq}q≥1 verify the following
‘genericity’ condition.
Assumption 1 (Generecity assumption on {hq}q≥1 at level s ∈ N). For {hq}q≥1 a sequence of
inner-product kernels hq : R → R, we assume the following conditions to hold. There exists
s′ ≥ 1/δ + 2s + 3 where δ > 0 verifies q ≥ dδ and a constant C such that hq(1) ≤ C, and

min
k≤s−1

qs−1−kξq,kB(q, k) =Ωd(1), (42)

min
k∈{s,s+1,s′}

ξq,kB(q, k) =Ωd(1), (43)

max
k=0,...,s′

qs
′−k+1ξq,q−kB(q, q − k) = Od(1). (44)

Assumption 1 will be verified by standard kernels, e.g., the Gaussian kernel. We discuss this
assumption in Section C.2 and present sufficient conditions on the activation function σ for its
associated CNTK to verify Assumption 1.

Recall that we denoted L2(Qd,Locq) the space of local functions, i.e., that can be decomposed as
f(x) =

∑
k∈[d] fk(x(k)). Denote hq,>` the inner-product kernel hq with its (`+ 1)-first Gegenbauer

coefficients set to 0, i.e.,

hq,>`(〈u,v〉/q) =

q∑
k=`+1

ξq,kB(Qq; k)Q
(q)
k (〈u,v〉) , (45)
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for any u,v ∈ Qq . The following result is a consequence of the general theorem on the generalization
error of KRR in [38].
Theorem 7 (Test error of CK in high dimension). Let {fd ∈ L2(Qd,Locq)}q≥1 be a sequence
of local functions. Let (xi)i∈[n(d)] ∼i.i.d. Unif(Qd) and yi = fd(xi) + εi with εi ∼i.i.d. N(0, σ2

ε).
Assume d · qs−1+δ ≤ n ≤ d · qs−δ for some δ > 0 and let {hq}q≥1 be a sequence of activation
functions satisfying Assumption 1 at level s. Consider {HCK,d}q≥1 the sequence of convolutional
kernels associated to {hq}q≥1 as defined in Eq. (3). Then the following holds for the solution f̂λ of
KRR with kernels {HCK,d}q≥1.

For any regularization parameter λ ≥ 0, define the effective regularization λeff := λ + hq,>s(1).
Then for any η > 0, we have∥∥f̂λ − f̂ eff

λeff

∥∥2

L2 = od,P(1) · (‖fd‖2L2+η + σ2
ε). (46)

The proof of Theorem 7 is deferred to Section C.4.

Let us expound on the predictions of Theorem 7. First, recall that f̂ eff
λeff

is given explicitly in Eq. (41)
by a shrinkage operator with parameter λeff. From Assumption 1 and taking λ = 0, the shrinkage
operator is of order 1

λeff = hq,>s(1) =

q∑
`=s+1

ξq,`B(Qq; `) = Θq(1) .

From the eigendecomposition of HCK introduced in Proposition 1, KRR fits perfectly f? along the
eigendirection YS with |S| = ` if n · ξd,`r(S)/d� λeff, while it does not fit this eigendirection at all
if n · ξd,`r(S)/d ≤ λeff. Consider n = d · qs−1+α:

• KRR fits the eigendirections corresponding to the homogeneous polynomials of degree s− 1
and less, and of degree s for subsets S such that γ(S)� q − q1−α.

• KRR does not fit at all the eigendirections correpsonding to homogeneous polynomials of
degree s + 1 and larger, and degree s for subsets S such that γ(S)� q − q1−α.

In words, for d · qs−1 � n� d · qs, KRR fits at least a degree-(s− 1) polynomial approximation to
f? and at most a degree-s polynomial approximation. As n increases from d · qs−1 to d · qs, KRR
first fits degree-s homogeneous polynomials that have smaller diameter γ(S) (i.e., ‘more localized’).

Test error of CK with global average pooling: we consider the kernel HCK
GP given by a convolu-

tional layer followed by global average pooling:

HCK
GP(x,y) =

1

d

∑
k,k′∈[d]

h
(
〈x(k),y(k′)〉/q

)
, (47)

In addition to the genericity condition, we will assume that the kernels {hq}q≥1 verify the following
differentiability condition.
Assumption 2 (Differentiability assumption on {hq}q≥1 at level s ∈ N). For {hq}q≥1 a sequence
of inner-product kernels hq : R → R, we assume the following conditions to hold. There exists
v ≥ max(2/δ, s) where δ > 0 verifies q ≥ dδ such that hq is (v + 1)-differentiable and for k ≤ v,

sup
γ∈[−1,1]

∣∣h(v+1)
q,>v (γ)

∣∣ ≤ Oq(1),∣∣h(k)
q,>v(0)

∣∣ ≤ Oq(q−(v+1−k)/2),

where we denoted hq,>v the truncated inner-product kernel hq as in Eq. (45).

Assumption 2 is used to extend the following theorem to non-polynomial kernel hq (in particular, it
is trivially verified for polynomial kernels by taking v larger than the degree of hq). This assumption
is difficult to check in practice, however we provide some examples where it holds in Appendix C.2.

Recall that we denoted L2(Qd,CycLocq) the space of functions that are given by the convolution of
a function g : Rq → R with the image x ∈ Qd, i.e., f(x) =

∑
k∈[d] g(x(k)).
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Theorem 8 (Test error of CK with GP in high dimension). Let {fd ∈ L2(Qd,CycLocq)}q≥1 be a
sequence of convolutional functions. Assume qs−1+δ ≤ n ≤ qs−δ for some δ > 0 and let {hq}q≥1 be
a sequence of activation functions satisfying Assumptions 1 and 2 at level s. Consider {HCK,d

GP }q≥1 the
sequence of convolutional kernels with global pooling associated to {hq}q≥1 as defined in Eq. (47).
Then the solution f̂λ of KRR with kernels {HCK,d

GP }q≥1 verifies Eq. (46) with λeff := λ+ hq,>s(1).

The proof of Theorem 8 is deferred to Section C.5.

The predictions of Theorem 8 are similar to the ones of Theorem 7 but with a factor d gain in statistical
efficiency: this is due to the eigenvalues of HCK

GP being a factor d larger than for HCK. Therefore, with
global average pooling, for qs−1 � n� qs, KRR fits at least a degree-(s− 1) invariant polynomial
approximation to f? and at most a degree-s invariant polynomial approximation. As n increases from
qs−1 to qs, KRR first degree-s invariant homogeneous polynomials with increasing diameter γ(S).

Test error of CK with local average pooling: In the case of local average pooling with ω < d, the
eigenvalues are harder to control. Indeed, we have mixing of the eigenvalues between polynomials
of different degree: there exists j, j′ ∈ [d] such that ξq,`κj � ξq,`+1κj′ . The eigenvalues are not
ordered in increasing degree of their associated eigenfunctions anymore. While this case is potentially
tractable with a more careful analysis, we instead introduce a simplified kernel which we believe
qualitatively captures the statistical behavior of local average pooling.

Assume q ≤ ω/2 and ω is a divisor of d. Denote x(kω) = (xkω+1, . . . , xkω+ω) the k-th segment
of length ω in [d] and x(kω)

(i) = (xkω+i, . . . , xkω+q+i) the patch of size q with cyclic convention in
{kω + 1, . . . , kω + ω}. Consider the following convolutional kernel with ‘non-overlapping’ average
pooling:

HCK,NO
ω (x,y) =

1

ω

∑
k∈[d/ω]

∑
i,j∈[ω]

hq
(
〈x(kω)

(i) ,y
(kω)
(j) 〉/q

)
, (48)

In words, HCK,NO
ω is the combination of d/ω non-overlapping convolutional kernels with global

average pooling on images of size ω:

HCK,NO
ω =

∑
k∈[d/ω]

HCK
GP

(
x(kω),y(kω)

)
=

q∑
`=0

ξq,`
∑

k∈[d/ω]

∑
S∈C`

ψk,S(x)ψk,S(y) ,

(49)

where ψk,S(x) = 1√
ω

∑
i∈[ω] Yi+S(x(kω)) where i+ S is the translated set with cyclic convention

in [ω].

Denote L2(Qd,LocCycLocq) the RKHS associated to HCK,NO
ω , which contains functions that are

locally convolutions on segments of size ω. For this simplified model, the proof of Theorem 8 can be
easily adapted and we obtain the following result:

Corollary 1 (Test error of CK with NO pooling in high dimension). Let {fd ∈
L2(Qd,LocCycLocq)}q≥1 be a sequence of local convolutional functions. Assume (d/ω) ·qs−1+δ ≤
n ≤ (d/ω) · qs−δ for some δ > 0 and let {hq}q≥1 be a sequence of activation functions satisfying
Assumptions 1 and 2 at level s. Consider {HCK,NO,d

ω }q≥1 the sequence of convolutional kernels with
non-overlapping pooling associated to {hq}q≥1 as defined in Eq. (48). Then the solution f̂λ of KRR
with kernels {HCK,NO,d

ω }q≥1 verifies Eq. (46) with λeff := λ+ d
ωhq,>s(1).

Corollary 1 shows that HCK,NO
ω enjoys a factor ω gain in statistical efficiency compared to HCK, due

to a factor ω smaller effective ridge regularization. Therefore, with (non-overlapping) local average
pooling, for (d/ω) · qs−1 � n� (d/ω) · qs, KRR fits degree-(s− 1) locally invariant polynomials
and none of the polynomials of degree-(s + 1) and larger. Heuristically, we see that this yields the
same statistical efficiency than HCK for ω = 1 and HCK

GP for ω = d, and interpolates between the two
cases for 1 < ω < d.
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Test error of convolutional kernels with downsampling: We consider adding a downsampling
operation to the previous kernels. Let ∆ be a constant and a divisor of d and ω and consider the
following ‘downsampled’ kernels:

HCK
∆ (x,y) = ∆

∑
k∈[d/∆]

h
(
〈x(k∆),y(k∆)〉/q

)
, (50)

HCK
GP,∆(x,y) =

∆

d

∑
k,k′∈[d/∆]

h
(
〈x(k∆),y(k′∆)〉/q

)
, (51)

HCK,NO
ω,∆ (x,y) =

∑
k∈[d/ω]

HCK
GP,∆

(
x(kω),y(kω)

)
. (52)

We can easily adapt the proofs of Theorems 7 and 8, and Corollary 1 to these kernels. In particular,
their conclusions do not change (for any constant ∆) and downsampling do not provide a statistical
advantage.

C.2 Checking the assumptions

In this section, we discuss Assumptions 1 and 2 and present sufficient conditions for them to be
verified.

Genericity assumption: Recall that the inner-product kernel hq : R → R has the following
eigendecomposition on Qq as

hq
(
〈u,v〉/q

)
=

q∑
`=0

ξq,`
∑

S⊆[q],|S|=`

YS(u)YS(v) .

The genericity assumption amounts to: 1) A universality condition in Eqs. (42) and (43): if
Pkh(〈1, ·〉/q) = 0, then h does not learn degree-k homogeneous polynomials; 2) A constant
order scaling of the self-induced regularization hq,>s(1), from hq(1) ≤ C and Eq. (43) with s′, i.e.,
hq,>s(1) ≤ hq(1) = Oq(1) and hq,>s(1) ≥ ξq,s′B(q, s′) = Ωq(1); 3) The last eigenvalues decay
sufficiently fast in Eq. (44) in order to avoid pathological cases.

For generic kernels, we have typically ξq,` � q−` (for fix `). For example, if h is smooth, ξq,` =

q−`(h(k)(0) + oq(1)) and it is sufficient to have h(k)(0) > 0. See Appendix D.2 in [38] for a proof
of Eq. (44) when h is sufficiently smooth.

Below, we present instead sufficient conditions on the activation σ such that the induced neural tangent
kernel verifies the ‘genericity’ assumption. More precisely, we display sufficient conditions on the
sequence {σq}q≥1 of activation functions σq : R→ R, such that the induced neural tangent kernels
{hq}q≥1 verifies Assumption 1, where hq was derived in Section A.2 and is given by (u,v ∈ Qq)

hq(〈u,v〉/q) := h(1)
q (〈u,v〉/q) + h(2)

q (〈u,v〉/q) , (53)

where

h(1)
q (〈u,v〉/q) = Ew∼Unif(Qq)

[
σq(〈u,w〉/

√
q)σq(〈v,w〉/

√
q)
]
, (54)

h(2)
q (〈u,v〉/np.sqrt(q)) = Ew∼Unif(Qq)

[
σ′q(〈u,w〉/

√
q)σ′q(〈v,w〉/

√
q)〈u,v〉

]
/q . (55)

Assumption 3 (Assumptions on {σq}q≥1 at level s ∈ N). For {σq}q≥1 a sequence of functions
σq : R → R, we assume the following conditions to hold. There exists s′ ≥ 1/δ + 2s + 3 where
δ > 0 verifies q ≥ dδ , such that

(a) The function σq is differentiable and there exists c0 > 0 and c1 < 1 independent of q, such
that |σq(x)|, |σ′q(x)| ≤ c0 exp(c1x

2/2).

(b) We have

min
k≤s−1

qs−1−k‖Pkσq(〈e, ·〉/
√
q)‖L2(Qq) =Ωq(1) , (56)

min
k∈{s,s+1,s′}

‖Pkσq(〈e, ·〉/
√
q)‖L2(Qq) =Ωq(1) , (57)

where e ∈ Qq is arbitrary.
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(c) We have for a fixed δ > 0

max
k=0,...,s′

qs
′−k+1‖Pkσq(〈e, ·〉/

√
q)‖L2(Qq) = Oq(1) , (58)

max
k=0,...,s′

qs
′−k+1‖Pkσ′q(〈e, ·〉/

√
q)‖L2(Qq) = Oq(1) . (59)

Proposition 6. Consider a sequence {σq}q≥1 of activation functions σq : R → R that satisfies
Assumption 3. Let {hq}q≥1 be the sequence of neural tangent kernels associated to {σq}q≥1 as
defined in Eq. (53). Then the sequence {hq}q≥1 satisfies the ‘genericity’ Assumption 1.

Differentiability assumption: As mentioned in the previous section, this condition is required in
our proof technique to extend Theorem 8 to non-polynomial kernel functions. While we believe
that weaker conditions should be sufficient, we leave checking them to future work. Note that
Assumption 2 was proved for x ∼ Unif(Sd−1(

√
d)) and hq(〈x,y〉/q) = Ew{σ(〈x,w〉)σ(〈y,w〉)}

for w ∼ Unif(Sd−1(1)), given that σ satisfies some differentiability conditions, in [39].

C.3 Proof of Proposition 6

Proof of Proposition 6. Step 1. Effective activation function.

Let us decompose both functions σq and σ′q in the Gegenbauer polynomial on the hypercube basis:

σq(〈u,v〉/
√
q) =

q∑
`=0

χq,`B(Qq; `)Q
(q)
` (〈u,v〉) , (60)

σ′q(〈u,v〉/
√
q) =

q∑
`=0

κq,`B(Qq; `)Q
(q)
` (〈u,v〉) , (61)

where we recall B(Qq; `) =
(
d
`

)
and (for e ∈ Qq arbitrary)

χq,`(σq) = Eu∼Unif(Qq)

[
σq(〈u, e〉/

√
q)Q

(q)
` (〈u, e〉)

]
,

κq,`(σ
′
q) = Eu∼Unif(Qq)

[
σ′q(〈u, e〉/

√
q)Q

(q)
` (〈u, e〉)

]
.

From the definition of h(1)
q in Eq. (54) and the eigendecomposition (60), we have

h(1)
q (〈u,v〉/q) =

q∑
`=0

χ2
q,`B(Qq; `)Q

(q)
` (〈u,v〉).

Similarly, from the definition of h(2)
q in Eq. (55), the eigendecomposition (61) and using Lemma 1

stated below, we get

h(2)
q (〈u,v〉/q) =

q∑
`=0

κ2
q,`B(Qq; `)Q

(q)
` (〈u,v〉)〈u,v〉/q =

q∑
`=0

ζ2
q,`B(Qq; `)Q

(q)
` (〈u,v〉),

where
ζ2
q,` =

`

q
κ2
q,`−1 +

q − `
q

κ2
q,`+1. (62)

We can therefore define πq,` =
√
χ2
q,` + ζ2

q,` and σeff,q(〈·, ·〉/
√
q) : Qq ×Qq → R by

σeff,q(〈u,v〉/
√
q) =

q∑
`=0

πq,`B(Qq; `)Q
(q)
` (〈u,v〉),

such that the NT kernel (53) can be written as the kernel of the effective activation σeff,q:

hq(〈u,v〉/q) = Eθ∼Unif(Qd)

[
σeff,q(〈u,θ〉/

√
q)σeff,q(〈y(k),θ〉/

√
q)
]

=

q∑
`=0

π2
q,`B(Qq; `)Q

(q)
` (〈u,v〉) .

(63)
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We will show that hq with Gegenbauer coefficients ξq,` := π2
q,` verifies Assumption 1.

Step 2. Decay of the eigenvalues.

Recall that the sequence {σq}q≥1 satisfies Assumption 3 at level s. From Assumption 3.(a) (for
example by adapting the proof of Lemma C.1 in [24] to the hypercube), there exists C > 0 such that

hq(1) = ‖σeff,q‖2L2(Qq) = h(1)
q (1) + h(2)

q (1) = ‖σq‖2L2(Qq) + ‖σ′q‖2L2(Qq) ≤ C,

and we deduce that χ2
q,`, κ

2
q,`, π

2
q,` = Oq(B(Qq; `)−1). Using that B(Qq; `) =

(
q
`

)
, we deduce

that for any fixed `, χ2
q,`, κ

2
q,`, π

2
q,` = Oq(q

−`). Furthermore, from Assumption 3.(c), we have for
k = 0, . . . , s′ + 1,

χ2
q,q−k = B(Qq; q − k)−1‖Pq−kσq‖2L2(Qq) = Oq(q

−s′−1) ,

κ2
q,q−k = B(Qq; q − k)−1‖Pq−kσ′q‖2L2(Qq) = Oq(q

−s′−1) ,

By Eq. (62) and the definition of π2
q,`, we have π2

q,q−k = Od(q
−s′−1) for any k ≤ s′, which verifies

Eq. (44) in Assumption 1.

Furthermore, by Assumption 3.(b), using that χ2
q,k = B(Qq; k)−1‖Pkσq‖2L2(Qq) and ξ2

q,k ≥ χ2
q,k,

we get
min
k≤s−1

ξ2
q,k = Ωq(q

−s+1),

and
ξ2
q,s = Ωq(q

−s), ξ2
q,s+1 = Ωq(q

−s−1), ξ2
q,`′ = Ωq(q

−`′).

In particular, this implies that ‖σeff,d,>s‖2L2(Qq) ≥ ‖Ps′σq‖2L2(Qq) = Ωq(1).

Lemma 1. Let ` be an integer such that 0 ≤ ` ≤ q. Consider the following Gegenbauer polynomial
defined on the q-dimensional hypercube (see Section D): for x,y ∈ Qq ,

Q
(q)
` (〈x,y〉) =

1

B(Qq; `)

∑
S⊂[q],|S|=`

YS(x)YS(y),

where we recall the definition of the homogeneous polynomial YS(x) = xS =
∏
i∈S xi. We have

Q
(q)
` (〈x,y〉)〈x,y〉/q =

`

q
Q

(q)
`−1(〈x,y〉) +

q − `
q

Q
(q)
`+1(〈x,y〉),

with the convention Q(q)
−1 = Q

(q)
q+1 = 0.

Proof of Lemma 1. Consider 1 ≤ ` ≤ q − 1. We have

Q
(q)
` (〈x,y〉)〈x,y〉/q =

1

qB(Qq; `)

∑
S⊂[q],|S|=`

∑
i∈[q]

YS(x)xi · YS(y)yi.

We have YS(x)xi = YS∪{i}(x) if i 6∈ S, and YS(x)xi = YS\{i}(x) if i ∈ S. Hence, the above sum
contains sets of size ` − 1 and ` + 1. For each set S ⊂ [q] with |S| = ` − 1, there q + 1 − ` sets
|S̃| = `, such that by removing one element we can obtain S. For each set S ⊂ [q] with |S| = `+ 1,
there `+ 1 sets |S̃| = `, such that by adding one element we can obtain S.

We deduce that

Q
(q)
` (〈x,y〉)〈x,y〉/q

=
q + 1− `
qB(Qq; `)

∑
S⊂[q],|S|=`−1

YS(x)YS(y) +
`+ 1

qB(Qq; `)

∑
S⊂[q],|S|=`+1

YS(x)YS(y).

Using B(Qq; `) =
(
q
`

)
, we obtain

Q
(q)
` (〈x,y〉)〈x,y〉/q =

`

q
Q

(q)
`−1(〈x,y〉) +

q − `
q

Q
(q)
`+1(〈x,y〉).

The cases ` = 0 and ` = q are straightforward.
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C.4 Proof of Theorem 7

Let {d(q)}q≥1 be a sequence of integers with 2q ≤ d(q) ≤ q1/δ for some δ > 0. We will denote
d = d(q) for simplicity. Consider x ∼ Unif(Qd), dqs−1+δ ≤ n ≤ dqs−δ for some δ > 0 and a
sequence of inner-product kernels {hq}q≥1 that satisfies Assumption 1 at level s. We consider the
vanilla one-layer convolutional kernel

HCK,d(x,y) =
1

d

d∑
k=1

hq(〈x(k),y(k)〉/q).

Theorem 7 is a consequence of Theorem 4 in [38] where we take Xd = Qd, νd = Unif(Xd) and
Dd = L2(Qd,Locq) ⊂ L2(Qd). The proof amounts to checking that {HCK,d}q≥1 verifies the kernel
concentration properties and eigenvalue condition (see Section 3.2 in [38]). We borrow some of the
notations introduced in [38] and we refer the reader to their Section 2.1.

Proof of Theorem 7. Step 1. Diagonalization of the kernel and choosing m = m(q).

From Proposition 1, we have the following diagonalization of HCK,d:

Hd(x,y) := HCK,d(x,y) =
1

d

q∑
`=0

∑
S∈E`

ξq,`r(S) · YS(x)YS(y),

where r(∅) = d and r(S) = q + 1− γ(S) for S ⊂ [q] \ {∅}, and we recall E` = {S ⊆ [d] : |S| =
`, γ(S) ≤ q}. Using that B(Qq; `) = Θq(q

`), ξq,`B(Qq; `) ≤ hq(1) and Assumption 1, we have

min
`≤s−1

ξq,` = Ωq(q
−s+1), ξq,s = Θq(q

−s),

ξq,s+1 = Θq(q
−s−1), sup

`≥s+2
ξq,` = Oq(q

−s−2).
(64)

Further define E`,h = {S ∈ E` : γ(S) = h} for h = `, . . . , q. It is easy to check that |E`,h| = d
(
h−2
`−2

)
and

|E`| =
q∑
h=`

|E`,h| = d

q∑
h=`

(
h− 2

`− 2

)
= d

(
q − 1

`− 1

)
,

and therefore |E`| = Θq(d · q`−1).

Denote {λq,j}j≥1 the eigenvalues {ξq,`r(S)/d}`=0,...,q;S∈E` in nonincreasing order, and {ψq,j}j≥1

the reordered eigenfunctions. Set m to be the number of eigenvalues such that λq,j > qξq,s+1/d
(recall qξq,s+1 = Θd(q

−s)). Denote α = qξq,s+1/ξq,s. From the bounds (64) on ξq,s+1 and ξq,s, we
have α = Θq(1). Denote α̃ = q + 1− α and Es,≥α̃ = {S ∈ Es : γ(S) ≥ α̃} and Es,<α̃ = Es \ Es,≥α̃.
Using Eq. (64) and that 1 ≤ r(S) ≤ q, we have {λd,j}j∈[m] that contains exactly the eigenvalues
associated to homogeneous polynomials of degree less or equal to s−1 and of degree s with S ∈ Es,<α̃
(which corresponds to the sets S such that r(S) > α, i.e., ξq,sr(S) > qξq,s+1). In particular, if
α < 1, then {λd,j}j∈[m] contains exactly the eigenvalues associated to all homogeneous polynomials
of degree less or equal to s.

Note that we have

m ≤
s∑

`=0

|E`| = Oq(dq
s−1) = Oq(q

−δn). (65)

Step 2. Diagonal elements of the truncated kernel.

Define the truncated kernel Hd,>m to be

Hd,>m(x,y) =
∑

j≥m+1

λq,jψq,j(x)ψd,j(y)

=
ξq,s
d

∑
S∈Es,≥α̃

r(S) · YS(x)YS(y) +
1

d

q∑
`=s+1

ξq,`
∑
S∈E`

r(S) · YS(x)YS(y).
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The diagonal elements of the truncated kernel are given by: for any x ∈ Qd,

Hd,>m(x,x) =
ξq,s
d

∑
S∈Es,≥α̃

r(S) +
1

d

q∑
`=s+1

ξq,`
∑
S∈E`

r(S) = Tr(Hd,>m). (66)

Notice that∑
S∈E`

r(S) =

q∑
h=`

(q + 1− h)|E`,h| = d

q∑
h=`

(q + 1− h)

(
h− 2

`− 2

)
= d

(
q

`

)
= dB(Qq; `),

∑
S∈Es,≥α̃

r(S) ≤ α
q∑

h=q+1−α

|Es,h| ≤ dα2

(
q − 2

s− 2

)
= Od(dq

s−2).

Hence using that ξq,s = Od(q
−s), we have

Tr(Hd,>m) =
ξq,s
d

∑
S∈Es,≥α̃

r(S) +

q∑
`=s+1

ξq,`B(Qq; `) = hq,>s(1) + oq,P(1),

where hq,>s is the inner-product kernel with the (s + 1)-first Gegenbauer coefficients set to zero,
i.e., hq,>s(〈u,v〉/q) =

∑q
`=s+1 ξq,`B(Qq; `)Q

(q)
` (〈u,v〉), for any u,v ∈ Qq. From Assumption

1 at level s, we have Ωq(1) = ξq,`′B(Qq; `′) ≤ hq,>s(1) ≤ hq(1) = Oq(1). Hence, Tr(Hd,>m) =
Θd(1).

Similarly,

Ex′ [Hd,>m(x,x′)2] =
ξ2
q,s

d

∑
S∈Es,≥α̃

r(S)2 +
1

d

q∑
`=s+1

ξ2
q,`

∑
S∈E`

r(S)2 = Tr(H2
d,>m). (67)

Step 3. Choosing the sequence u = u(d).

Let s′ be chosen as in Assumption 1, i.e., such that ξq,s′B(Qq; s′) = Ωq(1). We have

ξq,s′ = Θq(q
−s′), sup

`≥s′+1
ξq,` = Oq(q

−s′−1). (68)

Set u = u(d) to be the number of eigenvalues such that λq,j > qξq,s′/d = Θq(q
−s′+1/d). From

Eqs. (64) and (68), and recalling that 1 ≤ r(S) ≤ q, we deduce that {λd,j}j∈[u] must contain all the
eigenvalues associated to homogeneous polynomials of degree less or equal to ` and does not contain
any of the eigenvalues associated to homogeneous polynomials of degree larger or equal to s′.

We have
Tr(Hd,>u) =

∑
j>u

λq,j ≤ Tr(Hd,>m) = Oq(1),

Tr(Hd,>u) ≥ ξq,s′

d

∑
S∈Es′

r(S) = ξq,s′B(Qq; s′) = Ωq(1).

Similarly, we have

Tr(H2
d,>u) =

∑
j>u

λ2
q,j ≤ Tr(Hd,>u) · sup

j>m
λd,j = qd−1ξq,s′Tr(Hd,>m) = Oq(d

−1q−s
′+1),

Tr(H2
d,>u) ≥

ξ2
q,s′

d2

∑
S∈Es′

r(S)2 ≥ d−1ξ2
q,s′B(Qq; s′) = Ωq(d

−1q−s
′
).

Finally,
Tr(H4

d,>u) =
∑
j>u

λ4
d,j ≤ d−3q3ξ3

q,s′Tr(Hd,>m) = Oq(d
−3q−3`′+3).

Step 4. Checking the kernel concentration property at level {(n(q),m(q))}q≥1.

Let us check the kernel concentration property at level (n,m) with the sequence of integers {u(q)}q≥1

defined in the previous step (Assumption 4 in [38]):
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(a) (Hypercontractivity of finite eigenspaces) The subspace spanned by the top eigenvectors
{ψq,j}j∈[u] is contained in the subspace of polynomials of degree less or equal to s′ − 1 on
the hypercube. The hypercontractivity of this subspace is a consequence of a classical result
due to Beckner, Bonami and Gross (see Lemma 4 in Section D).

(b) (Properly decaying eigenvalues.) From step 3 and recalling that s′ ≥ 1/δ + 2s + 3 where
δ > 0 verifies q ≥ dδ , we have

Tr(Hd,>u)2

Tr(H2
d,>u)

= Ωq(1) · dqs
′−1 = Ωq(1) · d2q2s+1 ≥ n2+δ′ ,

for δ′ > 0 sufficiently small. Similarly,

Tr(H2
d,>u)2

Tr(H4
d,>u)

= Ωq(1) · dqs
′−3 = Ωq(1) · d2q2s ≥ n2+δ′ ,

for δ′ > 0 chosen sufficiently small.

(c) (Concentration of the diagonal elements of the kernel) From Eqs. (66) and (67), the diagonal
elements of the kernel are constant and the assumption is automatically verified.

Step 5. Checking the eigenvalue condition at level {(n(q),m(q))}q≥1.

Let us now check the eigenvalue condition at level {(n(q),m(q))}q≥1 which corresponds to Assump-
tion 5 in [38]):

(a) First notice that

∑
S∈Es+1

r(S)2 = d

q∑
h=s+1

(q + 1− h)2

(
h− 1

s− 1

)
≥ d

bq/2c∑
h=s+1

(q + 1− h)2

(
h− 1

s− 1

)

≥ dq2

4

bq/2c∑
h=s+1

(
h− 1

s− 1

)
=
dq2

4

(
bq/2c
s

)
= Ωq(1) · dq2+s.

(69)

Hence
Tr(H2

d,>m)

λ2
d,m+1

≥
∑
S∈Es+1

ξ2
d,s+1r(S)2

q2ξ2
d,s+1

= Ωq(1) · dqs ≥ n1+δ,

for δ > 0 sufficiently small. Similarly,

Tr(Hd,>m)

λd,m+1
= Ωq(1) · d

qξd,s+1
= Ωd(1) · dqs ≥ n1+δ.

(b) This is a direct consequence of Eq. (65).

We can therefore apply Theorem 4 in [38], which concludes the proof.

C.5 Proof of Theorem 8

Consider qs−1+δ ≤ n ≤ qs−δ for some δ > 0 and a sequence of inner-product kernels {hq}q≥1 that
satisfies Assumptions 1 and 2 at level s. We consider the one-layer convolutional kernel with global
average pooling

HCK,d
GP (x,y) =

1

d

d∑
k,k′=1

hq
(
〈x(k),y(k′)〉/q

)
.

Again, the proof of Theorem 8 will amount to checking that the conditions of Theorem 4 in [38] hold.

For the sake of simplicity, we will further assume that ξq,s > qξq,s+1, which simplifies some of
the computation. This condition can be removed as in Theorem 7, by considering the set Cs,<α̃ =
{S ∈ Cs : γ(S) < α̃} and showing that the extra terms corresponding to these eigenfunctions are
negligible.
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Proof of Theorem 8. Step 1. Diagonalization of the kernel and choosing m = m(q).

From Proposition 2 with ω = d, we have the following diagonalization of Hd
d,q:

Hd(x,y) := HCK,d
GP (x,y) =

q∑
`=0

∑
S∈C`

ξq,`r(S) · ψS(x)ψS(y),

where we recall ψS(x) = 1√
d

∑
k∈[d] Yk+S(x) and that C` is the quotient space of E` with the

translation equivalence relation. It is easy to check that |C`| =
(
q−1
`−1

)
.

From Assumption 1, we get the same bounds on the Gegenbauer coefficients ξq,` as Eq. (64) in the
proof of Theorem 7. Denote {λq,j}j≥1 the eigenvalues {ξq,`r(S)}`=0,...,q;S∈E` in nonincreasing
order, and {ψq,j}j≥1 the reordered eigenfunctions. Set m to be the number of eigenvalues such
that λq,j > qξq,s+1 (recall qξq,s+1 = Θd(q

−s)). From the bounds (64) and our simplifying assump-
tion that ξq,s > qξq,s+1, we have {λd,j}j∈[m] that contains exactly the eigenvalues associated to
homogeneous polynomials of degree less or equal to s.

Note that we have

m =

s∑
`=0

|C`| = Oq(q
s−1) = Oq(q

−δn). (70)

Step 2. Diagonal elements of the truncated kernel.

Define the truncated kernel Hd,>m to be

Hd,>m(x,y) =
∑

j≥m+1

λd,jψd,j(x)ψd,j(y) =

q∑
`=s+1

∑
S∈C`

ξq,`r(S) · ψS(x)ψS(y).

The diagonal elements of the truncated kernel are given by: for any x ∈ Qd,

Hd,>m(x,x) =

q∑
`=s+1

ξq,`B(Qq; `)Υ
(q)
` (x),

where
Υ

(q)
` (x) =

1

B(Qq; `)

∑
S∈C`

r(S)ψS(x)2.

Notice that we have now∑
S∈C`

r(S) =

q∑
h=`

(q + 1− h)

(
h− 2

`− 2

)
=

(
q

`

)
= B(Qq; `).

Therefore Ex[Υ
(q)
` (x)] = 1 and

Tr(Hd,>m) = Ex[Hd,>m(x,x)] =

q∑
`=s+1

ξq,`B(Qq; `) = hq,>s(1).

From Proposition 7 with ` = s, we have

sup
i∈[n]

∣∣∣Hd,>m(xi,xi)− Ex[Hd,>m(x,x)]
∣∣∣ = Tr(Hd,>m) · od,P(1),

sup
i∈[n]

∣∣∣Ex′ [Hd,>m(xi,x
′)2]− Ex,x′ [Hd,>m(x,x′)2]

∣∣∣ = Tr(H2
d,>m) · od,P(1).

(71)

Step 3. Choosing the sequence u = u(d).

Let s′ be chosen as in Assumption 1. Similarly to step 3 in the proof of Theorem 7, take u = u(d) to
be the number of eigenvalues such that λq,j > qξq,`′ . We get

Tr(Hd,>u) = Θq(1),

Tr(H2
d,>u) = Oq(q

−s′+1),

Tr(H2
d,>u) = Ωq(q

−`′),

Tr(H4
d,>u) = Oq(q

−3s′+3).
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Step 4. Checking the kernel concentration property at level {(n(q),m(q))}q≥1.

The kernel concentration property at level (n,m) hold with the sequence {u(q)}q≥1 as defined in step
3. The hypercontractivity of finite eigenspaces and the properly decaying eigenvalues are obtained as
in step 4 of the proof of Theorem 7, while the concentration of the diagonal elements of the kernel is
given by Eq. (71).

Step 5. Checking the eigenvalue condition at level {(n(q),m(q))}q≥1.

This is obtained similarly as in step 5 of the proof of Theorem 7.

C.6 Auxiliary results

Proposition 7. Let s ≥ 1 be a fixed integer. Assume that the sequence of inner-product kernels
{hq}q≥1 satisfies Assumptions 1 and 2 at level s. Define H>s

d : Qd ×Qd → R as the convolutional
kernel with global average pooling

H>s
d (x,y) =

1

d

∑
k,k′∈[d]

hq,>s(〈x(k),y(k′)〉/q),

where hq,>s is the inner-product kernel where the s + 1 first Gegenbauer coefficients are set to 0.

Then for n = Oq(q
p) for some fixed p, letting (xi)i∈[n] ∼ Unif(Qd), we have

sup
i∈[n]

∣∣∣H>s
d (xi,xi)− Ex[H>s

d (x,x)]
∣∣∣ = Ex[H>s

d (x,x)] · od,P(1), (72)

sup
i∈[n]

∣∣∣Ex′ [H>s
d (xi,x

′)2]− Ex,x′ [H>s
d (x,x′)2]

∣∣∣ = Ex,x′ [H>s
d (x,x′)2] · od,P(1). (73)

Proof of Proposition 7. Step 1. Bounding supi∈[n]

∣∣∣H>s
d (xi,xi)− Ex[H>s

d (x,x)]
∣∣∣.

Recall that we defined
Υ

(q)
` (x) =

1

B(Qq; `)

∑
S∈C`

r(S)ψS(x)2.

Following the same proof as Proposition 8 in [39], notice that for the integer v in Assumption 2, by
Lemma 2 stated below, we have

sup
i∈[n]

∣∣∣H>s
d (xi,xi)− Ex[H>s

d (x,x)]
∣∣∣

≤ sup
i∈[n]

∣∣∣H>v
d (xi,xi)− Ex[H>v

d (x,x)]
∣∣∣+

v∑
`=s+1

ξq,`B(Qq; `) ·max
i∈[n]

∣∣∣Υ(d)
` (xi)− Ex[Υ

(d)
` (x)]

∣∣∣
= sup

i∈[n]

∣∣∣H>v
d (xi,xi)− Ex[H>v

d (x,x)]
∣∣∣+

(
v∑

`=s+1

ξq,`B(Qq; `)

)
· od,P(1).

By Assumption 2, there exists C > 0 such that for any γ ∈ [−1, 1],∣∣∣hq,>v(γ)−
v∑
r=0

1

r!
h

(r)
q,>v(0)γr

∣∣∣ ≤ C · |γ|v+1, (74)

and |h(r)
q,>v(0)| ≤ Cq−(v+1−r)/2 for r ≤ v. Moreover, by Hanson-Wright inequality as in Lemma 3,

using n = Oq(q
p) (at most polynomial in q) and a union bound, we have for any η > 0,

sup
1≤r≤v+1

sup
k 6=l

sup
i∈[n]

∣∣∣〈(xi)(k), (xi)(l)〉r
∣∣∣ · q−k/2−η = oq,P(1),

sup
1≤r≤v+1

sup
k 6=l

E
[∣∣∣〈x(k),x(l)〉r

∣∣∣] · q−k/2−η = oq,P(1).
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Therefore, injecting these bounds in Eq. (74), we get

sup
k 6=l

sup
i∈[n]

∣∣∣hq,>v(〈(xi)(k), (xi)(l)〉/q)
∣∣∣ = Oq,P(q−(v+1)/2+η),

sup
k 6=l

E
[∣∣∣hq,>v(〈x(k),x(l)〉/q)

∣∣∣] = Oq,P(q−(v+1)/2+η).

Hence, we deduce that

sup
i∈[n]

∣∣∣H>v
d (xi,xi)− Ex[H>v

d (x,x)]
∣∣∣

≤ 1

d

∑
k 6=l∈[d]

sup
i∈[n]

∣∣∣hq,>v(〈(xi)(k), (xi)(l)〉/q)− Ex[hq,>v(〈x(k),x(l)〉/q)]
∣∣∣

≤ d sup
k 6=l

{
sup
i∈[n]

∣∣∣hq,>v(〈(xi)(k), (xi)(l)〉/q)
∣∣∣+ E

[∣∣∣hq,>v(〈x(k),x(l)〉/q)
∣∣∣]}

= Oq,P(dq−(v+1)/2+η) = od,P(1).

Furthermore, recall that by Assumption 1, we have E[H>`d (x,x)] ≥ ξq,s′B(Qq; s′) = Ωq(1). We get

sup
i∈[n]

∣∣∣H>v
d (xi,xi)− Ex[H>v

d (x,x)]
∣∣∣ = E[H>`d (x,x)] · oq,P(1),

which concludes the proof of the first bound.

Step 2. Bounding supi∈[n]

∣∣∣Ex′ [H>s
d (xi,x

′)2]− Ex,x′ [H>s
d (x,x′)2]

∣∣∣.
Notice that we can write,

Ex′ [H>s
d (x,x′)2] =

q∑
`=s+1

ξ2
q,`R` · Ξ

(d)
` (x),

where we denoted R` =
∑
S∈C` r(S)2 and

Ξ
(d)
` (x) =

1

R`

∑
S∈C`

r(S)2ψS(x)2.

Then, by Lemma 2, we get for any u ≥ s,

sup
i∈[n]

∣∣∣Ex′ [H>s
d (xi,x

′)2]− Ex,x′ [H>s
d (x,x′)2]

∣∣∣
≤ sup

i∈[n]

∣∣∣Ex′ [H>u
d (xi,x

′)2]− Ex,x′ [H>u
d (x,x′)2]

∣∣∣+

u∑
`=s+1

ξ2
q,`R` ·max

i∈[n]

∣∣∣Ξ(d)
` (xi)− Ex[Ξ

(d)
` (x)]

∣∣∣
= sup

i∈[n]

∣∣∣Ex′ [H>u
d (xi,x

′)2]− Ex,x′ [H>u
d (x,x′)2]

∣∣∣+

(
u∑

`=s+1

ξ2
q,`R`

)
· od,P(1).

We conclude following the same argument as in the proof of Proposition 9 in [39].

Lemma 2. Let ` ≥ 2 be an integer. Define Υ
(d)
` : Qd → R and Ξ

(d)
` : Qd → R to be

Υ
(d)
` (x) =

1

B(Qq; `)

∑
S∈C`

r(S)ψS(x)2, (75)

Ξ
(d)
` (x) =

1

R`

∑
S∈C`

r(S)2ψS(x)2, (76)

where R` =
∑
S∈C` r(S)2.
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Let n ≤ qp for some fixed p. Then, for (xi)i∈[n]
i.i.d.∼ Unif(Qd), we have

max
i∈[n]

∣∣∣Υ(d)
` (xi)− Ex[Υ

(d)
` (x)]

∣∣∣ = od,P(1), (77)

max
i∈[n]

∣∣∣Ξ(d)
` (xi)− Ex[Ξ

(d)
` (x)]

∣∣∣ = od,P(1), (78)

where Eθ[Υ
(d)
` (θ)] = Ex[Ξ

(d)
` (x)] = 1.

Proof of Lemma 2. Step 1. Bounding maxi∈[n]

∣∣∣Υ(d)
` (xi)− Ex[Υ

(d)
` (x)]

∣∣∣.
Define F` : Qd → R to be

F`(x) = Υ
(d)
` (x)− Ex[Υ

(d)
` (x)] =

1

dB(Qq; `)

∑
S∈C`

r(S)
∑

i 6=j∈[d]

Yi+S(x)Yj+S(x). (79)

Notice that F`(x) is a degree 2` polynomial and therefore satisfies the hypercontractivity property.
For any m ≥ 1, there exists C > 0 such that

Ex[F`(x)2m]1/(2m) ≤ C · Ex[F`(x)2]1/2. (80)

Let us bound the right hand side. We have

E[F`(x)2] =
1

d2B(Qq; `)2

∑
S,S′∈C`

r(S)r(S′)
∑

i,j,i′,j′∈[d]

ω(B1, B2, B3, B4),

where B1 = i+ S, B2 = j + S, B3 = i′ + S′ and B4 = j′ + S′, and we denoted

ω(B1, B2, B3, B4) = Ex
[
YB1

(x)YB2
(x)YB3

(x)YB4
(x)
]
1B1 6=B2

1B3 6=B4
.

Notice that ω(B1, B2, B3, B4) = 1 ifB1∆B2 = B3∆B4 (the symmetric difference) and 0 otherwise.
In other words, every elements in B1 ∪B2 ∪B3 ∪B4 appears exactly in 2 or 4 of these sets.

Let us fix i ∈ [d] and S ∈ C`, and bound∑
S′∈Cq,`

r(S′)
∑

j,i′ 6=j′∈[d]

ω(B1, B2, B3, B4). (81)

Denote |B1∆B2| = 2k with 1 ≤ k ≤ `. In order for ω(B1, B2, B3, B4) = 1, B3 must contain
exactly k points in B1∆B2 while B4 must contain the remaining k points.

• Case k < `. There are at most `2 ways of choosing j such that B1 ∩B2 6= ∅. Fixing j (i.e.,
B1 and B2) and S′, then there are 2k` ways of choosing i′ and 2k` ways of choosing j′
such that B3 ∩ (B1∆B2) 6= ∅ and B4 ∩ (B1∆B2) 6= ∅. Hence the contribution of these
terms in Eq. (81) is upper bounded by

∑
S′∈C`

r(S′)

`−1∑
k=1

`2 · (2k`)2 ≤ 4`7
∑
S′∈C`

r(S′) = 4`7B(Qq; `). (82)

• Case k = `. There are at most d ways of choosing j. Furthermore, for j fixed, there
are at most

(
2`
`

)
ways of choosing B3 and B4 such that B3 ∪ B4 = B1 ∪ B2 (note that

B1 ∩B2 = ∅ and therefore B3 ∩B4 = ∅). Hence the contribution of these terms in Eq. (81)
is upper bounded by ∑

S′∈C`,i′,j′∈[d]

r(S′) · d · 1B3∪B4=B1∪B2
≤ dq

(
2`

`

)
, (83)

where we used that r(S′) ≤ q.
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Combining Eqs. (82) and (83) and using there are dB(Qq; `) choices for i and S1, we get

E[F`(x)2] ≤ 1

d2B(Qq; `)2

∑
i∈[d],S∈C`

r(S)
[
4`7B(Qq; `) + dq

(
2`

`

)]
= Oq(1) · [d−1 + qB(Qq; `)−1] = Oq(q

−1),

where we used that ` ≥ 2 and B(Qq; `) = Ωq(q
`).

Using Eq. (80), we deduce

E
[

max
i∈[n]
|F`(xi)|

]
≤ E

[
max
i∈[n]

F`(xi)
2m
]1/(2m)

≤ n1/(2m)E
[
F`(xi)

2m
]1/(2m)

≤ Cn1/(2m)E[F`(x)2]1/2 = n1/m ·Oq(q−1/2).

Using Markov’s inequality and taking m sufficiently small yield Eq. (77).

Step 2. Bounding maxi∈[n]

∣∣∣Ξ(d)
` (xi)− Ex[Ξ

(d)
` (x)]

∣∣∣.
The second bound (78) is obtained very similarly. Define G` : Qd → R to be

G`(x) = Ξ
(d)
` (x)− Ex[Ξ

(d)
` (x)] =

1

dR`

∑
S∈C`

r(S)2
∑

i 6=j∈[d]

Yi+S(x)Yj+S(x). (84)

Then, we have

E[G`(x)2] =
1

d2R2
`

∑
S,S′∈C`

r(S)2r(S′)2
∑

i,i′,j,j′∈[d]

ω(B1, B2, B3, B4).

Further notice that following the same computation as in Eq. (69), we get

R` =
∑
S∈C`

r(S)2 =

q∑
h=`

(q + 1− h)2

(
h− 2

`− 2

)
= Ωq(1) · q1+`.

Hence, the same computation as for F` in step 1 yields

E[G`(x)2] ≤ 1

d2R2
`

∑
i∈[d],S∈C`

r(S)2
[
4`7R` + dq2

(
2`

`

)]
= Oq(1) · [d−1 + q2R−1

` ] = Oq(q
−1),

where we used that ` ≥ 2. We deduce Eq. (78) similarly to step 1.

Lemma 3 (Hanson-Wright inequality). There exists a universal constant c > 0, such that for any
t > 0 and q1/δ ≥ d ≥ q ∈ N for some δ > 0, when x ∈ Unif(Qd), we have

P

(
sup

k 6=l∈[d]

|〈x(k),x(l)〉|/q > t

)
≤ 2q2/δ exp{−cq ·min(t2, t)},

where we recall that x(k) = (xk, . . . , xk+q−1).

Proof of Lemma 3. For any k 6= l, denote A = (aij)i,j∈[d] the matrix with a(k+i),(l+i) = 1 for
i = 0, . . . , q − 1 and aij = 0 otherwise, such that 〈x,Ax〉 = 〈x(k),x(l)〉. Note that we have
‖A‖F =

√
q, ‖A‖op ≤ 1 and E[〈x,Ax〉] = 0. By Hanson-Wright inequality of vectors with

independent sub-Gaussian entries (for example, see Theorem 1.1 in [42]), we have

P (|〈x,Ax〉|/q > t) ≤ 2 exp{−cq ·min(t2, t)}.
Taking the union bound over k 6= l concludes the proof.

D Technical background of function spaces on the hypercube

Fourier analysis on the hypercube is a well studied subject [41]. The purpose of this section is to
introduce some notations and objects that are useful in the statement and proofs in the main text.
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D.1 Fourier basis

Denote Qd = {−1,+1}d the hypercube in d dimension, and τd to the uniform probability measure
on Qd. All the functions will be assumed to be elements of L2(Qd, τd) (which contains all the
bounded functions f : Qd → R), with scalar product and norm denoted as 〈·, ·〉L2 and ‖ · ‖L2 :

〈f, g〉L2 ≡
∫

Qd

f(x)g(x)τd(dx) =
1

2n

∑
x∈Qd

f(x)g(x).

Notice that L2(Qd, τd) is a 2n dimensional linear space. By analogy with the spherical case we
decompose L2(Qd, τd) as a direct sum of d+ 1 linear spaces obtained from polynomials of degree
` = 0, . . . , d

L2(Qd, τd) =

d⊕
`=0

Vd,`.

For each ` ∈ {0, . . . , d}, consider the Fourier basis {Y (d)
`,S }S⊆[d],|S|=` of degree `, where for a set

S ⊆ [d], the basis is given by
Y

(d)
`,S (x) ≡ xS ≡

∏
i∈S

xi.

It is easy to verify that (notice that xki = xi if k is odd and xki = 1 if k is even)

〈Y (d)
`,S , Y

(d)
k,S′〉L2 = E[xS × xS

′
] = δ`,kδS,S′ .

Hence {Y (d)
`,S }S⊆[d],|S|=` form an orthonormal basis of Vd,` and

dim(Vd,`) = B(Qd; `) =

(
d

`

)
.

We will omit the superscript (d) in Y (d)
`,S when clear from the context and write YS := Y

(d)
`,S .

We denote by P` the orthogonal projections to Vd,` in L2(Qd). This can be written in terms of the
Fourier basis as

P`f(x) ≡
∑

S⊆[d],|S|=`

〈f, YS〉L2YS(x). (85)

We also define P≤` ≡
∑`
k=0 Pk, P>` ≡ I− P≤` =

∑∞
k=`+1 Pk, and P<` ≡ P≤`−1, P≥` ≡ P>`−1.

D.2 Hypercubic Gegenbauer

We consider the following family of polynomials {Q(d)
` }`=0,...,d that we will call hypercubic Gegen-

bauer, or Gegenbauer on the d-dimensional hypercube, defined as

Q
(d)
` (〈x,y〉) =

1

B(Qd; `)

∑
S⊆[d],|S|=`

Y
(d)
`,S (x)Y

(d)
`,S (y). (86)

Notice that the right hand side only depends on 〈x,y〉 and therefore these polynomials are well
defined. In particular,

〈Q(d)
` (〈1, ·〉), Q(d)

k (〈1, ·〉)〉L2 =
1

B(Qd; k)
δ`k.

Hence {Q(d)
` }`=0,...,d form an orthogonal basis of L2({−d,−d+ 2, . . . , d− 2, d}, τ̃1

d ) where τ̃1
d is

the distribution of 〈1,x〉 when x ∼ τd, i.e., τ̃1
d ∼ 2Bin(d, 1/2)− d/2.

It is easy to check more generally that

〈Q(d)
` (〈x, ·〉), Q(d)

k (〈y, ·〉)〉L2 =
1

B(Qd; k)
Qk(〈x,y〉)δ`k.
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Furthermore, Eq. (86) imply that —up to a constant—Q
(d)
k (〈x,y〉) is a representation of the projector

onto the subspace of degree-k polynomials

(Pkf)(x) = B(Qd; k)

∫
Qd

Q
(d)
k (〈x,y〉) f(y) τd(dy) . (87)

For a function σ(·/
√
d) ∈ L2({−d,−d+ 2, . . . , d− 2, d}, τ̃1

d ), denote its hypercubic Gegenbauer
coefficients ξd,k(σ) to be

ξd,k(σ) =

∫
{−d,−d+2,...,d−2,d}

σ(x/
√
d)Q

(d)
k (x)τ̃1

d (dx). (88)

To any inner-product kernel Hd(x1,x2) = hd(〈x1,x2〉/d), with hd( · /
√
d) ∈ L2({−d,−d +

2, . . . , d− 2, d}, τ̃1
d ), we can associate a self adjoint operator Hd : L2(Qd)→ L2(Qd) via

Hdf(x) ≡
∫

Qd

hd(〈x,x1〉/d) f(x1) τd(dx1) . (89)

By permutation invariance, the space Vk of homogeneous polynomials of degree k is an eigenspace
of Hd, and we will denote the corresponding eigenvalue by ξd,k(hd). In other words Hdf(x) ≡∑q
k=0 ξd,k(hd)Pkf . The eigenvalues can be computed via

ξd,k(hd) =

∫
{−d,−d+2,...,d−2,d}

hd
(
x/d

)
Q

(d)
k (x)τ̃1

d (dx) . (90)

D.3 Hermite polynomials

The Hermite polynomials {Hek}k≥0 form an orthogonal basis of L2(R, γ), where γ(dx) =

e−x
2/2dx/

√
2π is the standard Gaussian measure, and Hek has degree k. We will follow the

classical normalization (here and below, expectation is with respect to G ∼ N(0, 1)):

E
{

Hej(G) Hek(G)
}

= k! δjk . (91)

As a consequence, for any function g ∈ L2(R, γ), we have the decomposition

g(x) =

∞∑
k=0

µk(g)

k!
Hek(x) , µk(g) ≡ E

{
g(G) Hek(G)} . (92)

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials
introduced in the previous section. Indeed, the Gegenbauer polynomials (up to a

√
d scaling in

domain) are constructed by Gram-Schmidt orthogonalization of the monomials {xk}k≥0 with respect
to the measure τ̃1

d , while Hermite polynomial are obtained by Gram-Schmidt orthogonalization with
respect to γ. Since τ̃1

d ⇒ γ (here⇒ denotes weak convergence), it is immediate to show that, for any
fixed integer k,

lim
d→∞

Coeff{Q(d)
k (
√
dx)B(Qd; k)1/2} = Coeff

{
1

(k!)1/2
Hek(x)

}
. (93)

Here and below, for P a polynomial, Coeff{P (x)} is the vector of the coefficients of P . As a
consequence, for any fixed integer k, we have

µk(σ) = lim
d→∞

ξd,k(σ)(B(Qd; k)k!)1/2, (94)

where µk(σ) and ξd,k(σ) are given in Eq. (92) and (88).

D.4 Hypercontractivity of uniform distributions on the hypercube

By Holder’s inequality, we have ‖f‖Lp ≤ ‖f‖Lq for any f and any p ≤ q. The reverse inequality
does not hold in general, even up to a constant. However, for some measures, the reverse inequality
will hold for some sufficiently nice functions. These measures satisfy the celebrated hypercontractivity
properties [4, 5, 8, 25].
Lemma 4 (Hypercube hypercontractivity [4]). For any ` = {0, . . . , d} and fd ∈ L2(Qd) to be a
degree ` polynomial, then for any integer q ≥ 2, we have

‖fd‖2Lq(Qd) ≤ (q − 1)` · ‖fd‖2L2(Qd).
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