
Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL

A. PROOF OF THEOREM 2

First, we prove that (II) implies (I). We define the action of G on the set of univariate maps f : S ! R
by

(g · f)(x) := f(g�1 · x).
and define the action of G on the set of bivariate maps : S2 ! R by

(g ·)(x,x0) := (g · x, g · x0).

Lemma 4. For a map : X 2 ! Rd
and a sample x 2 X , a sample dependent function x : X !

Rd
is defined by

 x(x
0) := (x0,x)

Here, is G-invariant if and only if the map X 3 x 7! x 2 Map(X ,Rd) is G-equivariant.

The above lemma is derived as follows:
 g·x0(x) = (x, g · x0) = (g�1 · x,x0) = x0(g�1 · x) = (g · x0)(x).

The left hand side represents the action on the sample space and the right hand side does the action
on the function space.

When we denote the set of all G-equivariant maps from S to S 0 by Equiv(S,S 0), the above lemma is
represented as

Inv(X 2,Rd) ⇠= Equiv(X ,Map(X ,Rd)).

Next, we prove that (I) implies (II). We prepare some notations and lemmas in the following. Let be
an interpolating continuous kernel that satisfies (x,x0) � 0. Then, for m 2 N and Z 0

m
✓ (S⇥Y)m,

define

Hm(Z 0

m
) :=

(
mX

i=1

�K+1 (yi) (·,xi) : (xi, yi)
m

i=1 ✓ Z 0

m

)
✓ HK+1,

where HK+1 = H ⇥ · · · ⇥ H is the (K + 1)-dimensional-vector-valued-function Hilbert space
constructed from the RKHS H for which is a reproducing kernel and endowed with the inner
product hf, giHK+1 =

P
K+1
i=1 hfi, giiH. Denote

⇥
Z 0

M

⇤
=

M[

m=1

[Z 0

m
] and HM =

M[

m=1

Hm(Z 0

m
).

Lemma 1 and Lemma 3 in Gordon et al. (2019) provides the following lemma.
Lemma 5. For m 2 N, let Z 0

m
✓ (S ⇥ Y)m be a set with multiplicity K and be an interpolating

continuous kernel. Then, (Hm(Z 0

m
))M

m=1 are pairwise disjoint and the embedding E is injective and

continuous:

E :
⇥
Z 0

M

⇤
! HM (Z 0

m
), E([Z]) := Em([Z]) if [Z] 2 [Z 0

m
] ,

where

Em : [Z 0

m
] ! Hm(Z 0

m
), Em ([(x1, y1) , . . . , (xm, ym)]) :=

mX

i=1

�K+1 (yi) (·,xi)

Similarly, Lemma 2 and Lemma 4 in Gordon et al. (2019) provides the following lemma.
Lemma 6. Suppose that Z 0

M
is a topologically closed set in (S ⇥ Y)M and permutation-invariant,

and that satisfies (i) � 0, (ii) (x, x) = �2 > 0 for any x, and (iii) (x, x0) ! 0 as kxk ! 1.

Let � :
⇥
Z 0

<M

⇤
! Cb(S,Y) be a map such that every restriction �|[z0

m] is continuous. Then,

� � E�1 : H<M ! Cb(S,Y) is continuous.

When a G-equivariant function f is injective, f�1|Imf is also G-equivariant on the image of f .
Denoting � � E�1 by ⇢, we can rewrite as � = ⇢ � E.

11

Under review as a conference paper at ICLR 2021

B. SEPARABLE LIECONV

In this section, we introduce the separable LieConv that we design and implement for EquivCNP.
LieConv (Finzi et al., 2020) is based on PointConv (Wu et al., 2019), which is proposed for point cloud
convolution. That is, the lifted inputs are convolved by PointConv. Therefore, we can adopt techniques
that are used for general convolution. One of such techniques is separable convolution(Chollet, 2017).
Separable convolution consists of depthwise convolution and pointwise convolution (as known as 1 x
1 convolution). The mathematical formulation of normal convolution, the pointwise convolution, and
the depthwise convolution is as follow:

Conv(W, y)(i, j) =
K,L,MX

k,l,m

W(k,l,m) · y(i+k,j+l,m)

PointwiseConv(W, y)(i, j) =
MX

m

Wm · y(i,j,m)

DepthwiseConv(W, y)(i, j) =
K,LX

k=1

W(k,l) � y(i+k,j+l)

SepConv (Wp,Wd, y) (i, j) = PointwiseConv(i, j) (Wp,DepthwiseConv (i, j) (Wd, y))

Thanks to the assumption that convolution operation is separable to the spatial direction and the
channel direction, the separable convolution provides the way to operate convolution more efficiently
than general convolution. Note that the difference of the efficiency between LieConv and separable
LieConv is slight; the difference between the matrix production and element-wise product. Following
the equation above, we design and implemented separable LieConv. Figure 5 illustrates the processing
of (a) normal LieConv and (b) separable LieConv. The memory consumption is also different that
the output shape of after the convolutional weights (kernel) is calculated in normal LieConv is
B ⇥NMC ⇥ Cmid while that of separable LieConv is B ⇥NMC ⇥ Cin.

LieConv
MLP

MLP

Lifted
Coordinates

Features

NMC × (Du + Dq)

NMC × Cin

1 × Coutf1
f2

fN_MC

…
Coord1
Coord2

fN_MC

…

NMC × Cmid

1 × (Cin × Cmid)

(a) LieConv

Separable LieConv
MLP

MLP

Lifted
Coordinates

Features

NMC × (Du + Dq)

NMC × Cin

1 × Coutf1
f2

fN_MC

…

Coord1
Coord2

fN_MC

…

NMC × Cin

1 × (Cin × Cmid)

Depthwise LieConv

= PointwiseLieConv

(b) Separable LieConv

Figure 5: Separable LieConv. Difference between (a) normal LieConv and (b) separable LieConv is
the matrix product ⌦ and elemente-wise product �.

12

Under review as a conference paper at ICLR 2021

C. EQUIVCNP ARCHITECTURE

The architecture of EquivCNP is following that of ConvCNP (Gordon et al., 2019), so that we
can fairly compare them. It is difficult to determine radius r of LieConv because the radius is
varied substantially between the different groups due to the different distance functions. Instead, we
parametrized the radius by specifying the average fraction of the total number of convolved elements
that would fall into this radius. Therefore, we describe the value of the average fraction instead
of kernel size that is described in other papers as usual. Simultaneously, while the conventional
convolutional layer has a parameter called stride that determines the target elements (pixels) to be
convolved, LieConv has a parameter sampling fraction instead of stride to subsample the group
elements; sampling fraction is 1.0.

C.1 1D SYNTHETIC REGRESSION TASK

For 1D regression tasks, we use 4-layer LieConv architecture with ReLU activations. The average
fraction of those LieConv is 5

32 and the number of MC sampling is 25. The channels of LieConv
are [16, 32, 16, 8]. Functional representation E(Z) is concatenated with target point xT , followed by
lifting. After operating convolution to the lifted inputs, we use a softplus activation following the
last fully-connected layer (FC) as a standard deviation. Note that the output of EquivCNP, mean and
standard deviation, is sliced to get those of yT . The architecture of EquivCNP for a 1D regression
task is illustrated in Figure 6.

B × T × (K+1)
B × (T+|xT|) × 8

FC

Sigmoid

B ×	 (T+|xT|) ×	
(16 => 32 => 16 => 8)

(LieConv + ReLU) x 4

FC

FC

B ×	(T+|xT|) × 1

Lift

Figure 6: The architecture of EquivCNP for a 1D regression task. ⌦ represents dot product and �
represents concatenation. is a RBF kernel and � = [y0, y1, . . . , yK].

C.2 2D IMAGE-COMPLETION TASK

For the 2D image-completion task, we use LieConv Conv✓ instead of RBF kernels as . The channels
of this LieConv is 128, the average fraction is 1

10 , and the number of MC sampling is 121. After the
LieConv of , we use four residual blocks. Each block is composed by two separable LieConv layers
and residual connections as shown in Figure 7. The channel of each residual block is 128, the average
fraction is 1

15 , and the number of MC sampling is 81.

We employ the same procedure of ConvCNP (Gordon et al., 2019) for image-completion as follows:

1. Given an input image I 2 RC⇥H⇥W , where C is color channel, H and W represents height
and width respectively, sample context points features := I � Mc from bernoulli distribution.
Mc means the density as same as we define � during 1D regression task.

2. After lifting the inputs, apply a LieConv to both I � Mc and Mc to get functional representa-
tion: E(Z) = Conv✓([Mc, I � Mc]) 2 R(128+128)⇥H⇥W .

3. Then, functional representation E(Z) is passed through one FC followed by four residual
blocks: h = ResBlocks(FC(E(Z))) 2 R128⇥H⇥W .

13

Under review as a conference paper at ICLR 2021

Separable LieConv

Separable LieConv

ReLU

x

ReLU

Figure 7: Residual Block

4. Finally, we use one FC to get mean and standard deviation channels and split the output
2 R2C⇥H⇥W into those statistics.

D. EXPERIMENT DETAILS

In this section, we describe the experiments in more detail. Code and dataset will be made available
upon publication.

D.1 1D SYNTHETIC REGRESSION TASK

The kernels used in Section 5.1 for generating the data via Gaussian Processes are defined as follows:

• RBFKernel:

k(x1, x2) = exp

✓
� (x1 � x2)2

2

◆

• Matern- 52

k(x1, x2) =

✓
1 +

p
5d+

5

3
d2
◆
exp

�
r

5

2
d

!
with d = kx1 � x2k2

• Periodic

k(x1, x2) = exp (�2 sin(⇡kx1 � x2k2))

To train all NPs, the GPs generate the context and target points; the number of context points and
target points is random-sampled uniformly from [3, 50] respectively. All NPs were trained for 200
epochs by 256 batches per epoch and the size of each batch is 16, We used Adam optimizer (Kingma
& Ba, 2014) with learning rate 10�3. An architecture of CNP was based on the original code2. We
visualize the result of periodic kernel regression at Figure 8.

We also demonstrate EquivCNP with the algorithm following that of ConvCNP (Gordon et al., 2019);
regarding the output of EquivCNP as weights for evenly-spaced basis functions (i.e. RBF kernel) in
Figure 9. The result of predictive distribution is much smoother than the result of our Algorithm 1
though using RBF kernel is redundant.

D.2 2D IMAGE-COMPLETION TASK

The original image of the digital clock number is shown in Figure 10. We first inverted in colors of
black and white of the image. Then, we cropped the image so that each cropped image contains one
digit and resize them to 64⇥ 64. Note that the vertical size of each number is set up to 56, while the
horizontal size is not fixed. The values of all pixels are devided by 255 to rescale them to the [0, 1]
range.

2https://github.com/deepmind/neural-processes

14

https://github.com/deepmind/neural-processes

Under review as a conference paper at ICLR 2021

Figure 8: Predictive mean and variance of ConvCNP and EquivCNP at periodic kernels. First two
columns show the result without outlier observation and last two columns show the result with outlier
observation.

Figure 9: Predictive mean and variance of EquivCNP that using algorithm proposed in (Gordon et al.,
2019). Blue line and region represents EquivCNP and green line and region represents Gaussian
Process. Each plot shows diffent sampled data. Although the algorithm is redundant compared with
our proposed Algorithm 1 due to using RBF kernel to map the output of LieConv back to a continuous
function, the result is much smoother than Figure 2 and 8.

As we mentioned in Section C.2, the context points are sampled from bernoulli distribution. The
parameter of bernoulli distribution, probability p that the value is 1, is determined at a rate of the
number uniformly from U(ntotal

100 ,
ntotal
2) per ntotal. The batch size is 4, epoch is 100, and the optimizer

is Adam (Kingma & Ba, 2014) whose learning rate is 5⇥ 10�4.

15

Under review as a conference paper at ICLR 2021

Figure 10: The original data that is used for 2D image-completion task.

16

	Introduction
	Related Work
	Neural Networks with Group Equivariance
	Family of neural processes

	Decomposition Theorem
	Group Equivariant Conditional Neural Processes
	Group Convolution
	Local Group Convolution
	Architecture

	Experiment
	1D Synthetic Regression Task
	2D Image-Completion Task

	Discussion

