
A Proof of differential privacy537

Proof of Theorem 3. Define the ℓ2 sensitivity of any function g to be ∆g = supS,S′ ∥g(S)−g(S′)∥2538

where the supreme is over all neighboring (S, S′). Then the Gaussian mechanism ĝ(S) = g(S) +539

σ∆g · N (0, I).540

σ denotes the “Noise multiplier”, which corresponds to the noise-level when a Gaussian mechanism541

is applied to a query with sensitivity 1.542

Observe that automatic clipping (AUTO-V and AUTO-S (4.1)) ensures the bounded global-sensitivity543

of the stochastic gradient as in Abadi’s clipping. Aligning the noise-multiplier (rather than the544

noise-level itself) ensures that the the noise-to-sensitivity ratio σ∆g
∆g = σ is fixed regardless of ∆g.545

The Gaussian mechanism’s privacy guarantees are equivalent. Thus from the privacy accountant546

perspective, DP-SGD with both Abadi’s clipping and our autoclipping method can be equivalently547

represented as the adaptive composition of T Poisson sampled Gaussian Mechanism with sampling548

probability B/n and noise multiplier σ.549

B Proof of automaticity550

B.1 Non-adaptive DP optimizers551

Proof of Theorem 1. We prove Theorem 1 by showing that, DP-SGD using R-dependent AUTO-S552

with learning rate η and weight decay λ is equivalent to R-independent AUTO-S with learning rate553

ηR and weight decay λ/R. We claim other non-adaptive optimizers such as HeavyBall and NAG can554

be easily shown in a similar manner.555

Recall the standard SGD with weight decay is

wt+1 = wt − η

(∑
i∈Bt

∂li
∂wt

+ λwt

)

Replacing the standard gradient
∑

i
∂li
∂wt

with the private gradient, we write the R-dependent case as556

wt+1 = wt − η

(∑
i∈Bt

∂li
∂wt

·R/∥ ∂li
∂wt

∥2 + σR · N (0, I) + λwt

)

= wt − ηR

(∑
i∈Bt

∂li
∂wt

/∥ ∂li
∂wt

∥2 + σ · N (0, I)

)
− ηλwt

which is clearly equivalent to the R-independent case:557

wt+1 = wt − η′

(∑
i∈Bt

∂li
∂wt

/∥ ∂li
∂wt

∥2 + σ · N (0, I) + λ′wt

)

if we use η′ = ηR and λ′ = λ/R.558

B.2 Adaptive DP optimizers559

Proof of Theorem 2. We prove Theorem 2 by showing that, DP-AdamW using R-dependent AUTO-560

S with learning rate η and weight decay λ is equivalent to R-independent AUTO-S with the same561

learning rate η and weight decay λ/R. This is the most complicated case. We claim other adaptive562

optimizers such as AdaDelta, Adam with weight decay (not AdamW), and NAdam can be easily563

shown in a similar manner.564

Recall the standard AdamW is

wt+1 = wt − η

(
mt/(1− β1)√
vt/(1− β2)

+ λwt

)
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where β1, β2 are constants, gt :=
∑

i
∂li
∂wt

is the standard gradient,

mt = β1mt−1 + (1− β1)gt −→ mt =
∑
τ

βt−τ
1 (1− β1)gτ ,

vt = β2vt−1 + (1− β2)g
2
t −→ vt =

∑
τ

βt−τ
2 (1− β2)g

2
τ .

Replacing the standard gradient with the private gradient Rg̃t := R(
∑

i
∂li
∂wt

/∥ ∂li
∂wt

∥2+σ ·N (0, I)),
we write the R-dependent DP-AdamW as

wt+1 = wt − η

(
m̃t/(1− β1)√
ṽt/(1− β2)

+ λwt

)
where

m̃t = β1m̃t−1 + (1− β1)Rg̃t −→ m̃t =
∑
τ

βt−τ
1 (1− β1)Rg̃τ ,

ṽt = β2ṽt−1 + (1− β2)R
2g̃2

t −→ ṽt =
∑
τ

βt−τ
2 (1− β2)R

2g̃2
τ .

Clearly, the R factor in the numerator and denominator of m̃t/(1−β1)√
ṽt/(1−β2)

cancel each other. Therefore565

we claim that the R-dependent DP-AdamW is in fact completely independent of R.566

B.3 Automatic per-layer clipping567

In some cases, the per-layer clipping is desired, where we use a clipping threshold vector R =
[R1, · · · , RL] and each layer uses a different clipping threshold. We claim that DP optimizers
under automatic clipping works with the per-layer clipping when R is tuned proportionally, e.g.
R = R · [a1, · · · , aL], but not entry-wise (see counter-example in Fact B.1). One special case is the
uniform per-layer clipping when R1 = · · · = RL = R/

√
L. This is widely applied as only one norm

R requires tuning, instead of L norms in R, particularly in the case of deep models with hundreds of
layers. The corresponding DP-SGD with AUTO-S in (3.3) gives

w
(l)
t+1 = w

(l)
t − η

(∑
i∈Bt

R√
L

g
(l)
t,i

||g(l)
t,i ||+ γ

+ σR · N (0, I)

)

Here the superscript (l) is the layer index. Clearly R couples with the learning rate η and the same568

analysis as in Theorem 1 follows. The adaptive optimizers can be similarly analyzed from Theorem 2.569

Fact B.1. Changing one clipping threshold in the clipping threshold vector R (i.e. not proportionally)570

can break the coupling with learning rate.571

Proof of Fact B.1. We prove by a counter-example of R in R2. Consider DP-SGD with per-layer
clipping thresholds (R1, R2) = (9, 12):

w
(l)
t+1 = w

(l)
t − η

(∑
i∈B

Rlgt,i,l
||gt,i,l||

+ σ
√

R2
1 +R2

2 · N (0, I)

)
Increasing R1 from 9 to 16 changes the update for the first layer

η

(∑
i∈B

9gt,i,l
||gt,i,l||

+ 15σ · N (0, 1)

)
→ η

(∑
i∈B

16gt,i,l
||gt,i,l||

+ 20σ · N (0, I)

)
The noise-to-signal ratio decreases from 5/3 to 5/4 for this layer, and increases from 5/4 to 5/3 for the572

second layer. This breaks the coupling with learning rate, since the coupling does not change the573

noise-to-signal ratio.574
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C Main results of convergence for DP-SGD with automatic clipping575

C.1 Main proof of convergence for DP-SGD (the envelope version)576

Proof of Theorem 4. In this section, we prove two parts of Theorem 4.577

The first part of Theorem 4 is the upper bound on mint E(∥gt∥), which is a direct result following578

from Theorem 6, and we prove it in Appendix C.2.579

Theorem 6. Under Assumption 5.1, 5.2, 5.3, running DP-SGD with automatic clipping for T580

iterations gives581

min
t

E(∥gt∥) ≤
ξ

r
+ F

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; r, ξ, γ

)
(C.1)

where582

• for r < 1, γ = 0 and η ∝ 1/
√
T , F(x) = x

min0<c<1 f(c,r) and f(c, r) := (1+rc)√
r2+2rc+1

+583

(1−rc)√
r2−2rc+1

; for r ≥ 1, γ = 0 and η ∝ 1/
√
T , F(x) = ∞;584

• for r ≥ 1, γ > 0 and η ∝ 1/
√
T , F is the convex envelope of (C.8), and is strictly increasing.585
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Figure 6: Visualization of upper bound ξ
r +F

(
O(1/

√
T ); r, ξ, γ

)
for gradient norm, with O(1/

√
T )

in (C.1). Here ξ = 1. The right plot is a zoom-in (with additional lines) of the left one.

Notice that, (C.1) holds for any r > 0. However, we have to consider an envelope curve over r in586

(C.1) to reduce the upper bound: with AUTO-V clipping (γ = 0), the upper bound in (C.1) is always587

larger than ξ as r < 1; we must use AUTO-S clipping (γ > 0) to reduce the upper bound to zero, as588

can be seen from Figure 6. In fact, larger T needs larger r to reduce the upper bound.589

All in all, we specifically focus on r ≥ 1 and γ > 0, which is the only scenario that (C.1) can590

converge to zero. This scenario is also where we prove the second part of Theorem 4.591

The second part of Theorem 4 is the asymptotic convergence rate O(T−1/4) of DP-SGD, only592

possible under r ≥ 1 and γ > 0.593

By (C.1) in Theorem 6, our upper bound G from Theorem 4 can be simplified to

min
r>0

ξ

r
+ (M−1)ccv

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; r, ξ, γ

)

where the function M−1 is explicitly defined in (C.8) and the subscript ccv means the upper concave594

envelope. Clearly, as T → ∞, M−1( 1√
T
) → 0. We will next show that the convergence rate of595

M−1 is indeed O( 1√
T
) and the minimization over r makes the overall convergence rate O(T−1/4).596
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Starting from (C.8), we denote x = 4√
T

√
(L0 − L∗)L

(
1 + σ2d

B2

)
and write597

M−1(x; r, ξ, γ) =
− ξ

rγ + (r2 − 1) ξrx+ rγx+ γ
√
( ξr )

2 + 2ξx+ 2γx+ x2

2γ − (r2 − 1)x

=

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+ γ

√
(
ξ

r
)2 + 2ξx+ 2γx+ x2

)

·
1 + r2−1

2γ x+O(x2)

2γ

=
1

2γ

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+

γξ

r

√
1 +

2(ξ + γ)r2x

ξ2
+O(x2)

)

· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+

γξ

r

(
1 +

(ξ + γ)r2x

ξ2
+O(x2)

))
· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
(r2 − 1)

ξ

r
x+ rγx+

γ(ξ + γ)rx

ξ
+O(x2)

)
· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
(r2 − 1)

ξ

r
+ rγ +

γ(ξ + γ)r

ξ

)
· x+O(x2)

=
1

2γ

(
(ξ + γ)2

ξ
r − ξ

r

)
· x+O(x2)

Since M−1 is asymptotically linear as x → 0, we instead study

min
r>0

ξ

r
+M−1 (x; r, ξ, γ) ≡ min

r>0

ξ

r
+

1

2γ

(
(ξ + γ)2

ξ
r − ξ

r

)
· x+O(x2).

That is, ignoring the higher order term for the asymptotic analysis, the M−1 part converges as598

O(x) = O(1/
√
T ), and we visualize this in Figure 8.599

Although DP-SGD converges faster than SGD, the former converges to ξ/r and the latter converges
to 0. Thus, taking ξ/r into consideration, the objective reduces to a hyperbola(

ξ(1− x
2γ )
)

r
+

x(ξ + γ)2

2γξ
· r

whose minimum over r is obviously 2
√

ξ(1− x
2γ )

x(ξ+γ)2

2γξ = O(
√
x) = O(T−1/4).600

To give more details about the upper bound in (5.2), we demonstrate its dependence on ξ and γ in601

Figure 7.602

C.2 Main proof of convergence for DP-SGD (the non-envelope version)603

Proof of Theorem 6. Consider DP-SGD with AUTO-S clipping

wt+1 = wt − η

(∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σN (0, I)

)
where g̃t,i is i.i.d. samples of g̃t, an unbiased estimate of gt, with a bounded variance as described in604

Assumption 5.3.605
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By Lipschitz smoothness in Assumption 5.2, and denoting Z = N (0, I), we have606

Lt+1 − Lt ≤ g⊤
t (wt+1 −wt) +

L

2
∥wt+1 −wt∥2

= −ηg⊤
t

(∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σZ

)
+

Lη2

2

∥∥∥∥∥∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σZ

∥∥∥∥∥
2

≤ −ηg⊤
t

(∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σZ

)

+ Lη2

∥∥∥∥∥∑
i

g̃t,i
∥g̃t,i∥+ γ

∥∥∥∥∥
2

+ σ2∥Z∥2


where the last inequality follows from Cauchy Schwartz.607

Given the fact that ∥g̃t,i/(∥g̃t,i∥+ γ)∥ ≤ 1, the expected improvement at one iteration is608

E(Lt+1 − Lt|wt) ≤ −ηg⊤
t E

(∑
i

g̃t,i
∥g̃t,i∥+ γ

)
+ Lη2

(
B2 + σ2d

)
= −ηBg⊤

t E
(

g̃t
∥g̃t∥+ γ

)
+ Lη2

(
B2 + σ2d

) (C.2)

Now we want to lower bound g⊤
t E
(

g̃t

∥g̃t∥+γ

)
in (C.2).609
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Write g̃t = gt +∆t where the gradient noise ∆t follows E∆t = 0,E∥∆t∥ < ξ by Assumption 5.3.610

Then611

g⊤
t E
(

g̃t
∥g̃t∥+ γ

)
= E

(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

)
=

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H+

)
+

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H−

)
=

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H+

)
+

1

2
E
(
∥gt∥2 − g⊤

t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
where we use the hyperplane perpendicular to gt to divide the support of ∆t into two half-spaces:612

H+ := {v : g⊤
t v > 0}, H− := {v : g⊤

t v < 0}.

We use the symmetry assumption in Assumption 5.3 to get

P(∆t ∈ H+) = P(∆t ∈ H−) =
1

2

and notice that ∆t
D
= −∆t, i.e., if ∆t ∈ H+, then −∆t ∈ H− with the same distribution.613

The next result further gives a lower bound for g⊤
t E
(

g̃t

∥g̃t∥+γ

)
using ∥gt∥.614

Lemma C.1.

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
≥ min

0<c≤1
f(c, r;

γ

∥gt∥
) · (∥gt∥ − ξ/r)

for any r > 0 and f(c, r; Γ) = (1+rc)√
r2+2rc+1+Γ

+ (1−rc)√
r2−2rc+1+Γ

.615

For the simplicity of notation, we denote the distance measure616

M(∥gt∥ − ξ/r; r, ξ, γ) = min
0<c≤1

f

(
c, r;

γ

∥gt∥

)
· (∥gt∥ − ξ/r) (C.3)

and leave the fine-grained analysis (e.g. its explicit form in some scenarios) at the end of this section.617

Using the lower bound from Lemma C.1, the expected improvement (C.2) becomes618

E(Lt+1 − Lt|wt) ≤ −ηB

2
M(∥gt∥ − ξ/r) + Lη2B2

(
1 +

σ2d

B2

)
Now extend the expectation over randomness in the trajectory, and perform a telescoping sum over619

the iterations620

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1)

≥ ηB

2
E

(∑
t

M(∥gt∥ − ξ/r)

)
− TLη2B2

(
1 +

σ2d

B2

)

Substituting ηB = η0/
√
T where η0 is a base learning rate, we have621

2(L0 − L∗) ≥
√
Tη0E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
− 2Lη20

(
1 +

σ2d

B2

)
and finally622

E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
≤ 1√

T

[
2(L0 − L∗)

η0
+ 2Lη0

(
1 +

σ2d

B2

)]
(C.4)
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With η0 chosen properly at η0 =
√

L0−L∗

L
(
1+σ2d

B2

) , the hyperbola on the right hand side in (C.4) is623

minimized to 4
√
(L0 − L∗)L

(
1 + σ2d

B2

)
, and we obtain624

E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
≤ 4√

T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
Since the minimum of a sequence is smaller than the average, we have625

min
t

E(M(∥gt∥ − ξ/r)) ≤ 1

T

∑
t

E (M(∥gt∥ − ξ/r)) ≤ 4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
(C.5)

We claim that M may not be concave or convex. Therefore we use Mcvx to denote its lower convex626

envelope, i.e. the largest convex function that is smaller than M. Then by Jensen’s inequality (C.5)627

becomes628

min
t

Mcvx(E(∥gt∥ − ξ/r)) ≤ min
t

E(Mcvx(∥gt∥ − ξ/r)) ≤ 4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
(C.6)

It is obvious that Mcvx is increasing as M is increasing by Theorem 8. Hence, (Mcvx)
−1 is also629

increasing, as the inverse of Mcvx. We write (C.6) as630

min
t

E(∥gt∥ − ξ/r) ≤ (Mcvx)
−1

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

))
and equivalently631

min
t

E(∥gt∥) ≤
ξ

r
+ (Mcvx)

−1

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

))
(C.7)

Finally, we derive the explicit properties of M(∥gt∥ − ξ/r) in Theorem 8. These properties allow632

us to further analyze on the convergence of M(∥gt∥ − ξ/r), based on AUTO-V and AUTO-S,633

respectively.634

1. DP-SGD with AUTO-V clipping. By Theorem 8, we write
M(x; r) = min

c∈(0,1]
f(c, r; 0) · x

This is a linear function and thus Mcvx = M = 1/M−1
cvx. As a result, we have635

min
t

E(∥gt∥) ≤
ξ

r
+

1

minc∈(0,1] f(c, r; 0)
· 4√

T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
We note here r plays an important role under AUTO-V clipping: when r < 1, we spend more iterations636

to converge to better and smaller gradient norm ξ/r; when r ≥ 1, minc f(c, r; 0) = f(1, r; 0) = 0637

and it takes forever to converge. This is demonstrated in the left plot of Figure 5.638

2. DP-SGD with AUTO-S clipping. By Theorem 8 and for r > 1, we write

M(x; r, ξ, γ) =

(
γ

(r − 1)(x+ ξ/r) + γ
− γ

(r + 1)(x+ ξ/r) + γ

)
· x.

Notice that the inverse of a lower convex envelope is equivalent to the upper concave envelope639

(denoted by the subscript ccv) of an inverse. Therefore we can derive (Mcvx)
−1 = (M−1)ccv with640

the explicit form641

M−1(x; r, ξ, γ) =
− ξ

rγ + (r2 − 1) ξrx+ rγx+ γ
√
( ξr )

2 + 2ξx+ 2γx+ x2

2γ − (r2 − 1)x
. (C.8)
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we can derive it based on r, ξ, γ and substitute back to (C.7).642

Note that the domain of M−1 (or the image of M) is [0, γ
r−1 − γ

r+1 ).643

In comparison to the AUTO-V clipping, M−1 takes a much more complicated form, as depicted in644

the middle plot of Figure 5, where r > 1 plays an important role for the gradient norm to converge to645

zero.646

C.3 Proof of Lemma C.1647

Proof of Lemma C.1. We want to lower bound648

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
(C.9)

To simplify the notation, we denote noise-to-signal ratio S := ∥∆t∥
∥gt∥ and c := cos θ =

g⊤
t ∆t

∥gt∥∥∆t∥ , with649

θ be the random angle between gt and ∆t. Note that 0 < c ≤ 1 when ∆t ∈ H+.650

The term inside the conditional expectation in (C.9) can be written as651

(1 + Sc)∥gt∥2√
S2 + 2Sc+ 1∥gt∥+ γ

+
(1− Sc)∥gt∥2√

S2 − 2Sc+ 1∥gt∥+ γ

=∥gt∥
(

(1 + Sc)√
S2 + 2Sc+ 1 + γ/∥gt∥

+
(1− Sc)√

S2 − 2Sc+ 1 + γ/∥gt∥

)

Defining Γ = γ/∥gt∥ and652

f(c, S; Γ) :=
(1 + Sc)√

S2 + 2Sc+ 1 + Γ
+

(1− Sc)√
S2 − 2Sc+ 1 + Γ

, (C.10)

we turn the conditional expectation in (C.9) into653

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
= ∥gt∥E(f(c, S; Γ)|∆t ∈ H+) (C.11)

for which we want to lower bound f(c, S; Γ) over 0 < c ≤ 1, S > 0,Γ > 0. We use the next theorem654

to prepare some helpful properties. The proof can be found in Appendix E.1.655

Theorem 7. For f defined in (C.10), we have656

1. f(c, S; Γ) is strictly decreasing in S for all 0 < c < 1 and Γ > 0.657

2. Consequently, minc∈(0,1) f(c, S; Γ) is strictly decreasing in S.658

3. f(c, S; Γ) is strictly decreasing in c for all S > 1 and Γ > 0.659

We consider a thresholding ratio r > 0 and we will focus on the regime that S < r. This r will turn660

out to measure the minimum gradient norm at convergence: informally speaking, ∥gt∥ converges to661

ξ/r.662

22



By the law of total expectation, (C.11) can be relaxed as follows.663

∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+

)
=∥gt∥E

(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

+ ∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S > r
)
P(r∥gt∥ < ∥∆∥

∣∣∣∆ ∈ H+)

≥∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

≥∥gt∥E
(
f(c, r; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

=∥gt∥E
(
f(c, r; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥)

≥ min
c∈(0,1]

f(c, r; Γ) · ∥gt∥P(r∥gt∥ > ∥∆∥)︸ ︷︷ ︸
⋆⃝

(C.12)

where in the first inequality, the ignoring of last term is justified by f(c, S; Γ) ≥664

minc∈(0,1] f(c, S; Γ) ≥ minc∈(0,1] f(c,∞; Γ) = 0, from the monotonicity (second statement) in665

Theorem 7.666

We first lower bound ⋆⃝ by applying the Markov’s inequality:

P(r∥gt∥ > ∥∆t∥) ≥ 1− E∥∆t∥
r∥gt∥

and hence by Assumption 5.3,
∥gt∥P(r∥gt∥ > ∥∆t∥) ≥ ∥gt∥ − E∥∆∥/r ≥ ∥gt∥ − ξ/r.

Finally, the conditional expectation of interest in (C.9) gives667

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥

∣∣∣∆t ∈ H+

)
≥ min

0<c≤1
f(c, r;

γ

∥gt∥
) · (∥gt∥ − ξ/r)

668

C.4 Proof of Theorem 8669

To derive some properties of minc f(c, r; Γ), we need to compute separately for AUTO-V (without670

the stability constant, Γ = 0) and for AUTO-S (with the stability constant, Γ > 0), as shown in671

Theorem 8. As we will show, as the number of training iterations T → ∞, DP-SGD with AUTO-V672

clipping can only compress ∥gt∥ to ξ/r for r < 1. However, DP-SGD with AUTO-S clipping can673

compress ∥gt∥ to ξ/r to any r > 1.674

Theorem 8.675

1. For 0 < r < 1 and Γ = 0, we have minc∈(0,1] f(c, r; 0) > 0. Then Equation (C.11) is lower
bounded by

min
c∈(0,1]

f(c, r; 0) · (∥gt∥ − ξ/r)

which is increasing in ∥g∥ − ξ/r.676

2. For r ≥ 1 and Γ = 0, we have minc∈(0,1] f(c, r; Γ) = f(1, r; 0) = 0. In words, (C.9) has a677

trivial lower bound and Theorem 6 cannot compress ∥gt∥ to ξ/r.678

3. For r ≥ 1 and Γ > 0, we have minc∈(0,1] f(c, r; Γ) = f(1, r; Γ) =
(

Γ
r+Γ−1 − Γ

r+Γ+1

)
. Then

Equation (C.11) is lower bounded by(
γ

(r − 1)∥gt∥+ γ
− γ

(r + 1)∥gt∥+ γ

)
· (∥gt∥ − ξ/r)

which is increasing in ∥gt∥ − ξ/r.679

Proof. To prove statement 1, we use the second statement from Theorem 7 and show that680

minc f(c, r; 0) > minc f(c,∞; 0) = 0. To prove statement 2 and 3, we use the third statement from681

Theorem 7 and see that minc f(c, r; Γ) = f(1, r; Γ) with an explicit formula.682
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D Convergence rate of standard SGD683

Theorem 9. Under Assumption 5.1, 5.2, 5.3 (without the symmetry assumption), running the standard
non-DP SGD for T iterations gives, for η ∝ 1/

√
T ,

min
t

E (∥gt∥) ≤
1

T 1/4

√
2(L0 − L∗)L+

ξ2

B

Proof of Theorem 9. Consider the standard SGD

wt+1 = wt − η

∑
i g̃t,i
B

where g̃t,i is i.i.d. unbiased estimate of gt, with a bounded variance as described in Assumption 5.3.684

By Lipschitz smoothness assumption in Assumption 5.2,685

Lt+1 − Lt ≤ g⊤
t (wt+1 −wt) +

L

2
∥wt+1 −wt∥2 = −ηg⊤

t

(∑
i

1

B
g̃t,i

)
+

Lη2

2

∥∥∥∥∥∑
i

1

B
g̃t,i

∥∥∥∥∥
2

The expected improvement at one iteration is686

E(Lt+1 − Lt|wt) ≤ −ηg⊤
t Eg̃t,i +

Lη2

2
E∥
∑
i

1

B
g̃t,i∥2

≤ −η∥gt∥2 +
Lη2

2

(
∥gt∥2 +

ξ2

B

) (D.1)

Now we extend the expectation over randomness in the trajectory, and perform a telescoping sum687

over the iterations688

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1) ≥
(
η − Lη2

2

)
E(
∑
t

∥gt∥2)−
TLη2ξ2

2B

Notice that we do not need the symmetry assumption in Assumption 5.3 in the non-DP SGD analysis.689

We apply the same learning rate as in [5], η = 1
L
√
T

,690

2(L0 − L∗) ≥
(

2

L
√
T

− 1

LT

)
E

(∑
t

∥gt∥2
)

− Tξ2

BLT
≥

√
T

L
E

(
1

T

∑
t

∥gt∥2
)

− ξ2

BL

and finally691

min
t

E
(
∥gt∥2

)
≤ E

(
1

T

∑
t

∥gt∥2
)

≤ 1√
T

[
2(L0 − L∗)L+

ξ2

B

]
Using the Jensen’s inequality, we can have692

min
t

E (∥gt∥) ≤
1

T 1/4

√
2(L0 − L∗)L+

ξ2

B

693

E Auxiliary proofs694

E.1 Proof of Theorem 7695

Proof. We first show df(c,S;Γ)
dS < 0 for all 0 < c < 1,Γ > 0 and S > 0, as visualized in the left plot696

of Figure 9. We can explicitly write down the derivative, by WolframAlpha697

df(c, S; Γ)

dS
=

−(AΓ2 +BΓ + C)√
S2 − 2cS + 1

√
S2 + 2cS + 1(Γ +

√
S2 − 2cS + 1)2(Γ +

√
S2 + 2cS + 1)2

(E.1)
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with698

A(c, S) =
√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
B(c, S) = 4S

[
(S2 + 1)(1− c2) + c2

√
S2 + 2cS + 1

√
S2 − 2cS + 1

]
C(c, S) = (1− c2)S

[
(S2 − 2cS + 1)3/2 + (S2 + 2cS + 1)3/2

]
It is obvious that, since c < 1,699

S2 ± 2cS + 1 > S2 ± 2cS + c2 = (S ± c)2 ≥ 0. (E.2)

From (E.2), the denominator in (E.1) is positive and it suffices to show AΓ2 +BΓ + C > 0 for all700

0 < c < 1 and S > 0, in order to show df
dS < 0.701

Also from (E.2), we can easily see B(c, S) > 0 and C(c, S) > 0. We will show that A(c, S) > 0 in702

Lemma E.1, after very heavy algebraic computation.703

Now we can claim that AΓ2+BΓ+C > 0 by Fact E.3, and complete the proof of the first statement.704

To further see that minc f(c, S; Γ) is decreasing in S, let us denote c∗(x; Γ) :=
arg minc∈[0,1]f(c, x; Γ). Then considering S < S′, we prove the second statement by observing

min
c

f(c, S; Γ) = f(c∗(S; Γ), S; Γ) > f(c∗(S; Γ), S′; Γ) ≥ min
c

f(c, S′; Γ).

This statement is also visualized in the right plot of Figure 9.705

We next show df(c,S;Γ)
dc < 0 for all 0 < c < 1,Γ > 0 and S > 1. We can explicitly write down the706

derivative, by WolframAlpha707

df(c, S; Γ)

dc
=

−S(A′Γ2 +B′Γ + C ′)√
S2 − 2cS + 1

√
S2 + 2cS + 1(Γ +

√
S2 − 2cS + 1)2(Γ +

√
S2 + 2cS + 1)2

(E.3)

with708

A′(c, S) =
[
(S2 + 3cS + 2)

√
S2 − 2cS + 1− (S2 − 3cS + 2)

√
S2 + 2cS + 1

]
B′(c, S) = 4Sc

[√
S2 + 2cS + 1

√
S2 − 2cS + 1 + (S2 − 1)

]
C ′(c, S) = S

[
(c+ S)(S2 − 2cS + 1)3/2 + (c− S)(S2 + 2cS + 1)3/2

]
Clearly B′(c, S) > 0 and C ′(c, S) > 0, since S2 +2cS+1 > S2 − 2cS+ c2 = (S− c)2 ≥ 0. And709

we will show A′(c, S) > 0 in Lemma E.2, after some algebra.710

We again claim that A′Γ2 +B′Γ+C ′ > 0 by Fact E.3, which guarantees that the numerator in (E.3)711

is negative and that df
dc < 0. This is visualized in Figure 10.712
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Figure 9: Visualization of f(0.5, S,Γ) (left) and min0≤c≤1 f(c, S,Γ) over S > 0.
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Figure 10: Visualization of f(c, 0.8,Γ) (left) and f(c, 2,Γ) over 0 ≤ c ≤ 1.

E.2 Proof of Lemma E.1713

Lemma E.1. For all 0 < c < 1 and S > 0,

A :=
√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√

S2 − 2cS + 1
(
3c2S + 2c(S2 + 1) + S

)
> 0.

Proof. We prove by contradiction. Suppose√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
< 0.

Then

0 <
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
< −

√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
.

where the first inequality comes from S2 − 2cS + 1 > S2 − 2cS + c2 = (S − c)2 ≥ 0.714

Squaring everything gives

(S2 − 2cS + 1)
(
3c2S + 2c(S2 + 1) + S

)2
< (S2 + 2cS + 1)

(
3c2S − 2c(S2 + 1) + S

)2
.

Taking the difference gives

4cS(2 + 3S2 − 9c4S2 + 2S4 + 2c2(1− S2 + S4)) < 0

Given that c > 0, S > 0, we have

2 + 3S2 − 9c4S2 + 2S4 + 2c2(1− S2 + S4) < 0

Denoting X := S2 and viewing the above as a quadratic polynomial of X , we have

(2c2 + 2)X2 + (3− 2c2 − 9c4)X + (2c2 + 2)︸ ︷︷ ︸
1⃝

< 0

Using the closed-form minimizer of quadratic polynomial 1⃝, after some heavy algebra, one can
check the minimum of 1⃝ is

(1 + 3c2)2(1− c2)(7 + 9c2)

8(1 + c2)

which is clearly positive. Contradiction!715

E.3 Proof of Lemma E.2716

Lemma E.2. For all 0 < c < 1 and S > 1,

(S2 + 3cS + 2)
√

S2 − 2cS + 1− (S2 − 3cS + 2)
√
S2 + 2cS + 1 > 0.

Proof. Notice that (S2+3cS+2) > S2+2 > 0 and
√
S2 ± 2cS + 1 > 0. Therefore if S2−3cS+717

2 ≤ 0, we are done.718

Otherwise, we prove by contradiction and suppose

0 < (S2 + 3cS + 2)
√
S2 − 2cS + 1 < (S2 − 3cS + 2)

√
S2 + 2cS + 1.
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under the condition that S2 − 3cS + 2 > 0.719

Squaring everything gives

(S2 + 3cS + 2)2(S2 − 2cS + 1) < (S2 − 3cS + 2)2(S2 + 2cS + 1).

Taking the difference gives

cS(8 + 20S2 − 36c2S2 + 8S4) < 0

Given that c > 0, S > 0, we have

2 + 5S2 − 9c2S2 + 2S4 < 0

Denoting X := S2 and viewing the above as a quadratic polynomial of X , we have, for X > 1,

2X2 + (5− 9c2)X + 2︸ ︷︷ ︸
2⃝

< 0

The closed-form minimizer of quadratic polynomial 2⃝ is (9c2−5)
4 . Given that 0 < c < 1, we must720

have − 5
4 < 9c2−5

4 < 1. Hence the minimizer is not within the feasible domain (1,∞) of X . Thus721

the minimum of 2⃝ is achieved with X = 1 at 9(1− c2). This is positive. Contradiction!722

E.4 Proof of Fact E.3723

Fact E.3. For a quadratic polynomial Ax2 +Bx+ C with A,B,C > 0, the minimum value on the724

domain x ≥ 0 is C, at x = 0. Therefore Ax2 +Bx+ C > 0.725

Proof. Since A > 0, the quadratic polynomial is convex and increasing on the domain x > − B
2A .726

Since B > 0 as well, we know − B
2A < 0 and hence the quadratic polynomial is strictly increasing on727

x > 0. Therefore the minimum value is achieved when x = 0, and we obtain Ax2+Bx+C ≥ C > 0728

for all x ≥ 0.729

F Examples of lazy regions730

F.1 Balanced binary classification731

We describe the data generation in Section 3.3. The label is uniformly ±1, that is P(yi = +1) =732

P(yi = −1) = 0.5. We have 10000 positive and negative samples xi ∼ N (yi, 1). We consider a733

logistic regression model P(Y = y|x) = I(y = 1) ·Sigmoid(x+ θ)+ I(y = −1) · (1−Sigmoid(x+734

θ)) = 1
1+e−y(θ+x) , where θ ∈ R is the intercept. The gradient with respect to this only trainable735

parameter is ∂Li

∂θ = −y
(
1− 1

1+e−y(θ+x)

)
. We set the clipping threshold R = 0.01 and the stability736

constant γ = 0.01.737

F.2 Mean estimation on Gaussian mixture data738

We also observe the lazy region issue in the mean estimation problem minθ
1
2∥θ − xi∥2. Here739

P(xi ∼ N (4, 1)) = P(xi ∼ N (4, 1)) = 0.5. We have 10000 samples from each Gaussian740

distribution. The regular minimum is clearly
∑

i xi → 0, where the regular gradient and AUTO-S741

clipped gradient vanish. Yet both AUTO-V and Abadi’s clipping lose motivation to update the mean742

estimator on the interval (−1, 1). We set the clipping threshold R = 0.01 and the stability constant743

γ = 0.1.744

G Experiments settings745

G.1 Image classification settings746

We give the experiments settings for computer vision tasks in Table 1.747
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Figure 11: Scalar gradient ∂L
∂θ at each θ.

• MNIST: We use the network architecture from [53, 65, 61], with 40 epochs, 512 batch size,748

0.5 learning rate (or 0.005 non-DP learning rate), 0.1 clipping threshold, DP-SGD with 0.9749

momentum, and without pretraining. This setting is the same as [65].750

• FashionMNIST: We use the same network architecture as MNIST, with 40 epochs, 2048 batch751

size, 4 learning rate (or 0.04 non-DP learning rate), DP-SGD with 0.9 momentum, and without752

pretraining. This setting is the same as [65].753

• CIFAR10 pretrained: We use the SimCLR model from [13]10, with 50 epochs, 1024 batch size,754

4 learning rate (or 0.04 non-DP learning rate), 0.1 clipping threshold, and DP-SGD with 0.9755

momentum. The SimCLR model is pretrained on unlabelled ImageNet dataset. After pretraining,756

we obtain a feature of dimension 4096 on which a linear classifier is trained privately. This setting757

is the same as [65].758

• ImageNette: We use the ResNet9 (2.5 million parameters) with Mish activation function [50].759

We set 50 epochs, 1000 batch size, 0.0005 learning rate (or 0.000005 non-DP learning rate), 1.5760

clipping threshold, and use DP-NAdam, without pretraining. This setting is the same as [35]761

except we did not apply the learning rate decaying scheduler.762

• CelebA (Smiling and Male and Multi-label) We use the same ResNet9 as above, with 10 epochs,763

500 batch size, 0.001 DP learning rate (or 0.00001 non-DP learning rate), 0.1 clipping threshold,764

and use DP-Adam, without pretraining. We use the labels ‘Smiling’ and ‘Male’ for two binary765

classification tasks, with cross-entropy loss. For the multi-label task uses a scalar loss by summing766

up the 40 binary cross-entropy losses from each label.767

We refer the code for MNIST, FashionMNIST, CIFAR10, CIFAR10 pretrained to https://768

github.com/ftramer/Handcrafted-DP by [65]. ResNet9 can be found in https://github.769

com/cbenitez81/Resnet9.770

Throughout all experiments, we do not apply tricks such as random data augmentation (single or771

multiple times [16]), weight standardization [58], or parameter averaging [57].772

G.2 Sentence classification settings773

We experiment on five datasets in Table 2 and Table 3.774

• MNLI(m) MNLI-matched, the matched validation and test splits from Multi-Genre Natural775

Language Inference Corpus.776

• MNLI(mm) MNLI-mismatched, the matched validation and test splits from Multi-Genre Natural777

Language Inference Corpus.778

• QQP The Quora Question Pairs2 dataset.779

• QNLI The Stanford Question Answering dataset.780

• SST2 The Stanford Sentiment Treebank dataset.781

10See implementation in https://github.com/google-research/simclr.
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The datasets are processed and loaded from Huggingface [38], as described in https://782

huggingface.co/datasets/glue. We follow the same setup as [74] and [40]. We refer the783

interested readers to Appendix G,H,I,K,N of [40] for more details.784

We emphasize that our automatic clipping uses exactly the same hyperparameters as the Abadi’s785

clipping in [40], which is released in their Private-Transformers library 11.

Dataset MNLI(m/mm) QQP QNLI SST2
Epoch 18 18 6 3

Batch size 6000 6000 2000 1000
clipping threshold R 0.1 0.1 0.1 0.1

DP learning rate 5e-4 5e-4 5e-4 5e-4
non-DP learning rate 5e-5 5e-5 5e-5 5e-5
learning rate decay Yes Yes Yes Yes

AdamW weight decay 0 0 0 0
Max sequence length 256 256 256 256

Table 5: Hyperparameters of automatic clipping and Abadi’s clipping, for sentence classification in
Table 2 and Table 3, using either RoBERTa base or large.

786

Notice that we use DP learning rate 5e-4 across tasks for the R-dependent automatic DP-Adam, which787

is equivalent to R-independent automatic DP-Adam with the same learning rate. We demonstrate788

that the results are not sensitive to learning rates around the optimal choice. That is, the automatic789

clipping does not eliminate R at the cost of more difficult tuning of learning rate.

learning rate 1e-4 3e-4 5e-4 8e-4 1e-3
RoBERTa-base 93.92 94.38 94.49 94.72 93.35
RoBERTa-large 95.76 96.21 96.21 96.33 95.99

Table 6: SST2 accuracy with respect to learning rate.

790

G.3 Table-to-text generation settings791

We experiment multiple GPT2 models on E2E dataset from Huggingface [38] in Table 4. We follow792

the same setup as [40], and our automatic clipping uses exactly the same hyperparameters as the793

Abadi’s clipping in [40], which is released in their Private-Transformer library 12.794

Model GPT2 GPT2 medium GPT2 large
Epoch 10 10 10

Batch size 1024 1024 1024
clipping threshold R 0.1 0.1 0.1

DP learning rate 2e-3 2e-3 2e-3
non-DP learning rate 2e-4 1e-4 1e-4
learning rate decay No No No

AdamW weight decay 0.01 0.01 0.01
Max sequence length 100 100 100

Table 7: Hyperparameters of automatic clipping and Abadi’s clipping, for the E2E generation task in
Table 4.

11See https://github.com/lxuechen/private-transformers/blob/main/examples/
classification/run_wrapper.py

12See https://github.com/lxuechen/private-transformers/blob/main/examples/
table2text/run.sh
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H Figure zoo795

H.1 Frequency of clipping796

We show that in all sentence classification tasks, Abadi’s clipping happens on a large proportion of797

per-sample gradients. This supports the similarity between Abadi’s clipping and AUTO-V in (3.1).798

0 25 50 75 100 125 150 175 200
Iteration t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f g
t,

i c
lip

pe
d

0 50 100 150 200 250 300 350
Iteration t

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f g
t,

i c
lip

pe
d

0 20 40 60 80 100
Iteration t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 o

f g
t,

i c
lip

pe
d

0 25 50 75 100 125 150
Iteration t

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f g
t,

i c
lip

pe
d

0 25 50 75 100 125 150 175
Iteration t

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f g
t,

i c
lip

pe
d

0 50 100 150 200 250 300
Iteration t

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f g
t,

i c
lip

pe
d

Figure 12: Percentage of clipped per-sample gradients when training with DP-AdamAbadi (ϵ = 3),
as in Section 6.2. Left panel is RoBERTa-base and right panel is RoBERTa-large. Top row: MNLI.
Middle row: QNLI. Bottom row: QQP.

We note that for GPT2, GPT2 medium and GPT2 large, empirically in all iterations 100% of the799

per-sample gradients are clipped by the Abadi’s clipping, making the performance of Abadi’s clipping800

equivalent to AUTO-V clipping, as shown in Table 4.801

H.2 Stability constant helps AUTO clipping reduce gradient norm802

To corroborate our claim in Theorem 6, that the stability γ reduces the gradient norm, we plot the803

actual gradient norm by iteration.804

H.3 Choice of stability constant is robust805

We claim in Theorem 6 that, as long as γ > 0 in our automatic clipping, the asymptotic convergence806

rate of gradient norm is the same as that by standard non-private SGD. We plot the ablation study807

of learning rate and the stability constant γ to show that it is easy to set γ: in Table 2 and Table 3,808
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Figure 13: Gradient norm by different automatic clipping methods, on SST2 (left) and MNLI (right),
trained with RoBERTa-base.

we adopt learning rate 0.0005, under which a wide range of 0.0001 < γ < 1 gives similar accuracy.809

Note that the largest good γ is 1000 times bigger than the smallest good γ.810
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Figure 14: Test accuracy by different stability constant γ and learning rate η in automatic clipping
(ϵ = 3). Upper row: SST2 for full 3 epochs. Middle row: QNLI for full 6 epochs. Lower row: QNLI
for one epoch. Trained with RoBERTa-base (left) and RoBERTa-large (right).

H.4 Automatic clipping avoids ablation study811

We plot the ablation study of learning rate and clipping threshold in Abadi’s clipping below. This812

demonstrates that, AUTO-S clipping only requires 1D grid search to tune the learning rate, avoiding813

the expensive 2D grid search that is unfortunately necessary for the Abadi’s clipping. Hence our814

automatic clipping can save the tuning effort substantially.815
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Figure 15: Test accuracy by different clipping threshold R in DP-AdamAbadi and learning rate η,
on SST2 (left, 3 epochs) / QNLI (middle, 1 epoch) / MNLI (right, 1 epoch), ϵ = 3, trained with
RoBERTa-base.

I Full table of GPT2 generation task on E2E dataset816

This is the extended version of Table 4 on E2E dataset. The performance measures are BLEU [54],817

ROGUE-L [41], NIST [60], METEOR [4], and CIDEr [67] scores. Here ϵ is accounted by RDP [49],818

where ϵ = 3 corresponds to 2.68 if accounted by Gaussian DP [18, 7] or to 2.75 if accounted by819

numerical composition [29], and ϵ = 8 corresponds to 6.77 if accounted by Gaussian DP or to 7.27 if820

accounted by numerical composition.821

DP GPT2 GPT2 GPT2
Metric guarantee large medium

full full full full full LoRA RGP prefix top2 retrain
AUTO-S AUTO-S AUTO-S AUTO-V [40] [32] [74] [39] [40] [40]

BLEU
ϵ = 3 64.180 63.850 61.340 61.519 61.519 58.153 58.482 47.772 25.920 15.457
ϵ = 8 64.640 64.220 63.600 63.189 63.189 63.389 58.455 49.263 26.885 24.247

non-DP 66.840 68.500 69.463 69.463 69.463 69.682 68.328 68.845 65.752 65.731

ROGUE-L
ϵ = 3 67.857 67.071 65.872 65.670 65.670 65.773 65.560 58.964 44.536 35.240
ϵ = 8 68.968 67.533 67.073 66.429 66.429 67.525 65.030 60.730 46.421 39.951

non-DP 70.384 71.458 71.359 71.359 71.359 71.709 68.844 70.805 68.704 68.751

NIST
ϵ = 3 7.937 7.106 7.071 6.697 6.697 5.463 5.775 5.249 1.510 0.376
ϵ = 8 8.301 8.172 7.714 7.444 7.444 7.449 6.276 5.525 1.547 1.01

non-DP 8.730 8.628 8.780 8.780 8.780 8.822 8.722 8.722 8.418 8.286

METEOR
ϵ = 3 0.403 0.387 0.387 0.384 0.384 0.370 0.331 0.363 0.197 0.113
ϵ = 8 0.420 0.418 0.404 0.400 0.400 0.407 0.349 0.364 0.207 0.145

non-DP 0.460 0.449 0.461 0.461 0.461 0.463 0.456 0.445 0.443 0.429

CIDEr
ϵ = 3 2.008 1.754 1.801 1.761 1.761 1.581 1.300 1.507 0.452 0.116
ϵ = 8 2.163 2.081 1.938 1.919 1.919 1.948 1.496 1.569 0.499 0.281

non-DP 2.356 2.137 2.422 2.422 2.422 2.491 2.418 2.345 2.180 2.004
Table 8: Test performance on E2E dataset with GPT2. The best two GPT2 models for each row are
marked in bold.

We observe that GPT2 (163 million parameters), GPT2-medium (406 million), and GPT2-large822

(838 million), Table 4 trained with our automatic clipping consistently perform better in comparison823

to other methods. In some cases, LoRA trained with Abadi’s clipping also demonstrates strong824

performance and it would be interesting to see how LoRA trained with the automatic clipping will825

behave.826

J Further experiments on CelebA dataset827

In this section, we present a complete summary of accuracy results, with DP constraint or not, for the828

CelebA dataset. We do not apply any data-preprocessing. In the first experiment, we apply a single829

ResNet on the 40 labels as the multi-task/multi-label learning. In the second experiment, we apply830

one ResNet on one label. As expected, our automatic DP optimizers have comparable test accuracy831

to the Abadi’s DP optimizers, but we do not need to tune the clipping threshold for each individual832

task/label. We also notice that, learning different labels separately gives better accuracy than learning833

all labels together, though at the cost of heavier computational burden.834
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J.1 Multi-label classification835

We apply ResNet9 as in Appendix G.1 on the multi-label classification task. I.e. the output layer has836

40 neurons, each corresponding to one sigmoid cross-entropy loss, that are summed to a single loss837

and all labels are learnt jointly.838

Index Attributes Abadi’s AUTO-S Abadi’s AUTO-S non-DP
ϵ = 3 ϵ = 3 ϵ = 8 ϵ = 8 ϵ = ∞

0 5 o Clock Shadow 90.64 90.99↑ 90.81 91.28↑ 93.33
1 Arched Eyebrows 75.15 76.31↑ 76.84 77.11↑ 81.52
2 Attractive 75.85 76.10↑ 77.50 77.74↑ 81.15
3 Bags Under Eyes 80.75 81.12↑ 82.15 82.13↓ 84.81
4 Bald 97.84 97.87↑ 98.04 97.98↓ 98.58
5 Bangs 92.71 92.68↓ 93.46 93.55↑ 95.50
6 Big Lips 67.51 67.78↑ 68.34 68.44↑ 71.33
7 Big Nose 78.01 80.23↑ 76.69 80.59↑ 83.54
8 Black Hair 81.92 80.95↓ 83.33 83.28↓ 88.55
9 Blond Hair 92.25 92.38↑ 93.52 93.09↓ 95.49

10 Blurry 94.91 94.82↓ 95.08 94.90↓ 95.78
11 Brown Hair 80.13 82.50↑ 83.74 83.89↑ 87.79
12 Bushy Eyebrows 88.06 88.23↑ 89.72 88.80↓ 92.19
13 Chubby 94.72 94.54↓ 94.54 94.50↓ 95.56
14 Double Chin 95.19 95.49↑ 95.50 95.51↑ 96.09
15 Eyeglasses 97.06 97.64↑ 98.32 98.06↓ 99.39
16 Goatee 95.68 95.45↓ 95.84 95.87↑ 97.06
17 Gray Hair 96.77 96.79↑ 97.02 97.03↑ 98.06
18 Heavy Makeup 84.96 85.70↑ 87.58 87.29↓ 90.76
19 High Cheekbones 81.46 81.42↓ 82.62 82.72↑ 86.62
20 Male 92.05 92.17↑ 93.32 93.17↓ 97.46
21 Mouth Slightly Open 86.20 86.32↑ 87.84 88.48↑ 93.07
22 Mustache 96.05 95.96↓ 96.08 95.99↓ 96.74
23 Narrow Eyes 84.90 84.78↓ 85.14 85.18↑ 86.98
24 No Beard 91.55 91.67↑ 92.29 92.45↑ 95.18
25 Oval Face 71.26 71.42↑ 71.98 71.25↓ 74.62
26 Pale Skin 96.09 96.04↓ 96.15 96.17↑ 96.93
27 Pointy Nose 70.34 72.11↑ 72.23 73.01↑ 75.68
28 Receding Hairline 91.53 91.37↓ 91.75 91.74↓ 92.87
29 Rosy Cheeks 93.26 93.02↓ 93.56 93.35↓ 94.86
30 Sideburns 96.16 96.09↓ 96.27 96.46↑ 97.44
31 Smiling 86.39 87.08↑ 88.87 88.63↓ 92.25
32 Straight Hair 76.20 77.95↑ 78.78 78.52↓ 80.66
33 Wavy Hair 70.30 71.79↑ 73.58 73.19↓ 79.15
34 Wearing Earrings 80.53 81.52↑ 82.29 82.20↓ 87.56
35 Wearing Hat 96.99 96.83↓ 97.46 97.31↓ 98.68
36 Wearing Lipstick 88.95 88.04↓ 89.87 90.72↑ 93.49
37 Wearing Necklace 84.59 85.83↑ 85.93 85.42↓ 86.61
38 Wearing Necktie 93.91 93.91– 94.43 94.08↓ 96.30
39 Young 81.35 81.21↓ 82.18 82.52↑ 87.18

Table 9: Accuracy on CelebA dataset with settings in Appendix G.1 from one run. The green arrow
indicates AUTO-S is better than Abadi’s clipping under the same ϵ; the red arrow indicates otherwise;
the black bar indicates the same accuracy.
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J.2 Multiple binary classification839

For the second experiment, we apply ResNet9 on each label as a binary classification task. I.e. the840

output layer has 1 neuron and we run 40 different models for all labels separately.

Index Attributes
Abadi’s AUTO-S Abadi’s AUTO-S non-DP
Single Single Multi Multi Multi
ϵ = 8 ϵ = 8 ϵ = 8 ϵ = 8 ϵ = ∞

0 5 o Clock Shadow 92.15 92.29↑ 90.81 91.28↑ 93.33
1 Arched Eyebrows 81.18 80.19↓ 76.84 77.11↑ 81.52
2 Attractive 79.31 79.79↑ 77.50 77.74↑ 81.15
3 Bags Under Eyes 83.52 83.48↓ 82.15 82.13↓ 84.81
4 Bald 97.89 97.88↓ 98.04 97.98↓ 98.58
5 Bangs 94.52 94.83↑ 93.46 93.55↑ 95.50
6 Big Lips 67.32 67.53↑ 68.34 68.44↑ 71.33
7 Big Nose 82.31 82.36↑ 76.69 80.59↑ 83.54
8 Black Hair 87.08 86.93↓ 83.33 83.28↓ 88.55
9 Blond Hair 94.29 94.73↑ 93.52 93.09↓ 95.49

10 Blurry 94.95 95.20↑ 95.08 94.90↓ 95.78
11 Brown Hair 87.41 87.19↓ 83.74 83.89↑ 87.79
12 Bushy Eyebrows 91.23 91.43↑ 89.72 88.80↓ 92.19
13 Chubby 94.70 94.70– 94.54 94.50↓ 95.56
14 Double Chin 95.43 95.43– 95.50 95.51↑ 96.09
15 Eyeglasses 98.88 99.14↑ 98.32 98.06↓ 99.39
16 Goatee 96.12 96.07↓ 95.84 95.87↑ 97.06
17 Gray Hair 97.48 97.34↓ 97.02 97.03↑ 98.06
18 Heavy Makeup 88.85 88.72↓ 87.58 87.29↓ 90.76
19 High Cheekbones 85.66 85.45↓ 82.62 82.72↑ 86.62
20 Male 95.42 95.70↑ 95.53 93.17↓ 97.46
21 Mouth Slightly Open 92.67 92.74↑ 87.84 88.48↑ 93.07
22 Mustache 96.13 96.13– 96.08 95.99↓ 96.74
23 Narrow Eyes 85.13 85.13– 85.14 85.18↑ 86.98
24 No Beard 94.26 94.58↑ 92.29 92.45↑ 95.18
25 Oval Face 70.77 73.05↑ 71.98 71.25↓ 74.62
26 Pale Skin 96.38 96.34↓ 96.15 96.17↑ 96.93
27 Pointy Nose 71.48 73.37↑ 72.23 73.01↑ 75.68
28 Receding Hairline 91.51 91.51– 91.75 91.74↓ 92.87
29 Rosy Cheeks 93.26 93.35↑ 93.56 93.35↓ 94.86
30 Sideburns 96.46 96.34↓ 96.27 96.46↑ 97.44
31 Smiling 90.82 90.87↑ 88.87 88.63↓ 92.25
32 Straight Hair 79.01 79.01– 78.78 78.52↓ 80.66
33 Wavy Hair 77.55 78.83↑ 73.58 73.19↓ 79.15
34 Wearing Earrings 87.33 87.50↑ 82.29 82.20↓ 87.56
35 Wearing Hat 98.04 98.11↑ 97.46 97.31↓ 98.68
36 Wearing Lipstick 92.05 90.46↓ 89.87 90.72↑ 93.49
37 Wearing Necklace 86.21 86.21– 85.93 85.42↓ 86.61
38 Wearing Necktie 95.85 95.94↑ 94.43 94.08↓ 96.30
39 Young 85.19 84.12↓ 82.18 82.52↑ 87.18

Table 10: Accuracy on CelebA dataset with settings in Appendix G.1 from one run. ‘Single’ means
each attribute is learned separately as a binary classification task. ‘Multi’ means all attributes are
learned jointly as a multi-label classification task. The green arrow indicates AUTO-S is better than
Abadi’s clipping under the same ϵ and the same task; the red arrow indicates otherwise; the black bar
indicates the same accuracy.
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K Code implementation of automatic clipping842

Changing Abadi’s clipping to automatic clipping is easy in available codebases. One can set the843

clipping R = 1 or any other constant, as explained in Theorem 1 and Theorem 2.844

K.1 Opacus845

For Opacus [73] version 1.1.2 (latest), we can implement the all-layer automatic clipping by changing846

Line 399-401 in https://github.com/pytorch/opacus/blob/main/opacus/optimizers/847

optimizer.py to848

per_sample_clip_factor = self.max_grad_norm /(per_sample_norms + 0.01)849

The per-layer automatic clipping requires changing Line 61-63 in https://github.com/pytorch/850

opacus/blob/main/opacus/optimizers/perlayeroptimizer.py to851

per_sample_clip_factor =max_grad_norm / (per_sample_norms + 0.01)852

For older version (< 1.0, e.g. 0.15) of Opacus, we can implement the all-layer automatic clipping853

by changing Line 223-225 in https://github.com/pytorch/opacus/blob/v0.15.0/opacus/854

utils/clipping.py to855

per_sample_clip_factor = self.flat_value / (norms[0] + 0.01)856

or implement the per-layer automatic clipping by changing Line 301-302 in https://github.com/857

pytorch/opacus/blob/main/opacus/optimizers/perlayeroptimizer.py to858

per_sample_clip_factor = threshold / (norm + 0.01)859

clipping_factor.append(per_sample_clip_factor)860

K.2 ObJAX861

For ObJAX version 1.6.0 (latest), we can implement the automatic clipping in https://github.862

com/google/objax/blob/master/objax/privacy/dpsgd/gradient.py by changing Line 92863

to864

idivisor = self.l2_norm_clip / (total_grad_norm+0.01)865

and changing Line 145 to866

idivisor = self.l2_norm_clip/(grad_norms+0.01)867

K.3 Private-transformers868

To reproduce our experiments for sentence classification and table-to-text genera-869

tion, we modify the ‘private-transformers’ codebase of [40]. The modification is870

in https://github.com/lxuechen/private-transformers/blob/main/private_871

transformers/privacy_utils/privacy_engine.py, by changing Line 349 to872

return self.max_grad_norm / (norm_sample + 0.01)873

and Line 510-512 to874

coef_sample = self.max_grad_norm * scale / (norm_sample + 0.01)875
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