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A Details from the main text

A.1 Notations

For a positive integer, we denote by [n] the set {1,2,...,n}. For vectors u,v € R%, we denote
(w,v) = ugvy + ... + uqvg their scalar product, and ||ully = (u,u)'/? the 5 norm. Given a
matrix A € R™™™, we denote || Al|op, = max|jy|,—1 || Aul|2 its operator norm and by [|A|r =

(Z i Afj) '/2 its Frobenius norm. If A € R™¥" is a square matrix, the trace of A is denoted by
TI"(A) = Zie[n] A”

We use Og4( - ) (resp. o4( - )) for the standard big-O (resp. little-o) relations, where the subscript d
emphasizes the asymptotic variable. Furthermore, we write f = Qq4(g) if g(d) = Oq4(f(d)), and
f=wa(g) if g(d) = 04(f(d)). Finally, f = ©4(g) if we have both f = O4(g) and f = Qa(g).

We use Ogp( ) (resp. ogp( -)) the big-O (resp. little-0) in probability relations. Namely, for k4 (d)
and hy(d) two sequences of random variables, hi(d) = Ogp(h2(d)) if for any € > 0, there exists
C. > 0and d. € Z~q, such that

P(|hy(d)/he(d)| > C.) < e, Vd > d.,

and respectively: hq(d) = oqp(h2(d)), if hi(d)/ha(d) converges to 0 in probability. Similarly, we
will denote hl(d) = Qdy(hg(d)) if hg(d) = Od7p(h1(d)>, and hl(d) = wd,P(hg(d)) if hg(d) =
o4,p(h1(d)). Finally, hi(d) = Oqp(ha(d)) if we have both hi(d) = Ogp(ha(d)) and hq(d) =
Qqp(h2(d)).

A.2 Convolutional neural tangent kernel

In this section, we justify the expression of the convolutional neural tangent kernel HZX,

(CK-AP-DS)), obtained as the tangent kernel of a neural network composed of a one convolution
layer followed by local average pooling and downsampling (CNN-AP-DS).

Proposition 3. Let o € C1(R) be an activation function. Consider the following one-layer convolu-
tional neural network with w-local average pooling and A-downsampling:

NN (g Z Z Al Z wivm(kA-‘rs)» : (14
N keld/A] s€[w]

Let a%  ~ia N(0,1) and \/awi ~iig.  Unif(27) independently, and e =
{(ad)icinykerasal, (W?)ien) . Then there exists h : [—1,1] — R, such that for any x,y € 24,
we have almost surely

Jim (Ve i (z:0°), Vo /™ (1:0°))/ k;m ZH (®(kats) Yuars)) /) - (15)
E s,s'€w

Proof of Proposition[3| For u,v € 29, define
W ((w, ) /q) = Batmit(20) [0 ((u, w) /y/g)o (v, w)/ /)] ,
W ((u,0)/q) = Butmit(2) [0/ (w, w) /@) (v, w) / /) (u,v)] /q.

The functions h("), h(?) are well defined (the RHS only depend on the inner product (u,v)) and can
be extended to functions A1), h(?) : [—1,1] — R.

Computing the derivative of the convolutional neural network with respect to a = (a?k)ie[ N1ke[d/A]»
we have

<v CNN( @0) Va CNN(y,@O)>

= > Z Z Tats))o (W) Zrats))) -

keld/A] s,s G[w] 1€[N]
Hence by law of large number, we have almost surely

hm —<V N (23 @), Vg fSNN y,@o Z Z A $(kA+(s)ay(kA+s/)>/q)'
keld/A] s,s’ €[w]
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Similarly, computing the derivative with respect to \/gW = (,/qw?);c[n] gives
1
N< fCNN( ;@0) fCNN(y;@O)>

-2 2y Zal’“‘“’f"’ (W}, @(rats)))0 (<www(m+y)>)<w(m“)’w(’“’A+8’>>.

k,k'€[d/A] s,s'€w] ZG[N] q

By law of large number, using that a;; and a;s are independent of mean zero and variance 1, we get
almost surely

@0 .@0) —
A}gnoo N<waCNN(iL'7 0"), Vw iy (y;8")) = ke%;A] Ee:[ ]h(z)((fB(kA+s),y(kA+sf)>/q) :

Taking h = h(Y) + h() concludes the proof. O

A.3 Local average pooling operation

Consider a function f € L?(29): we can decompose it as

Z filx (16)

]€[d
Z PR f(ty - ) (17)
ke[d

where p; = e andty, - x = (Tht1y- -5 &g, X1, .., xg) is the cyclic shift of x by k pixels. We

can think about f;(x) as the j-th component of the discrete Fourier transform of the function f(x)
seen as a d-dimensional vector { f(tx - @) }re[g for any © € 27,

Notice furthermore that if f is a local function, i.e., f can be decomposed as a sum of functions on
patches f(x) = Zke[d gr (1)), then we can write

f] :B \/* Z PJ tk .’B \/* Z p]gu (u+k) \/* Z p]g_] m(k)

keld] k,ue(d] keld]

= 07 gulv).

u€ld]

where we denoted (v € 29)

In particular, decomposing g}j in the Fourier basis, we get (denoting cs = (G;, Ys)r2),

Z pJgJ (1)) Z s - Z pJYk+S

ke[d SClq] ke[d]

which shows that the j-th frequency component f; is in the span of {Y} s5}sc[q. In particular,
applying average pooling operation in the kernel will reweight this elgenspace by a factor ;.

Let us further comment on the values of k. First, we have

w

Ry= Y (1= k/w)ph

k=—w

In particular, the maximal eigenvalue is attained at j = d with k4 = w, which corresponds to the
subspace of cyclic invariant functions. Furthermore, x; = 0 if and only if d is a divisor of jw for
j<d-1,i.e., jis a multilple of gcd(w, d). There are gcd(w, d) — 1 such zero eigenvalues.

In convolutional kernels, a weighted average is often preferred to local average pooling [6} 135} 36]:
in that case we consider 7 : R — R and obtain the kernel

LS () (AN () s} 1)

HEK(QZ, y) =5
k,s,s’€[d]
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where d(s) = min(s, d — s) (the distance between k + s and k on [d] with cyclic convention). Note
that HX has the same eigendecomposition as HS® but with different weights ;.

A popular choice for 7 is the Gaussian filter 7(z) = \/2L e 2. In Flgure we compare the

eigenvalues r; for local average pooling and Gaussian filter with different value of w and 0. Note
that the eigenvalue decay controls how much high-frequencies are penalized: faster decay induces
heavier penalty on the high-frequency components.

—_—w=1
. w=2
10+ 4 —_— w=4
. —_— w=9
< — w=25
3 100 =50
2 1004 — w=
©
>
c
&
i 10714
1072 E
T T T T U T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
index (local pooling) index (Gaussian filter)

Figure 2: Decay of the weights «; for different lenfths w for local average pooling (on the left) and
bandwidths o for pooling with Gaussian filter (on the right), for d = 101.

A.4 Downsampling operation

As mentioned in the main text, a downsampling operation is often added after pooling. The kernel is
given by

H Z Z (w(kA+(9)’y(kA+s/)>/Q) . (18)

ke[d/A] s,s'€w]

Let us introduce the family { M" },.c[4 of block-circulant matrices defined by
. A

9 w1 —r)

where we introduced the set of indices

{(k, 5,5,8) € Toynr: kA +s+t=i[d,kA+s +1 Ej[d]}‘7 (19)

Tonr= {(k:,s,s',t) tke[d/A]s,s" € w],0<t< q—r}. (20)

We can now state the eigendecomposition of H°¥, in terms of the eigenvalues and eigenvectors of
the matrices {M" },.¢[g
Proposition 4 (Eigendecomposition of HZ*\). Let HSX\ be a convolutional kernel with local

average pooling and downsampling, as defined in Eq. (I8). Then HSX ‘A admits the following
eigendecomposition:

HE(z,y) = wéqo +Z >y (8 wj s(@);s(y), 1)

=1 S€eCy je[d]

where wﬁs(a}) = 22:1 vﬁkYk+5(:c) with {nf, ’Uf}je[d] eigenvalues and eigenvectors of M%),

Let us make a few comments on these matrices M%) First because they only depend on S
through the diameter (S), the eigenvalues and eigenvectors {5, v} ;c[q only depend on (S).
Second, we see that M&f&)(ﬁm = M]j(s) and M]j(s) = 0if d(i,j) > w, where d(i,j) =
min([i — j|,d — |i — j|) (i.e., the distance between i and j on the torus [d]). In words M%) is a
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symmetric block-circulant matrix with non-zero elements on a band of size w — 1 on the left and
right of the diagonal, and on the upper-right and lower-left corners. Furthermore, notice that

(M) = dwf(s)‘{(k’svt) keld/Alse o<t <g—r(S)} =1,

which is independent of w, A, v(.5) and justify the chosen normalization. In particular, this implies
that (for {; 0 = 0)

Tr(HE) = Ee{ HSA (m2)} = D &e D r(S) = D ueB(2%0) =h(1),  (22)

£€q] Secy £e(q)

is also independent of the parameters (g, w, A).
Example 1. Take A = 3, w =5, ¢ = 11, then

18 15 11| 7 4 0
15 19 15|11 8 4 0
11 15 18|14 11 7 3 0
7 11 14|18 15 11| 7 3 0
Mlzi 4 8 11|15 19 15|11 &8 4
50 0 4 7111 15 18|14 11 7 ’
0 3
0
and
13 11 8 5 3 0
11 14 11| 8 6 3|0
8 11 1310 &8 512 0
5 &8 10
4 3
M* = — 3 6 8
Bl o 3 5

Remark 1. Symmetric block-circulant matrices can be easily diagonalized as follows. Consider
M = Circulant(By, By, ..., B,,) where B, € R®*2, B] = B, and By, = B/ , for
k=0,...,m—2. Denote p; = ¢*™/™ and v;(v) = [v, pjv,--- ,p}" 'v]/y/m € R™ for any
v € R, Introduce for j = 0,...,m — 1, the matrix H; € RA*% given by

The matrix H; is Hermitian and we denote ()\;s)sc[a] and (v s)se(a its eigenvalues and
eigenvectors. Then the eigenvalues and eigenvectors of M are given by {); s} cm] se[a) and

{73' (UjA,S)}je[m],sE[A]'

In particular, if A = 1 and M = Circulant(by, bs, . .., by,) is a circulant matrix, then the eigenvalues
are simply given by

)‘j :b1 —‘rpjbg—‘r—f—p;nilbm,
and eigenvectors v; = [1, pj,- - ,p;f”‘_l]/\/ﬁ.
Here we will focus on the impact of downsampling for single-layer convolutional kernels. We expect
the downsampling operation to have a much more important role for the next layers: for example,
increasing the scale of interactions or reducing the dimensionality of the pixel space.

We will argue below that adding a downsampling operation after local pooling leaves the low-
frequency components approximately unchanged (while potentially modifying the high-frequency
eigenspaces). We consider A < w: for A > w, some basis functions Yg with S € & are in the null
space of H S'fA, which impact all frequencies.
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To emphasize the dependency on w, A, denote M, A the matrix (T9). We will study the change in
the matrix M, ; when adding downsampling A, and consider

Mia=M,,+A,A, (24)
where we denote Aj, x = M A — M, ;. Notice that A], o is a symmetric block-circulant
matrix. Therefore, from RemarkE], the eigenvectors of A/, A are given by {VJ (v),5)}jemml,sela]
where d = mA and v;(vj,s) = [Vj,s; Pm,jVj,ss -+ -5 P Y] with p,, ; = e % and (v),5)se]A]
eigenvectors of H ; (23). The eigenvectors of M, | are given by u; = [1, pg¢, - - - ,pd‘t 11/+/d with
Pdt = e“* . Notice that

* —(k—1)A— 1
(uy,75(v),s)) \/7 Z Z pfn,]l dg - )( Vjs)u

€[m] ue[A]
(u— —A\k—
( Z pdt 2 'UJ 5)u) . Z (pm,jpd,tA) 17
u€[A] ke[m]

which is 0 except when ¢ = j[m]. Hence, we see that A;y A in Eq. only modify the eigenspaces
of M, ; as follows: the eigendirections {;(v;s)}je[m],sc[a] coming from H only modify
the eigenspaces of M, ; spanned by {%am+;}a=0,...a—1-

For simplicity, we will focus on the popular choice A = w. Furthermore, we will only look at the
impact of the eigenvalues H on the eigenspace spanned by {wgm, }o=0,....A—1, Which contain the
cyclic invariant direction. We show below that H = 0 and therefore A/, , does not modify the
cyclic invariant eigenspace of M :,1

Proposition 5. Consider d = mw and the symmetric block-circulant matrix A, , = M, ,— M, ,
Denote A, , = Circulant(By, Bs, ..., By,) and

Hy=B,+...+B,,.

We have the following properties:

(a) If g +1 —r = O[w], then A, , = 0, and downsampling does not modify the matrix
M’ =M, ’

(b) We have Hy = 0 and downsampling does not modify the cyclic invariant eigenspace
Al 1=0.

Proof of Proposition] Let us first start by proving point (a). Consider ¢ + 1 — r = pw. Fix
i€40,....,A—1} and k € {0,...,w — 1}. Let us compute the entry (i,7 + x) of the matrix
M, ,: this amounts to counting the number of quadruples (k, s, s',t) with k € [d/w], s,5" € [w]
and 0 <t < pw — 1, satisfying (kw + s +t,kw + 5" +t) = (4,7 + r)[d]. Notice that we must have
s’ = s+ k and therefore s € {0,...,w — 1 — k}. Notice that for each interval uw <t < (u + 1)w
with u € {0,...,p — 1}, there are exactly w — k ways of choosing s and then ¢ and k to satisfy the
equality. We deduce that

, w K
(Mw,w)i(i+ﬁ) =

St 1T

this concludes the proof of point (a).

M7 .
w ( )z(z+m)

By symmetry of M|

w,w?

Consider now point (b). First notice, because M,  has zero entries for min(|i — j|,d — |i — j|) > w,
the only non-zero blocks are B, By and B, Furthermore when computing H , the diagonal
entries only have one contribution from the dlagonal elements of B;. The off-diagonal elements of
H , have two contribution: one from B; and one from B, (if below the diagonal) or B,, (if above
the diagonal), i.e.,

(Ho)ii = (B1)is (Ho)i(i4r) = (B1)iti+r) + (Bm)i(itr) -
Let us compute first the diagonal elements: we have easily, by a similar argument as above

(M, )i = 1 = (M) and therefore H has zero zero diagonal entries. For off-diagonal
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elements, first notice that (M, ,)i(i+r—w) = (M, ,,)i(i4+w—nr)- Thenfor ¢ +1 —7r = pw + v, we
can consider each subsegment uw < ¢t < (u+ 1)w separately, and by a simple counting argument, get
(M, )itirw—r) + (M, )ii+r) = 1 — Z. We deduce that (Hg);(;+x) = 0, which by symmetry
implies H = 0 and concludes the proof. O

From the above result, we conjecture that more generally, for A < w, the low-frequency eigenspaces
of HZ remain approximately unchanged when applying a downsampling operation. We verify this
conjecture numerically in several examples. In FigureEI, we plot the eigenvalues «; with and without
downsampling. On the left, we compare x; for fixed w = 25 and increasing A. We notice that the
eigenvalues do not change much for A < w, and for A > w, some ~; become null, as discussed
above. On the right, we plot x; for A = 1 (continuous line) and A = w (dashed lines) for several w.
As conjectured, the top eigenvalues (low-frequency) are left approximately unchanged. In Figure ]
we plot a heatmap of the eigenvectors ordered vertically from highest associated eigenvalue (bottom)
to lowest (top) for a fixed w = 25 and increasing downsampling A € {1,25,40}. First indeed
check that the top eigenvectors correspond to low-frequency functions and the bottom eigenvectors
correspond to high-frequency functions. Second, most eigenvectors are not much modified between
A = 1and A = w = 25. For the case, A > w, the top eigenvectors corresponds still low-frequency
functions.

10° d = 200 and fixed w =25 d=150and A=w
— A=1
— A=5 102 4
102 4 — A=10
— A=20
— A=25 101 4
£ 10 s
[
3
g 10° 4
g 0
o 10 — W=
101 97
— W=
1071 4 - =
2 W=
10724 =
1072 T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
index index

Figure 3: Impact of downsampling on the eigenvalues ;. On the left, we fix w = 25 (d = 200,
q = 30, r = 1) and increase ¢ from 1 (no downsampling) to 40. On the right, we compare A = 1
(continuous line) and A = w (dashed lines), with d = 150, = 20,r = 1.

w=25A=1 w=25,A=25 w=25,A=40

Figure 4: Heatmap of the eigenvectors {wv; } <[4 ordered from highest associated eigenvalue (bottom)
to lowest (top), for d = 200,q = 30,7 = 1,w = 25, and A = 1 (left), A = w = 25 (middle) and
A = 40 (right).
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From these observations, we expect HZX ‘A to have the same statistical properties as HEX when
learning low-frequency functions. In Flgure 5] we plot the test error of kernel ridge regression for
fitting cyclic g-local polynomials (see Section on the hypercube of dimension d = 30. We report
the test error of one realization, against the sample size n, and choose regularization \ = 10~% and
noise 0. = 0. We compare kernels with and without downsampling. On the left, we consider ¢ = 10
and w = A = 5, and compare the test error with HSX (continous line) and with H KA (dashed line)
when learning degree 2, 3 and 4 polynomials. On the right, we fix the target function to be the cubic
local cyclic polynomial and consider the test error of learning with H ng for ¢ = 10, w = 10, and
A €{1,3,6,10}. As expected, we observe in both simulations that the test error is almost identical
between the kernels with and without downsampling, when learning cyclic invariant functions.

In Section we further check that downsampling with A > w does not improve the high-
dimensional predictions for the test error of KRR.

d=30,g=10,w=A=5 Cyclic cubic polynomial, d=30,g=w=10

1.6 1.4
1.4 —— degree 2
’ degree 3

1.2+ —— degree 3 ]
R R Ny
2084
wn
ﬂJ
= 0.6

0.4

0.29

0.0 ; ; . : . —

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 1.0 1.2 1.4 1.6 1.8 2.0
log(n)/log(d) log(n)/log(d)

Figure 5: Test error of kernel ridge regression with and without downsampling. We report the test
error of one realization, against the sample size n. On the left, we consider a unique architecture
g = 10and w = A = 5, and compare H CK (continuous line) versus H CK A (dashed line) when

learning cyclic g-local polynomials of degree 2, 3 and 4. On the right, we con51der a unique cyclic
g-local polynomial of degree 3 for fixed ¢ = 10, w = 10 and A € {1, 3,6, 10}.

A.5 Multilayer convolutional kernels

For completeness, we briefly discuss here some intuitions of multilayer convolutional kernels. The
benefit of depth in convolutional kernels has been investigated in [0, [16} 40, 43]]. In particular, [6]
observed that the top layer operation of a two-layers convolutional kernel can be replaced by a
low-degree polynomial without a performance change.

As an example, we will consider a two layers convolutional kernel with patch and local average
pooling sizes (g1, w7) on the first layer and (g2, w2) on the second layer. We consider a general
inner-product kernel for the first layer:

hi ((u,v)/q1) = (h(u),(v)), (25)

where the feature map is given explicitly ¢(u) = {&;, 5/Ys(u)}sciq] € R2"" . Following the work
[6], we consider a degree-2 polynomial kernel on the second layer, i.e., ha((¢, ¢')) = (¢, ¢')2.

Let us decompose this two-layers convolutional kernel in the Fourier basis. Let ¥(x) =
{¥k(x)} xc|a) be the output of the first layer, with

= > V@rre) = {&uisi D Virsrs( )}Sqql]eR?“. (26)

s€fw] s€fwn]
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Then denoting ¥ ) (x) = (Vpy1(x), ..., Yiig,(x)), the two-layers convolutional kernel is given
by

HZ,, (x,y)

wi,W2

Z Z \I’(kJrs \I’(k+s )( )>2

keld] s,s’ €wa]

DD DY

keld] s,s’ €[wa] u,u’ €[ga] t,t!,r,r' €[wi]
<w(w(k+s+u+1‘,)) ® ¢(fc(k+s+u'+r))a ¢(y(k+s'+u+t’)) ® ¢(y(k+s'+u'+r'))> .

We believe that techniques contained in this paper can be used to study kernels of the type (??) by a
careful combinatorial argument and a 2-dimensional Fourier transform on the second layer (see [6]).

We leave this problem to future work. Here we only comment on the structure of H, lew )

27

1. Including a second convolutional layer allows interactions between patches. The associated
RKHS, which we will denote H2°K, contains all the homogeneous polynomials Yg with
S = 51U S, with S7, So contained on segments of size ¢, with the two segments separated
by at most g2 + wo — 2. In words, the RKHS contains interaction between patches ;) and
@ () that are within some distance.

2. The eigenvalue associated to a degree-k homogeneous polynomials is still of order ¢~

in high-dimension. To learn functions restricted to L?(22, Loc,), it is statistically more
efficient to use X (smaller degeneracy of eigenvalues). However H 2% will fit a richer class
of functions with two-patch interactions, while still not being plagued by dimensionality:
dim(H?%K) < go2d229'. Hence we still expect H?°X to be much more statistically efficient
than a standard inner-product kernel.

3. Local pooling on the two layers plays different roles: pooling on the first layer encourages the
interactions to not depend strongly on the relative positions of the patches, while pooling on
the second layer penalizes functions that depend on the global position of these interactions.

For more layers and higher degree kernels, one obtain hierarchical interactions of higher-order, with
multi-scale absolute and relative local invariances brought by pooling layers.

A.6 Proofs diagonalization of convolutional kernels
In this section, we prove the diagonalization of the kernels H CK H gK and H 5KA introduced in
Propositions [I] 2] and ] respectively.

Recall that we can associate to a kernel function H : X x X — R defined on a probability space
(X, 7) (assume = — H(x, ) square integrable), the integral operator H : L?(X,7) — L?(X,T)

= / H(z,z')f(z')r(dz’). (28)
X
By the spectral theorem of compact operators, there exists an orthonormal basis (j)j>1 of L*(X, )
and eigenvalues (\;);>1, with nonincreasing values A\; > Ay > --- > 0 and Zj>1 Aj < 00, such
that -

H =Y MNpj;,  H(za') =Y \ib(x)i;(a) .
j=1 j=1

We first prove the diagonalization of Hf, in Proposition 4| l The case of HSX and H® then follows
by setting A =1,and A =w =1 respectlvely

Proof of PropositionH] Consider the inner-product kernel function A : R — R defined on the

hypercube 27. By rotational symmetry (see Section[2.1and Appendix D), / admits the following
diagonalization: for any u,v € 29,

((w,v)/q) = qu, > Ye(w)Ys(v), (29)

SClal,|8]=¢
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where (Ys)sc|q is the Fourier basis on 29, and {4.¢(h) is the /-th Gegenbauer coefficient of / in
dimension ¢ (see Sections [2.1] or [D]for background).

Recall that we defined S; = {S C [q] : |S| = ¢}, the equivalence relation S ~ S’ if S’ is a
translated subset of .S in [g] (without cyclic convention), and C, the quotient set of .4, by ~. For each
equivalence class S € Cy, consider S the unique subset in S that contains 1. Then the equivalence
class S contains the subsets u + S = {u+k : k € S} C [q) withu =0,...,q — v(S). By a slight
abuse of notations, we will identify S and this subset S. Below we will denote u + S the translated
subset with cyclic convention on [d] (e.g., 2+ {1,3,d — 1} = {3,5,1}).

Using Eq. (29) and that Y (1)) = Yi4s(x), we have the following decomposition of H, ng in the
Fourier basis

HCK Az, y)
Z Z ( T (kA+s) ay(kA+9/)>/Q)
ke[d/A] s,s'€lw] (30)
! A
=dw&q0 + Zﬁq,z Z o Z Yiaystt+s(T)Years ri+5(Y) ¢
(=1 SeCy (kvsﬁslat)ezw,A,'y(S)

where we recall the definition of the set of indices

T Am(S) = {(k,s,sﬂt) tked/A] s, s €w],0<t<q— 'y(S)}. (31)

Note that the diagonalization of the kernel H can be obtained by computing the matrix M =
(Mss)s.scra € R2%2 with M = B, [Ye(2)H (2, y)Ys (y)]: if Aj and v; € R*" are the
eigenvalues and eigenvectors of M, then \; and ¢;(z) = > g4 vj,sYs(z) are the eigenvalues
and eigenvectors of H.

From Eq. (30), we see 1) the basis functions Yg with v(S) > ¢ (subset S not contained in a
segment of size ¢) are in the null space of HZ*,, 2) for S, S’ C [d] with S and " not translations of
each other, then By, ,[Vs(x) HZ'\ (z,4)Ys/ (y)] = 0, and Y and Y are contained in orthogonal
eigenspaces. We deduce that it is sufficient to diagonalize H 8& on each of the (orthogonal) subspaces
Vs :=span{Yi1s : k € [d]} for0 < ¢ < gand S € C,.

For each S € (s define M) ¢RI the matrix with entries ng(s) =
T(ls)Em,y[YHS(m)HglfA(ma y)Yj+s(y)]. From Eq. (30), we get

29 _ WA(S) H(k 5,5 ,t) € Ty an(s) KA+ s+t =i, kA+s +t= j[d]} 32
which concludes the proof of Proposition 4] [
We can now prove Propositions [[|and 2] by taking w = A = 1 and A = 1 respectively.

Proof of Proposition[l] Set A = w = 1 in Proposition[d] We get
M = r(lS) H(k,t) keld,0<t<q—y(S),k+1+t=idk+1 +tzj[d]}‘
=0y -
In this case, M%) is simply equal to identity, which concludes the proof. O

Proof of Proposition[2] Set A = 1 in Proposition ] We get

1
sz(s) = T(S)H(k,s,s’,t) €Loaqs) k+s+t=ild,k+s +1 Ej[d}}‘

()
“ oS4
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where d(i, §) is the distance between i and j on the torus [d] (i.e., if i > j, d(,j) = min(i — j,d +
j —1)). Hence, M is a circulant matrix independent of (), which has well known explicit
formula for eigenvalues and eigenvectors (see for example Remark [T). O

A.7 Additional numerical simulations

Here, we consider a numerical experiment similar to Figure [l| We consider  ~ Unif(2%) with
d = 30 and consider three cyclic invariant target functions:

fa(z) = % o wimipr,  fa(x) = % > miwiazice,

i€[d] i€(d]

1
Ja(z) = Wz TiTi1Ti42Ti43 -
i€[d]

We consider a higher order polynomial kernel h(z) = )", €] 0.2 - 2% than in Figure , which should
lead to higher self-induced regularization. We consider the same kernels as before, with ¢ = 10 and
w = 9.

In Figure[6] we report the test errors of fitting f2 (top), f5 (middle) and f, (bottom) using kernel ridge
regression with the 5 kernels of interests in the main text. We choose a small regularization parameter
A = 1075, and the noise level o. = 0. The curves are averaged over 5 independent instances and
the error bar stands for the standard deviation of these instances. The results again match with our
overall theoretical predictions. We report the predicted thresholds for the three functions:

1. For fy target: ¢ < d < dq/w < dq < d? for HSK < HES < HSX < HK < HFC,
2. For f3 target: ¢ < dg*/w < d* < dq® < d® for HSS < HS® < H® < HES < HFC.
3. For f4 target: ¢ < dg®/w < d® < dg® < d* for HS§ < HS® < H® < HES < HFC.

We see that the kernels, especially for f4, perform much better than their theoretical high-dimension
predictions: this can be explained by the low-dimensionality of the experiment where ¢ = 10.
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Cyclic degree-2 polynomial, d = 30
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Figure 6: Learning cyclic polynomials of degree 2 (top), 3 (middle) and 4 (bottom) over the hypercube
d = 30, using KRR with H® (FC), HES (FC-GP), H (CK), HSK (CK-LP) and HSX (CK-GP),
regularization parameter A\ = 0" and h(z) = ), ern 0-2- x®. We report the average and the standard
deviation of the test error over 5 realizations, against the sample size n.
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B Generalization error of kernel methods in fixed dimension

B.1 Bound on kernel methods using Rademacher complexities

We first consider the case of a Lipschitz bounded loss and uniform convergence, and make a few
simple remarks on the connection between generalization error and eigendecomposition in kernel
methods.

Consider i.i.d data (x;,y;) € X x R with (,y) ~ P and a loss function £ : R x R — R that we
take 1-Lipschitz w.r.t second argument and bounded by 1. The goal is to minimize the expected loss

L(f) = By o {¢(y, f(z))}. Take a RKHS # with kernel function H : X x X — R and consider
following constrained empirical risk minimizer:

fB = arg min {Zé(yi, f(mi))} ) (33)
=1

lfll<B

The generalization error of f 5 has the following standard bound on the Rademacher complexity of
the kernel class {f : || f|l% < B} [9L144]: with probability 1 — 0,

Lifs) = i L) < 2 VE (@ o)} + || ot 64

Note that instead of a constraint on the norm in Eq. (33, one might find more convenient to use a
penalty. In that case, there exists an equivalent to the bound (34) [3 47]], but we focus here on the
constrained formulation for simplicity.

From the bound (34), we see that the generalization error depends crucially on the choice of B. For
simplicity, let us forget about the approximation error and take || f. || < B where f, = E{y|z}.
Recall that for a kernel H with eigenvalues {\; };>1 and eigenvectors {t; };>1, we have

£ = D225 (s Niaey
j>1
Consider Hf, as in Eq. (8) and assume &, o = 0. From the normalization choice of the kernel (see

Eq. (22))), we have
Eo{HI (, )} = h(1).

Consider now for s1mp11c1ty A = 1. From the eigendecomposition in Proposition 2] the RKHS norm
of f € L?(24,Loc,) is given by

d) )
HEDIDIDY gq;S i

L€(q] je[d] SECe
Consider the case where f € L?(2%, Loc,) has a unique non-zero component in its discrete Fourier

transform, ... £(@) = - 3 1y pLo(@ ) with E{g(2)} = 0and p; = €271/ (see Section[A.3).
Note that, denoting cs = (Y5, g) £2(24):

Hence,
r(S)—1

wj S’a u+S d||g||}21
I =30 DI )
=1 5€eC, Eq,er (S /d (=15€C;, u=0 Eqer(S Rj
where ||g||? is the RKHS norm associated to the inner-product kernel » : R — R in 29, i.e.,
2 = =£5_ From the bound (34)), we deduce the first generalization bound using a
9lin SCla] &;,5 g g

convolutional kernel: with probability at least 1 — ¢,

‘ . dlglzh(1)\""*  [2log3
Lifp) = min L(H)<8 (m) 4y 2ok

We make the following two remarks on this bound:
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1. Tt depends on ||g||, which is a RKHS norm on 27 instead of 29, which has potentially
much lower dimension and contain less smooth function for balls of same radius.

2. There is a factor x; gain in sample complexity when learning functions that have j-th
frequency with x; > 1. In particular, for j = d (cyclic invariant functions), x; = w, and
we need w less samples to get the same (upper) bound on the generalization error. On the
contrary, when x; < 1, i.e., high-frequency oscillatory functions, the generalization bound
becomes worse.

B.2 Generalization error of KRR in the classical regime

We consider here the regression setting which allows for finer results. Several works have considered
bounding the generalization error of kernel ridge regression (KRR) [12} 29], [47, Theorem 13.17]. In
this section, we consider the following fully-explicit upper bound from [3].

Consider i.i.d data (x;,y;) € X x R with ; ~ P, and y; = f.(x;) + ;. Assume the noise
Ele;|z;] = 0 and E[e?|x;] < 02, and denote € = (&1, ..., &,).

Let H be a RKHS with reproducing kernel H : X x X — R. The KRR solution with regularization
parameter A > 0 is given by

fr= arg min {Z(yi — f(®:)? + )\|f||%¢} :

i=1

which has the following analytical formula:

fr(@) = h(z)(H + A\1L,) 'y,

where H = (H(x;,x;))ije[n is the empirical kernel matrix, h(x) = [H(x,z1),..., H(z, x,)]
andy = (y1,...,Yyn). The risk is taken to be the test error with squared error loss
. . 2
R(fe f) = Eo{ (fu@) = (@)} (35)

Below, we give an upper bound on the expected risk over the noise € in the training data, i.e.,

E<{R(f., f»)} (itis also possible to give high probability bounds by concentration arguments, but
we restrict ourselves to bounding the expected risk).

Theorem 6. [3| Theorem 7.2] Assume H(x,x) < R? almost surely and let the regularization
parameter A < R?. Ifn > 5—1)?2 (1 + log R;) then

N 2 24
Ee{R(fi /1)) S 167=N(H.X) 416 jnf {IIf = L3 +MIF IR} + SlAlE~ GO

where N'(H, \) = Tr[(H + AI)~1HI.

Let us comment on the upper-bound in Eq. (36). The first term corresponds to an upper bound on the
variance: N'(H, \) is sometimes called the degrees of freedom or the effective dimension of the kernel
H . The second term bounds the bias term and corresponds to an approximation error. In particular,
for any r > 0,

Jof {If - FollZe + AR < ATH2 117 37)

where we recall that H is the integral operator associated to H (see Eq. (Z8)). The third term can be
removed by a more intricate analysis.

From the above discussion, it is natural to consider the following two assumptions on H and f,, that
are standard in the kernel literature:

(B1) Capacity condition: N'(H,\) < CyA~"/* with a > 1.
(B2) Source condition: there exists 8 > 0 such that |[H=%/2f, 2, = B]%* < 00.
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Intuitively, the capacity condition (B1) characterizes the size of the RKHS: for increasing «, the
RKHS contains less and less functions. It is verified when the eigenvalues A;’s of H decay at the rate
j—“. For example, taking the Matern kernel of order s > d/2, whose RKHS is the Sobolev space of
order s (i.e., functions with bounded s-order derivatives), we have a = 2s/d (e.g., see [26]). The
source condition (B2) characterizes the regularity of the target function (the ‘source’) with respect to
the kernel: 8 = 1 is equivalent to f, € H, while 8 > 1 corresponds to f, more smooth (and 5 < 1
less smooth f,).

Assuming (B1) and (B2) in Theorem [6] we get the bound

A o _ 24
Ee{R(fo, f)} S 16CH =AY +16BF A7 + “5| £l 7~
af
2. (Cqg BT 24
=3202B;7T (n> + ﬁllf*llim :

where in the second line, we balanced the two terms by taking A\, := (CB’;’ U; ) o . Note that in
Fu

(38)

order to use Theoremﬁ we need further to constrain n > % (1 + log RTZ)) For simplicity, we will

choose r > anl, so that this condition is verified for n sufficiently large.

Remark 2. The rate in n in Eq. (38) is minmax optimal over all functions that verify assumptions
(A1) and (A2) [12]. However, for large d, the RKHS is composed of very smooth functions (e.g.,
Sobolev spaces of order s are RKHS if and only if s > d/2, i.e., if the order of the bounded derivatives
grows with the dimension d) and 8 will be small, such that Sa & x/d for functions with bounded
derivatives up to order . In that case, the risk decreases at the rate n~9(3): KRR suffers from the
curse of dimensionality when « does not scale with d. As a consequence, the bound is vacuous
when n does not scale exponentially in d, which led several groups to derive finer bounds on KRR in
the high dimensional regime (see Section [C).

Let us now apply Theorem[6|and Eq. (38) to our convolutional kernels to show Theorems [T)and 4]

Proof of Theoreml[l} First notice that H%(z, z) = h(1) =: R? and we can therefore apply Theorem
[6l The effective dimension of H°¥ is bounded by

CK &40 fql’"
N (H ’A)_gq,o+/\ ZZ /d+A

(=1 Se&, Eq.er(S

dgq 0 gq,l
<§q,0+d A qu,Z‘Fd/\ZT(S)

Seé&

q
fq 14
(21.0) : =dN(h,d-\),
; §q,l +d-A ( )
where we used that 7(S) > 1 in the second line and A/ (h, A) is the effective dimension of the inner-
product kernel h on 29. We deduce from (A1) that N'(H% \) < Cpd'~/>\=1/_ Furthermore,
from (A2) and the assumption that E{gy(x)} = 0, we have
2

r(S)—1
I(H) P2 f, 2, fdﬁZ@, > (s > (gr—us Yurs)r2
=1 S€C, keld) u=0
T(S)fl
DD I ST DRI I
=1 SeCy ke[d) u=0

<diq'~’ Z 172 gy |72 < dPqB*.
k=1

Injecting the two above bounds in Eq. (38), we deduce that there exists constants Cy, Co, Cs that
only depends on the constants in (A1) and (A2), and h(1), a? (but independent of d), such that taking
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n > Cy max(|| f.|[2 =, d) and A\, = 2 (d/n) =77, we get
_apB
" d o8B+t
EE{R(f*va*)} <Cj (n) .
O

Proof of Theoremd The proof is similar to the proof of Theorem 1] Notice that HS*(z, z) < h(1),
and that the effective dimension of HCEK is bounded by

CcK - a7 (S)rj/d
NS =22 2 : ES()ﬁi/d/+A

j=1 =1 SeC Eq,er
ahy € d d
2 —1/ay—1/a 1/«
< DD D ) = SN dA ) < Cud A T
j=1 =1 SeC, 0t 7 g=1 j=1

where we used condition (A1). Denoting d.; = Z?Zl (#j/w)/*, the rest of the proof follows from
the proof of Theorem [1] with d replaced by d.gw'/* and B2 replaced by w”® B2, O

Remark 3. Note that the requirement || (HCK /w)~#/2f, || 1> < B is to make the result comparable
to the other theorems when we consider target functions with low-frequencies. For a cyclic invariant
function, we get exactly || (HS /w)=#/2f, || 12 = ||(H)=B/2f, || 12.

C Generalization error of KRR in high dimension

In Section[B.2] we considered upper bounds on the test error of KRR using the standard capacity and
source conditions. However, these results suffer from several limitations:

1. They only provide an upper bound on the test error. While the decay rate with respect to n
is minmax optimal (see [12]), this is not strong enough to show, for example, a statistical
advantage of using local average pooling, which appears as a prefactor d.¢, and which would
require a lower bound matching the upper bound within a constant factor.

2. As mentioned in Remark the bound is of order n~1/9(4) except when the target function
has smoothness order increasing with d. This bound is non-vacuous only if n = exp(O(d))
which is impractical in modern image datasets where typically d > 100. This motivates a
new type of question: given n < d“, what is the prediction error achieved by KRR for a
given function?

3. In order to achieve the bound Eq. (38), one need to carefully balance the bias and the
variance terms by setting the regularization parameter. This is in contrast with modern
practice which usually train until interpolation (which corresponds to setting A — 0).

Given the above limitations, several recent works have instead considered a high-dimensional setting
where the number of samples scales with d, and derived asymptotic test errors, exact up to a vanishing
additive error [23} 24} 38]]. In addition to these works, several papers have derived general estimates
for the test error using non-rigorous methods [[11} 17, 29]] that are believe to be correct in the high
dimensional limit and which show great agreement with numerical experiments. The picture that
emerges in this regime is much more precise than in the classical regime: KRR approximately acts
as a shrinkage operator on the target function (not assumed to be in a particular space anymore),
with shrinkage parameter that scales as a self-induced regularization parameter over the number of
samples.

More precisely, [38] shows the following: considers a kernel H, : R x R? — R with eigenvalues
(Aa,j);>1 in nonincreasing order and n = n(d) the number of samples. Let m = m(d) be an integer
such that m < n'~% and

o0
145
Adms1-n 0 < g Adj s
Jj=m+1
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for some § > 0. Then, assuming some additional conditions insuring that the kernel H is ‘spread-out’
and well behaved, the KRR solution

s 1 A
g 3 o) >

is equal up to a vanishing additive L2-error (as d — oo) to the following effective ridge regression
estimator

2t . A
1 — argmin {Ilf* et ‘f||f||%d} , “0)
feHa n

where Ay = A + Z;’im 11 Ag,j- The effective estimator (@0) amounts to replacing the empirical risk
in Eq. (39) by its population counterpart || f, — f||2. = Ex{(f«(x) — f(z))?}. In words, in high
dimension, KRR with a finite number of samples is the same as KRR with infinite number of samples
but with a larger ridge regularization.

The solution of Eq. (@0) admits an explicit solution in terms of a shrinkage operator in the basis
(14,5);>1 of eigenfunctions of Hy:

- peff . )\d’ j
filz) = chwd,j(ff) = e = Z ﬁ “cjYaj(T) . (41)
j=1 dj T T

j=1 n

Hence, KRR will fit better the target function along eigendirections associated to larger eigenvalues
of H. If Ag; > A/, KRR fits perfectly f, along the eigendirection 14 ;, while if Ay ; < Aeir/n,
KRR does not fit this eigendirection at all. This phenomena has been referred as the spectral bias and

task-kernel alignment of kernel ridge regression in several works.

Finally, notice from Eq. (1) that the minimum test error is achieved for the regularization parameter
A = 0, which corresponds to the KRR estimator fitting perfectly the training data. In other words, the
interpolating solution is optimal for kernel ridge regression in high dimension.

C.1 Generalization error of convolutional kernels in high dimension

Consider a sequence of integers {d(¢)},>1 which corresponds to a sequence of image spaces © € 24
of increasing dimension, and assume d(q)/2 > ¢ > d(q)? for some constant § > 0. For ease of
notations, we will keep the dependency on ¢ implicit, i.e., d := d(q). Let {hq}4>1 be a sequence of
inner-product kernels b, : R — R.

Test error with one-layer convolutional kernel: we first consider a vanilla one-layer convolu-
tional kernel H° as defined in Eq. (3). We will assume that the kernels {h, },>1 verify the following
‘genericity’ condition.

Assumption 1 (Generecity assumption on {h4},>1 at level s € N). For {hg}q>1 a sequence of
inner-product kernels hq : R — R, we assume the following conditions to hold. There exists
s' > 1/6 + 25+ 3 where § > 0 verifies ¢ > d° and a constant C' such that he(1) < C, and

min ¢*~' ¢, 1. B(g, k) =Qa(1), (42)
k<s—1
i B(qg, k) =Q4(1 43
pein Lok (¢, k) =Qa(1), 43)
max qsl_k"'lfq,q,kB(q,q—k:) = 04(1). (44)

k=0,...,s’

Assumption E] will be verified by standard kernels, e.g., the Gaussian kernel. We discuss this
assumption in Section [C.2] and present sufficient conditions on the activation function o for its
associated CNTK to verify Assumption|[I}

Recall that we denoted LQ(Qd, Loc,) the space of local functions, i.e., that can be decomposed as
f(®) =3 kera fr(® k). Denote hg ¢ the inner-product kernel g with its (£ + 1)-first Gegenbauer

coefficients set to 0, i.e.,

hgse((w,v)/g) = > €1B(25K)QW (u,v)), (45)

k=0+1
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for any u, v € 29. The following result is a consequence of the general theorem on the generalization
error of KRR in [38]].

Theorem 7 (Test error of CK in high dimension). Let {f; € L*(29,Loc,)}4>1 be a sequence
of local functions. Let (T;)icin(q)] ~iia. Unif(2%) and y; = fa(x;) + &; with £; ~i;q. N(0,02).
Assume d - ¢ 170 < n < d- ¢ for some § > 0 and let {hq}q>1 be a sequence of activation
Sfunctions satisfying Assumption|l|at level s. Consider {H CK*d}qzl the sequence of convolutional
kernels associated to {hg}q>1 as defined in Eq. B). Then the following holds for the solution fA of
KRR with kernels {H®} > 1.

For any regularization parameter A > 0, define the effective regularization A := X\ + hg >s(1).
Then for any 1 > 0, we have

£ = 755052 = 0ap () - (1 fall32n + 02)- (46)

The proof of Theorem [7)is deferred to Section

Let us expound on the predictions of Theorem First, recall that feff is given explicitly in Eq. (1)

by a shrinkage operator with parameter ;. From Assumption I and taking A = 0, the shrinkage
operator is of order 1

q
)\eff = hq,>s(1) = Z Eq,EB(Qq;g) = @q(l) .

l=s+1

From the eigendecomposition of HK introduced in Proposition [1| KRR fits perfectly f, along the
eigendirection Yg with |S| = £if n - 47(S)/d > e, while it does not fit this eigendirection at all
if n - &qm(S)/d < A Consider n = d - g5~ 1+

e KRR fits the eigendirections corresponding to the homogeneous polynomials of degree s — 1
and less, and of degree s for subsets S such that y(S) < g — ¢ 7.

e KRR does not fit at all the eigendirections correpsonding to homogeneous polynomials of
degree s + 1 and larger, and degree s for subsets S such that (S) > ¢ — ¢' ~“.

In words, for d - ¢! < n < d - ¢°, KRR fits at least a degree-(s — 1) polynomial approximation to
f+ and at most a degree-s polynomial approximation. As n increases from d - ¢°~! to d - ¢°, KRR
first fits degree-s homogeneous polynomials that have smaller diameter (.5) (i.e., ‘more localized”).

Test error of CK with global average pooling: we consider the kernel HSK given by a convolu-
tional layer followed by global average poohng

HEh (z,y) Z h( Z(k)s Y(rr >/Q) 47)
¢, k'e[d]

In addition to the genericity condition, we will assume that the kernels {h, },>1 verify the following
differentiability condition.

Assumption 2 (Differentiability assumption on {h,},>1 atlevel s € N). For {h,},>1 a sequence
of inner-product kernels h, : R — R, we assume the following conditions to hold. There exists
v > max(2/6,s) where § > 0 verifies ¢ > d° such that hy is (v + 1)-differentiable and for k < v,

s R 0)] < 0u(0)

192, (0)] < Og(q=+17172),

where we denoted hg ., the truncated inner-product kernel hy as in Eq. (@3).

Assumption is used to extend the following theorem to non-polynomial kernel h, (in particular, it
is trivially verified for polynomial kernels by taking v larger than the degree of h,). This assumption
is difficult to check in practice, however we provide some examples where it holds in Appendix [C.2]

Recall that we denoted L?(2¢, CycLoc, ) the space of functions that are given by the convolution of
a function g : R — R with the image © € 2%, i.e., f(z) = > keld) 9(@Tw))-
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Theorem 8 (Test error of CK with GP in high dimension). Let {fs € L*(2%, CycLoc,)}¢>1 be a
sequence of convolutional functions. Assume ¢~ '7° < n < ¢>° for some 6 > 0 and let {hq}q> 1 be

a sequence of activation functions satisfying Assumptlonsand Iat level s. Consider {H cP }q>1 the
sequence of convolutional kernels with global poolmg associated to {hgy}4>1 as defined in Eq. @&7).

Then the solution fy of KRR with kernels { Ha'®} 1 verifies Eq. @) with Ay := A+ hq >s(1).

The proof of Theorem []is deferred to Section

The predictions of Theorem ]are similar to the ones of Theorem|[7]but with a factor d gain in statistical
efficiency: this is due to the eigenvalues of HSK being a factor d larger than for H°K. Therefore, with
global average pooling, for ¢°~! < n < ¢°, KRR fits at least a degree-(s — 1) invariant polynomial
approximation to f, and at most a degree-s invariant polynomial approximation. As n increases from
¢! to ¢°, KRR first degree-s invariant homogeneous polynomials with increasing diameter (5.

Test error of CK with local average pooling: In the case of local average pooling with w < d, the
eigenvalues are harder to control. Indeed, we have mixing of the eigenvalues between polynomials
of different degree: there exists j, j' € [d] such that {; ¢x; < &g ¢+1k;. The eigenvalues are not
ordered in increasing degree of their associated eigenfunctions anymore. While this case is potentially
tractable with a more careful analysis, we instead introduce a simplified kernel which we believe
qualitatively captures the statistical behavior of local average pooling.

Assume ¢ < w/2 and w is a divisor of d. Denote zk) = (Thw+1y - - - s Thowtw) the k-th segment
of length w in [d] and wgf)w) = (Thwtis - - - » Thwtq+i) the patch of size ¢ with cyclic convention in

{kw+1,..., kw + w}. Consider the following convolutional kernel with ‘non-overlapping’ average

pOOling:
E[( K |\() Z z : kw kUJ 18

ke[d/w] i, €[w]
In words, HSNO is the combination of d/w non-overlapping convolutional kernels with global
average pooling on images of size w:

HOKNO Z Hgs(sc(kw)’y(kw))
kE[d/w]

—qu, Z ZWS x)Yr,s(Y) ,

ke[d/w] SEC

(49)

where ¢, s(x) = % Diclw] Yi+s (x(#<)) where i + S is the translated set with cyclic convention
in [w].
Denote L?(2¢, LocCycLoc,) the RKHS associated to HSN°, which contains functions that are

locally convolutions on segments of size w. For this s1mp11ﬁed rnodel the proof of Theorem [§|can be
easily adapted and we obtain the following result:

Corollary 1 (Test error of CK with NO pooling in high dimension). Let {fs €
L?(2%, LocCycLoc, ) }¢>1 be a sequence of local convolutional functions. Assume (d/w) T <
n < (d/w) - ¢~ for some § > 0 and let {hq}q>1 be a sequence of activation functions satisfying
Assumptions|l|and 2 at level s. Consider { HS*NO4} = the sequence of convolutional kernels with
non-overlapping pooling associated to {hq},>1 as defined in Eq. @8). Then the solution fA of KRR
with kernels { HS*N4} - verifies Eq. @6) with A := XA + Lhq ~5(1).

Corollary [I|shows that HZNO enjoys a factor w gain in statistical efficiency compared to HK, due
to a factor w smaller effective ridge regularization. Therefore, with (non-overlapping) local average
pooling, for (d/w) - ¢! < n < (d/w) - ¢°, KRR fits degree-(s — 1) locally invariant polynomials
and none of the polynomials of degree-(s + 1) and larger. Heuristically, we see that this yields the
same statistical efficiency than H for w = 1 and HSf for w = d, and interpolates between the two
cases for 1 <w < d.
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Test error of convolutional kernels with downsampling: We consider adding a downsampling
operation to the previous kernels. Let A be a constant and a divisor of d and w and consider the
following ‘downsampled’ kernels:

=A > h({®@wa) Yra)/e) (50)
ke[d/A)
A
HEA@y) =—= > h({wea)yypwa)/a), (51)
k,k'€ld/A]
HCK,NO Z Hgs (k@) y(kw)) (52)
2 keld/w]

We can easily adapt the proofs of Theorems|[7]and[§] and Corollary[I]to these kernels. In particular,
their conclusions do not change (for any constant A) and downsampling do not provide a statistical
advantage.

C.2 Checking the assumptions

In this section, we discuss Assumptions [T] and 2] and present sufficient conditions for them to be
verified.

Genericity assumption: Recall that the inner-product kernel h, : R — R has the following
eigendecomposition on 27 as

h (u,v /q qug Z Ys(u)Ys(v).
(=0 SClgl,IS|=¢
The genericity assumption amounts to: 1) A universality condition in Eqs. (#2) and @3): if
Pih({1,-)/q) = 0, then h does not learn degree-k homogeneous polynomials; 2) A constant
order scaling of the self-induced regularization h, »s(1), from h,(1) < C and Eq. (@3) with ', i.e.,
hg>s(1) < hg(1) = O4(1) and hy »s(1) > &, B(g,s") = Q4(1); 3) The last eigenvalues decay
sufficiently fast in Eq. (44) in order to avoid pathological cases.

For generic kernels, we have typically &, , < q~¢ (for fix ¢). For example, if h is smooth, gt =
g “(h™(0) + 0,(1)) and it is sufficient to have 2(*)(0) > 0. See Appendix D.2 in [38] for a proof
of Eq. (@4) when h is sufficiently smooth.

Below, we present instead sufficient conditions on the activation o such that the induced neural tangent
kernel verifies the ‘genericity’ assumption. More precisely, we display sufficient conditions on the
sequence {o, },>1 of activation functions o, : R — R, such that the induced neural tangent kernels
{hq}¢>1 verifies Assumptlonl 1l where h, was derived in Secnon-and is given by (u,v € 29)

hq((w,v)/q) == h{" ((u,v)/q) + h{P ((u,v) /q), (53)

where
WD (1, v)/q) = Bawntmit( 20 [04((w, w) //Q)oy (v, w) /)] , (54)
WP ((u,v) /np.sqrt(q)) = Euptmit(20) [0 (w, ) /y/Q) ol (v, w) //7) (w,v)] /g (55)

Assumption 3 (Assumptions on {o,},>1 at level s € N). For {o,},>1 a sequence of functions
¢ : R = R, we assume the following conditions to hold. There exists s’ > 1/ + 2s + 3 where
§ > 0 verifies ¢ > d°, such that

(a) The function o is differentiable and there exists co > 0 and c¢1 < 1 independent of q, such
that |04 ()|, o} ()| < coexp(ci12?/2).

(b) We have
min ¢ 7 |Proy(le, )/ Vallzacen =R (1), (56)
ke{giﬂ,y} IProg((e;)/vVa)llLz(24) =(1), (57)

where e € 21 is arbitrary.
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(c) We have for a fixed § > 0

 max_g? Y Prog((e, )/ VD) llL2(20) = O4(1), (58)
,max ¢ FHYIPeol (e, ) /) L2 20y = Oq(1). (59

Proposition 6. Consider a sequence {o4}q>1 of activation functions o4 : R — R that satisfies
Assumption 3| Let {hg}q>1 be the sequence of neural tangent kernels associated to {og}q>1 as
defined in Eq. (53). Then the sequence {h,},>1 satisfies the ‘genericity’ Assumption

Differentiability assumption: As mentioned in the previous section, this condition is required in
our proof technique to extend Theorem [§]to non-polynomial kernel functions. While we believe
that weaker conditions should be sufficient, we leave checking them to future work. Note that

Assumptionwas proved for & ~ Unif(S4~1(v/d)) and h,((x,y)/q) = Bw{o({z,w))o((y,w))}
for w ~ Unif(S?1(1)), given that o satisfies some differentiability conditions, in [39].

C.3 Proof of Proposition[6]

Proof of Proposition[6] Step 1. Effective activation function.

Let us decompose both functions o, and oy, in the Gegenbauer polynomial on the hypercube basis:

Xt B(290Q ((u, ), (60)

)=

oq((u,v)//q) =

~
Il
o

ke B(2% 0QL ((u,v)), 61)

)=

7q((u,v)/\/q) =

~
Il

0
where we recall B(27;() = (j) and (for e € 29 arbitrary)

Xa.t(04) = Eutmit(on [0 ((u, €) /v QL ((u, €))],
Ka,0(0) = Bytmit(20) [0 ((u, €) /D QL ((u, €))].

From the definition of h") in Eq. (54) and the eigendecomposition (60), we have

WY ((u,v)/q) = Y X2 B(2%0QY ((u, v)).
=0

Similarly, from the definition of h,(f) in Eq. (33), the eigendecomposition (61) and using Lemma
stated below, we get
q

WP ((u,v)/q) = Y K2, B(270Q) ((w,v)(u,v) /g = > (2, B(2% QL ((u,v)),
£=0 £=0
where

14 q—7/
2, = 6/{2,2_1 + TH;M. (62)

We can therefore define 7y, = /X7 , + Cg}e and oeg o((-,-) /@) : 29 x 29 — R by

Oettq(u,0)/ /@) = D 7.0 B(2% Q) ((u, ),

=0
such that the NT kernel (53)) can be written as the kernel of the effective activation o 4:

hq({(u,v)/q) = Egunit(24) {Jeﬂ,q“ua 0) /@) 0ett s (Y (x> 0)/1/2)

q (63)
=" 72,B(290Q" ((u,v)).

£=0
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We will show that i, with Gegenbauer coefficients &, ¢ := 7727 ¢ verifies Assumption

Step 2. Decay of the eigenvalues.

Recall that the sequence {o,}4>1 satisfies Assumption [3|at level s. From Assumption (a) (for
example by adapting the proof of Lemma C.1 in [24] to the hypercube), there exists C' > 0 such that

hq(1) = lloem gl o0 = RV (1) + hE (1) = llogllEe g0y + l0gl122(20) < C,
and we deduce that x2 ,, 2 ,, 72 , = Og4(B(2%()~"). Using that B(29;¢) = (), we deduce
that for any fixed /, X?L o ng) o 7T§’ ; = O,(q"). Furthermore, from Assumption(c), we have for
k=0,...,s+1,
Xaa—k = B(2%q = k)7 |Pg_ioglliz 00 = Oga™* 1),

K2 gk = B(2%q = k)" Pe_ropll32(20) = Ogla™ 1),

By Eq. (62) and the definition of ﬂ'g’e, we have Wg’qik = Od(q’sl’l) for any k < s’, which verifies
Eq. @4) in Assumption [T}
Furthermore, by Assumption(b), using that x7 , = B(29; k)~ ||Pkgq||%2(gq) and £, > X7 1,

we get o o
égghi%k::f%(q )
and
Go=207) Qe =@, e =%l").
In particular, this implies that [|Tef,a,>s/|72( g4y = [IPsTqll72( 20y = Q(1). O

Lemma 1. Let ¢ be an integer such that 0 < £ < q. Consider the following Gegenbauer polynomial
defined on the g-dimensional hypercube (see Section|D)): for .,y € 24,

@ (g ) — - "
J4 (< 7y>) B(\,@q, )Sc[q];s'_ZYS( )YS(y)a

where we recall the definition of the homogeneous polynomial Ys(x) = z° = [Icgwi We have

Q4 () e, /1 = QI (@) + T QL (e w).

with the convention Q(f% = Qf;ﬁl =0.

Proof of Lemmall] Consider 1 < ¢ < g — 1. We have

@)1= poms XY Ve@n Vs
AP0 sclallsi=tiel
We have Ys(x)z; = Ysuy(x) if i € S, and Ys()x; = Y\ (i3 (x) if i € S. Hence, the above sum
contains sets of size £ — 1 and ¢ 4+ 1. For each set S C [g] with |S| = ¢ — 1, there ¢ + 1 — ¢ sets
|S| = ¢, such that by removing one element we can obtain S. For each set S C [q] with |S| = £ + 1,
there £ 4 1 sets |S| = £, such that by adding one element we can obtain S.

We deduce that
(2, y) . y) /g
SIS Y Y@t ol S Ve

SClql|S|=t-1

Using B(29; ) = ({), we obtain

SClql,|S|=0+1

QY (. ) (. y) /g = g @ (@, y)) + %%ﬂlam,y»

The cases ¢ = 0 and ¢ = q are straightforward. O
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C.4 Proof of Theorem

Let {d(q)},>1 be a sequence of integers with 2¢ < d(q) < ¢'/° for some § > 0. We will denote
d = d(q) for simplicity. Consider z ~ Unif(29), dg*~'*° < n < dg*° for some § > 0 and a
sequence of inner-product kernels {/}4>1 that satisfies Assumption|I]at level s. We consider the
vanilla one-layer convolutional kernel

d
1
H*(z, y) :gz (® ks Y)) /)-
k=1

Theoremis a consequence of Theorem 4 in [38]] where we take X; = 27, y; = Unif (X4) and
Dy = L?(24,Loc,) C L*(2%). The proof amounts to checking that { H?} - verifies the kernel
concentration properties and eigenvalue condition (see Section 3.2 in [38]]). We borrow some of the
notations introduced in [38]] and we refer the reader to their Section 2.1.

Proof of Theorem[/] Step 1. Diagonalization of the kernel and choosing m = m(q).

From Proposition|1} we have the following diagonalization of H¢%?:
1
Ha(,y) := H*"(x,y) gz > &ar(S) - Ys(@)Ys(y),
{=0 Se&

Wherer( J=dandr(S)=q+1— (S) for S C [q] \ {0}, and we recall & = {S C [d] : |S| =
,7(S) < q}. Using that B(29;£) = O4(q"), £,.0B(2%;¢) < hy(1) and Assumption we have

érgnsiill fq,ﬁ = ( _S+1> gq,s = eq(q_s)v

§ast1 = Oq(q"" 1) sup §g0 = Oq(q_s_Q)-
0>s+2

(64)

Further define &, = {S € & : y(S) = h} forh =¢,...,q. Itis easy to check that |, | = d(}g:;)

and
q q
h—2 qg—1
&l = |Eenl =d ) <€2> —d(£1)7
h=¢ h=¢
and therefore |£;| = O4(d - ¢°*71).

Denote {\g ;},>1 the eigenvalues {&, ¢r(S)/d}i=o,....g;5¢¢, in nonincreasing order, and {1 ;};>1
the reordered eigenfunctions. Set m to be the number of eigenvalues such that \; ; > ¢4.s4+1/d
(recall g€, 41 = O4(q™%)). Denote o = g€, s+1/&,,s- From the bounds (64) on &, <11 and &, ¢, we
have o« = ©4(1). Denote & = g+ 1 —aand & >4 = {S € & : y(S) > a} and & <5 = &\ & >a-
Using Eq. (64) and that 1 < r(S) < ¢, we have {\g;}jcm) that contains exactly the eigenvalues
associated to homogeneous polynomials of degree less or equal to s—1 and of degree s with S € & <4
(which corresponds to the sets S such that r(S) > «, ie., §;s(S) > g€4.s+1). In particular, if
a < 1, then {A\g;}jc[m) contains exactly the eigenvalues associated to all homogeneous polynomials
of degree less or equal to s.

Note that we have

m < Z |Ee| = Oq(dqs_l) = Oq(q_én)- (65)

Step 2. Diagonal elements of the truncated kernel.

Define the truncated kernel Hy ~, to be

Hy>m(z,y) Z Aq.i¥q.i(@)Va ;(y)

j>m+1
S T () Ye@ Vs + 2 D 6 T r(S) - Ve@Yalw)
SE€& >4 4,5 Se&

35



The diagonal elements of the truncated kernel are given by: for any = € 2,

Hy (@) = fjf oo +f Z o0 Y 7(S) = Tr(Hy sm)- (66)

S€€ >a e s+1 Se&,
Notice that

_ ! B B - h—2 _ (a4 _ ..
ZT(S)—};(qH h)Eenl = dhz::équl (£_2> d<€> dB(27;0),

Se&
q

S s <a 3o leal<an(17]) = outar)

Se& >a h=q+1—a

IN

Hence using that £, s = O4(¢~*°), we have

q
Te(Hyom) = 525 50 r(S) 4 D2 GuB250) = hys1) + 0y (1)

SESS‘E& {=s+1

where hg s is the inner-product kernel with the (s + 1)-first Gegenbauer coefficients set to zero,

ie., hgss((u,v)/q) = Y20_, 11 &.0B(2%0) (q)(< v)), for any u, v € 29. From Assumption
[M]at level s, we have Q4 (1) = &0 B(29;0') < hq7>s( ) < hg(1) = O4(1). Hence, Tr(Hy >m) =
©4(1).

Similarly,

: 1 ¢
Eo [Hy sm(z, z')?] = (qi > r(5)2+g &, r(8)? = Tr(H] L) (67)

5€& >a (=s+1  Se&

Step 3. Choosing the sequence u = u(d).
Let s’ be chosen as in Assumption[l] i.e., such that £, o B(27;s) = ,(1). We have

S =Ou(07). sup Euo=0y(q7 7). (68)

Set u = u(d) to be the number of eigenvalues such that \, ; > ¢€, ¢ /d = ©,(¢>+'/d). From
Egs. (64) and (68)), and recalling that 1 < r(S) < g, we deduce that {Ag; } e[, must contain all the
eigenvalues associated to homogeneous polynomials of degree less or equal to ¢ and does not contain
any of the eigenvalues associated to homogeneous polynomials of degree larger or equal to s’.

We have
Tr(Hasu) = D Agy < Tr(Hasm) = Oy(1),
ji>u
T(Hy ) > 5237 0(S) = 6,0 B(27¢) = 0,1).
Se€y
Similarly, we have

Tr( Hd Su) Z A2 JIS Tr(Hg,>w) - sup Ad,j = qdiléq,S’Tr(Hd,>m) = Oq(dilqisurl)a
i>u j>m
2 ’
Te(H3 o) 2 250 D r(8)? 2 d7EG B(2%5) = Qq(d ™).
Se&y

Finally,
Hjsw) = > Aoy Sd726°E0 s Te(Hasm) = Og(d2q7309),

j>u

Step 4. Checking the kernel concentration property at level {(n(q), m(q))}¢>1-

Let us check the kernel concentration property at level (n, m) with the sequence of integers {u(q) }4>1
defined in the previous step (Assumption 4 in [38]]):
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(a) (Hypercontractivity of finite eigenspaces) The subspace spanned by the top eigenvectors
{%4,5 }jeu) is contained in the subspace of polynomials of degree less or equal to s — 1 on
the hypercube. The hypercontractivity of this subspace is a consequence of a classical result
due to Beckner, Bonami and Gross (see Lemma]in Section D).

(b) (Properly decaying eigenvalues.) From step 3 and recalling that s’ > 1/§ + 2s + 3 where
6 > 0 verifies ¢ > d%, we have

TI'(Hd_>, )2 '_1 2 9 ’
,>U -0 1ds —0.(1)-d s+1> 244
TF(H3,>U) Q( ) q q( ) q Zn )
for §’ > 0 sufficiently small. Similarly,
Tr(HZ . ,)? , ,
2 0,(1) - dg” P = (1) - d2g% > 0T
Tr(Hi1L>u) q( ) q q( ) q Zn ’

for ' > 0 chosen sufficiently small.

(c) (Concentration of the diagonal elements of the kernel) From Egs. (66) and (67), the diagonal
elements of the kernel are constant and the assumption is automatically verified.

Step 5. Checking the eigenvalue condition at level {(n(g), m(q))}4>1.

Let us now check the eigenvalue condition at level {(n(g), m(¢))},>1 which corresponds to Assump-
tion 5 in [38]]):

(a) First notice that

S s =d Y arr-m2(12 )z 5 ari-n(2))

Se€t1 h=s+1 h=s+1

La/2] 69
d* &~ (h—=1\ _ dg® (1g/2] >
> = == = - dg?ts.
~ 4 Z s—1 4 s (1) - da
h=s+1
Hence ) 5 e (5)?
Tr(H r
(2 d,>m) > SE€s+21 2d,s+1 _ Qq(l) . dqs > n1+5’
Ad,m+1 q é-d,s—o—l
for 6 > 0 sufficiently small. Similarly,
Tr(Hg >m d
r( d,> ) — Qq(].) . _ Qd(]-) . dqs > nl—&-é.
)‘d,m—i-l QSd,s+1
(b) This is a direct consequence of Eq. (63).
We can therefore apply Theorem 4 in [38], which concludes the proof. O

C.5 Proof of Theorem

Consider q571+6 <n< qs"; for some ¢ > 0 and a sequence of inner-product kernels {hq}q21 that
satisfies Assumptions [I]and 2] at level s. We consider the one-layer convolutional kernel with global
average pooling

d
1
Hgg’d(w,y)zg > ha((@w,ya)/a)-
kk/=1

Again, the proof of Theorem E] will amount to checking that the conditions of Theorem 4 in [38]] hold.
For the sake of simplicity, we will further assume that ;s > g€, s+1, which simplifies some of
the computation. This condition can be removed as in Theorem by considering the set Cs <5 =

{S € Cs : v(S) < @} and showing that the extra terms corresponding to these eigenfunctions are
negligible.
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Proof of Theorem[§] Step 1. Diagonalization of the kernel and choosing m = m(q).

From Proposition 2| with w = d, we have the following diagonalization of H g_’ ¢

Hy(z,y) = Hy " (z, y) Z > qur(S (@)Ys(y),

£=0 SeCy
where we recall ¢g(x) = % Zke[d] Yi+s(x) and that Cy is the quotient space of £ with the

translation equivalence relation. It is easy to check that |C| = (Z:})

From Assumption|I] we get the same bounds on the Gegenbauer coefficients &, ¢ as Eq. (64) in the
proof of Theorem [/} Denote {), ;},>1 the eigenvalues {£, ¢7(S)}e=0.... ¢;5¢¢, in nonincreasing
order, and {¢ ;};>1 the reordered eigenfunctions. Set m to be the number of eigenvalues such
that A, ; > g€, s+1 (recall ¢€; 41 = O4(g~°)). From the bounds and our simplifying assump-
tion that £, s > ¢€g 41, We have {Ag;};cm that contains exactly the eigenvalues associated to
homogeneous polynomials of degree less or equal to s.

Note that we have

m =" |Ci| = O4(¢°") = O4(q°n). (70)
=0

Step 2. Diagonal elements of the truncated kernel.

Define the truncated kernel Hy ~, to be

Hd >m T y Z Ad,ﬂ/’d,j "/Jd,J Z Z fq gT )ws( )

j>m+1 l=s+1 SeCy

The diagonal elements of the truncated kernel are given by: for any € 29,

Hysm(, ) Z €0 B(2% 0T (),
l=s+1
where

1
T} () = 3 r(S)ps(x)?.
(Q f) S€eCy
Notice that we have now

L h—2
drS)=) (g+1- h)(z 2) = (;{) = B(2%;0).
SeCy h=¢{
Therefore E,, [Tg,q)(:c)} =1and
q
Tr(Hy,>m) = Eo[Hasm(@, o)) = > &B(2% () = hg5s(1).
l=s+1

From Proposition [7]with £ = s, we have

Sup Hd,>m(mia mz) - Em[Hd,>m(ma ﬂj)]’ = Tr(Hd,>m) : Od,]}’(l)y

i€[n] (71
D [ Ha (1, 5)7) ~ B [Ha o)) | = T8 ) o000
i€n

Step 3. Choosing the sequence u = u(d).

Let s’ be chosen as in Assumption Similarly to step 3 in the proof of Theorem take u = u(d) to
be the number of eigenvalues such that A\, ; > ¢, . We get

Tr(Hd,>u) = ®q(1)7
Tr(HG ) = O™ ™),
Tr(Hj ».) = Qla™"),
TT<H§,>u) = Oq(q735,+3)



Step 4. Checking the kernel concentration property at level {(n(q), m(q))}4>1-

The kernel concentration property at level (n, m) hold with the sequence {u(q) }4>1 as defined in step
3. The hypercontractivity of finite eigenspaces and the properly decaying eigenvalues are obtained as
in step 4 of the proof of Theorem|[7] while the concentration of the diagonal elements of the kernel is

given by Eq. (71).
Step 5. Checking the eigenvalue condition at level {(n(q), m(q))}4>1.
This is obtained similarly as in step 5 of the proof of Theorem 7]

C.6 Auxiliary results

Proposition 7. Let s > 1 be a fixed integer. Assume that the sequence of inner-product kernels
{hq}¢>1 satisfies Assumptions andEI at level s. Define H7® : 2 x 2% — R as the convolutional
kernel with global average pooling

Hd>s($ y Z hq >s (m(k),y ) >/Q)
k,k'€[d]
where hg s is the inner-product kernel where the s + 1 first Gegenbauer coefficients are set to 0.

Then for n = Oy(qP) for some fixed p, letting (2;);c(n) ~ Unif(29), we have

up >3y, ai) — Eo[H(x, sc)]‘ = Eo[H*(x, )] - 0ap(1), (72)
1€

sup |Eq [H7%(xi,2')%] — Eg o [H;S(w,a:')Q]‘ =Ep o [H7*(z,2)%] - 04p(1). (73)

1€[n]

Proof of Proposition[7} Step 1. Bounding sup; ¢, | H7*(zi, @;) — Ex[H7*(z, )] ‘

Recall that we defined )
T(q) 2
@)= Flgng 2 "s@

Following the same proof as Proposition 8 in [39], notice that for the integer v in Assumption 2] by
Lemma@] stated below, we have

sup |H7®(zi, x;) —Ew[H;s(w,w)]'
1€[n]
< sup |H7" (o0, 2:) ~ BolHy"(@,2) |+ Z £4.0B(2"0) -1max T( (@:) — Eo[T{" ()]
i€[n f=st+1 icn
= Sl?p] H;U(mivmi)fEm[H;v(m,m ‘ (Z fq[B Q E)) Od[p( )
i1€[n f=s+1

By Assumption|2] there exists C' > 0 such that for any v € [—1,1],

- 1 r ™ v
hgso() = ﬁhé,lv(())w L7 Aas (74)

r=0

and \hq >v( )| < Cq=@+1=7)/2 for + < v. Moreover, by Hanson-Wright inequality as in Lemma
using n = O4(g?) (at most polynomial in ¢) and a union bound, we have for any 1 > 0,
(i) k), (i) (0))"

Sup  sup sup g P = 04p(1),

1<r<v+1 k#l i€[n]

sup suplE H@(k),m(l)yu cqRET = og.p(1).
1<r<v+1 k£l
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Therefore, injecting these bounds in Eq. (74), we get

q,>v(<(€8i)(k), (wi)(l)>/q)‘ = qu]p(qf(“*l)/?ﬂz)’
k#£l i€[n)
iiI?E [ hq,>v(<w(k),w(l)>/q)u = Oy p(q~WHD/24m),

Hence, we deduce that

sup |H3 " (@i, 1) — By [H; " (@, @)
1€[n]
1
<< 30 5w [hesu (@) (@) 0)/0) — Ealhy (@, @) /)]
k£le[d] €]
< dsup { sup [ (@001 (@)} )| + B [ (00, 200 )| }

= Ogp(dg~ D240y = 05(1).
Furthermore, recall that by Assumption we have E[H(z, z)] > &, B(2%5') = Q,(1). We get

sup
i€[n]

HyY (i, i) — Ba[Hy " (x, w)}‘ = E[H7 (%, )] - 0q.2(1),

which concludes the proof of the first bound.

Step 2. Bounding sup;c,,) Bz [H7*(i, 2')?] — Eq o [H* (2, 2')?]|.

Notice that we can write,

l=s+1
where we denoted Ry = > g, 7(S)? and
_ 1
= (x) = T > r(8)’vs(x)?
t SeCy

Then, by Lemma[2] we get for any u > s,

sup ]EE’[Hd (il:“ /)2] _Em,m’ [H;S(.’E,:I:/)2]‘

i€[n]

< s%p] Eo [H7 " (20, @")?] = Bq o [H7 " (, ') ‘ Z fq R - rn[a)]c g )(mz) - Ew[”(d)( )]
€[N l=s+1

= gup Ey [H;U(a:“ ;1;/)2} _ Em x [Hd ‘ ( Z Eq gR[) Oq [p( )
1€[n] t=st1

We conclude following the same argument as in the proof of Proposition 9 in [39]. [

Lemma 2. Let £ > 2 be an integer. Define ng) : 29 5 Rand Eéd) : 29 5 Rto be

1
ngd)(w) = Bl290) 522 r(S)Ys(zx)?, (75)
167
=0 (@) = = 3 r(S) (), (76)
SeCy

where Ry =Y g0, 7(5)%
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Let n < qP for some fixed p. Then, for (:ci)ie["}i'kd'Unif(Qd), we have

ma |1} (i) — Eal T (@)]] = 0u(1), (77)
ma |27 (1) — Eal=” (2)]| = 0a2(1). (78)

where Eg [Téd) (0)] = E, [Ef”(ﬁc)] =1

Proof of Lemma[2] Step 1. Bounding max; )

11 (@) ~ Ea[ 1} (@)]
Define Fy : 2% — R to be
1
Fil) =X @) ~ BT @) = gprgagy 3 7(5) D Yers@Vins@: o)
77 Secy i#j€[d]

Notice that Fy(x) is a degree 2¢ polynomial and therefore satisfies the hypercontractivity property.
For any m > 1, there exists C' > 0 such that

Eg[Fo(z)?™Y ™) < C - By [Fu(z) 42 (80)
Let us bound the right hand side. We have
1

= B 2 "OrS) 3 w(BiBaBa By,
’ S,S8’€Cy i3, 57 €ld]

E[Fy(z)?]

where B1 =1+ S5,By =j+ 5, B3 =1 + 5 and By = j/ + S’, and we denoted
W(Bla B27 B3a B4) =Eg |:YBl (m)YBQ (m)YBs (w)YB4 (.’I))] ]]'317532 IL33?534'
Notice that w(Bi, Ba, B3, By) = 1if BjABy = B3A B, (the symmetric difference) and 0 otherwise.

In other words, every elements in By U By U Bs U By appears exactly in 2 or 4 of these sets.
Letus fix ¢ € [d] and S € Cy, and bound

Z r(S") Z w(B1, Ba, B3, By). (81)

S'€Cq,e 4,5 €ld]

Denote |B1ABy| = 2k with 1 < k < £. In order for w(B1, By, B3, By) = 1, B3 must contain
exactly k points in By A By while B4 must contain the remaining & points.

e Case k < (. There are at most £ ways of choosing j such that By N By # (). Fixing j (i.e.,
Bj; and Bs) and 57, then there are 2k¢ ways of choosing i’ and 2k¢ ways of choosing j’
such that B3 N (B1ABs) # () and By N (B1ABs) # (). Hence the contribution of these
terms in Eq. (81)) is upper bounded by

-1
SOr(S)Y 7 (2k0) <407 > r(S) = 407 B(2%0). (82)
k=1

S’eCy S’eCy

e Case k = /(. There are at most d ways of choosing j. Furthermore, for j fixed, there
are at most (2;) ways of choosing Bz and By such that B3 U By = By U By (note that

By N By = ) and therefore B3 N By = (). Hence the contribution of these terms in Eq. (8T)
is upper bounded by

20
> r(8)-d-1pusi=BuB, < dQ< )7 (83)

{
S7€Cy,it 5 €ld]

where we used that r(S”) < q.
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Combining Egs. (82) and (83) and using there are dB(29; ¢) choices for i and S1, we get

) 1 . 2
E[Fy(z)?] < ‘Wwie[%ecf(s) [4673(2 :0) +dq(£>}

=04(1) - [d™" +¢B(2% 07" = Oq(q7),
where we used that £ > 2 and B(2%; () = Q,(¢").
Using Eq. (80), we deduce

1/(2m) 1/(2m)

& [mmprl o)) < B g

< Cﬂl/(2m)E[Fe(£B)2]1/2 _ nl/m . Oq(q_1/2).
Using Markov’s inequality and taking m sufficiently small yield Eq. (77).

< n1/<2m>1E[Fg(mi)2m}

Step 2. Bounding max;c |y,

=0 (@) - EaE{" (@)]]-

The second bound (78) is obtained very similarly. Define G, : 2¢ — R to be

—(d —(d 1
Gi(e) = £ (@) ~Eo[5 @) = 7 > r(9) Y Yius(@Vies(@).  @64)
t sec, ijeld]
Then, we have
1
ElGi(@)] = gz 2 (8’8’ D, w(BiBs By Ba).
S,587e€Cy i,4/,7,5' €[d]

Further notice that following the same computation as in Eq. (69), we get

D SEC D SRR IE (g B

sec, h=¢
Hence, the same computation as for Fy in step 1 yields

Bl@] < g > o8P (a0 R+ ()]

¢ ield],Sec,
=0,(1) - [d7" + ¢*Ry ] = Oq(a™),
where we used that £ > 2. We deduce Eq. (78) similarly to step 1. O

Lemma 3 (Hanson-Wright inequality). There exists a universal constant ¢ > 0, such that for any
t > 0and ¢'/® > d > q € N for some § > 0, when « € Unif(Qd), we have

P( sup [(xw,zao)l/g>t]| < 2q2/‘5 exp{—cq - min(t27t)},
k#le[d]

where we recall that x () = (Tk, ..., Thiqg—1)-

Proof of Lemma[3] For any k # [, denote A = (aij)i,jeq) the matrix with a4 144 = 1 for
i =0,...,¢ — 1and a;; = 0 otherwise, such that (x, Ax) = (x (), x()). Note that we have
lAlFr = /@& ||Allop < 1 and E[{(x, Az)] = 0. By Hanson-Wright inequality of vectors with
independent sub-Gaussian entries (for example, see Theorem 1.1 in [42]), we have

P (|(z, Azx)|/q > t) < 2exp{—cq - min(t*,1)}.

Taking the union bound over k # [ concludes the proof. O

D Technical background of function spaces on the hypercube

Fourier analysis on the hypercube is a well studied subject [41]]. The purpose of this section is to
introduce some notations and objects that are useful in the statement and proofs in the main text.
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D.1 Fourier basis

Denote 29 = {—1, 41} the hypercube in d dimension, and 7, to the uniform probability measure
on 2%, All the functions will be assumed to be elements of L?(.2%, 7;) (which contains all the

bounded functions f : 2¢ — R), with scalar product and norm denoted as (-, )72 and || - || z2:
(f,9)1e = /f wyralde) = o Y (g
zec2d

Notice that L?(2¢,7,) is a 2" dimensional linear space. By analogy with the spherical case we
decompose L?(2%, 7,) as a direct sum of d + 1 linear spaces obtained from polynomials of degree

0=0,...,d
d
) =P Vae
=0
For each ¢ € {0,...,d}, consider the Fourier basis {Yz(g)}sg[d]"s‘:g of degree ¢, where for a set
S C [d], the basis is given by
d
}/Z(S) 5 = H ;.
icS

It is easy to verify that (notice that zf = x; if k is odd and ch- = 1if k is even)
d d 4
<Yz(,s)va(,s)'>L2 =E[z° x 2] = 6y k05,5

Hence {Y/(? }scd),|s|=¢ form an orthonormal basis of V¢ and

dim(Vy,) = B(2%¢) = (j)

We will omit the superscript (d) in Yg(g) when clear from the context and write Yg := Yé(?.

We denote by P, the orthogonal projections to V¢ in L2(2%). This can be written in terms of the
Fourier basis as

sz(;l:) = Z <f, Y5>L2YS(:.E). (85)

SCld],|S|=¢

We also define P<; = Y4 _oProPse =1 —Pey =372, Proand Py = Py, Pog = Poyy.
D.2 Hypercubic Gegenbauer

We consider the following family of polynomials {Qéd)}g:07,,_,d that we will call hypercubic Gegen-
bauer, or Gegenbauer on the d-dimensional hypercube, defined as

1
M@y = gy Y. NE@YEw. (86)
T scld]|s|=¢

Notice that the right hand side only depends on {(x,y) and therefore these polynomials are well
defined. In particular,

(@7((1. ). QL (L M2 = Frgas oo

Hence {Q{"}/—q..... form an orthogonal basis of L2({—d, —d + 2,...,d — 2,d}, 7}) where 7} is
the distribution of (1, ) when & ~ 74, i.e., 7} ~ 2Bin(d, 1/2) — d/2.

It is easy to check more generally that

(@4 (@) Q" (W) 12 = Frg g (@ 9o
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Furthermore, Eq. (86) imply that —up to a constant— Qéd) ({x,y)) is a representation of the projector
onto the subspace of degree-k polynomials

Puh)@) =B ) [0 () fw) rlay). @)

2

For a function o(-/v/d) € L?>({—d,—d +2,...,d — 2,d},7}), denote its hypercubic Gegenbauer
coefficients {4 (o) to be

cunlo) = / o (x/VDQ? (2)7) (da). (88)
{—d,—d+2,....d—2,d}

To any inner-product kernel Hy(x1,22) = hg((x1, x2)/d), with hy(-/Vd) € L*({—d,—d +
2,...,d —2,d},7}), we can associate a self adjoint operator % : L?(2%) — L?(2?) via

Haf(x) = / ha(@, 21)/d) f(21) Ta(dey) (89)

24
By permutation invariance, the space V}, of homogeneous polynomials of degree k is an eigenspace
of #;, and we will denote the corresponding eigenvalue by &4 1 (hq). In other words 77 f (x) =
>ot_o&ak(ha)Prf. The eigenvalues can be computed via

€ak(ha) = / ha(/d) QL (2)7) (da) ©0)
{—d,—d+2,...,d—2,d}

D.3 Hermite polynomials

The Hermite polynomials {Hey},>o form an orthogonal basis of L?*(R,), where v(dz) =

e 2dg /v/ 2w is the standard Gaussian measure, and Hey has degree k. We will follow the
classical normalization (here and below, expectation is with respect to G ~ N(0, 1)):

E{He;(G) He,(G)} = k! 65, . 1)
As a consequence, for any function g € L*(R, ), we have the decomposition
o) =3 " ey, o) = E{o(@) Hey(@)). ©2)

k=0

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials
introduced in the previous section. Indeed, the Gegenbauer polynomials (up to a v/d scaling in
domain) are constructed by Gram-Schmidt orthogonalization of the monomials {x*} 1> with respect
to the measure 7, while Hermite polynomial are obtained by Gram-Schmidt orthogonalization with
respect to 7. Since 73 => v (here = denotes weak convergence), it is immediate to show that, for any
fixed integer k,

1
Jim Coeff{Q\") (Vdzx) B(2% k)"/*} = Coeff {(k')l/? Hek(x)} : (93)

Here and below, for P a polynomial, Coeff{P(z)} is the vector of the coefficients of P. As a
consequence, for any fixed integer k, we have

pi(0) = lim €q4(0) (B(2% k)2, (94)
—00
where pi(0) and &g (o) are given in Eq. and (38).

D.4 Hypercontractivity of uniform distributions on the hypercube

By Holder’s inequality, we have || f||z» < ||f||z« for any f and any p < g. The reverse inequality
does not hold in general, even up to a constant. However, for some measures, the reverse inequality
will hold for some sufficiently nice functions. These measures satisfy the celebrated hypercontractivity
properties [4} 15 18 25]].

Lemma 4 (Hypercube hypercontractivity [4]). For any ¢ = {0,...,d} and fq € L*(29) to be a
degree { polynomial, then for any integer q > 2, we have

I fallZa(2ay < (g =1)° - || fall 7220
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