
Appendix683

Include extra information in the appendix. This section will often be part of the supplemental material.684

Please see the call on the NeurIPS website for links to additional guides on dataset publication.685

1. Submission introducing new datasets must include the following in the supplementary686

materials:687

(a) Dataset documentation and intended uses. Recommended documentation frameworks688

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and689

accountability frameworks.690

Response: Here is a link to a folder that the reviewers can access the data: link will be691

shared with reviewers privately. Inside this folder, there is an IPython notebook, named692

“noisy_label_datasets_and_rater_features.ipynb”, which contains detailed documenta-693

tion for the datasets, including the dataset size, number of examples, definitions of each694

feature and the rater features. The intended use of the datasets is noisy label research.695

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded696

by the reviewers.697

Response: Here is a link to a folder that the reviewers can access the data: link will be698

shared with reviewers privately.699

(c) Author statement that they bear all responsibility in case of violation of rights, etc., and700

confirmation of the data license.701

Response: Yes, hereby the author of this paper claim that we bear all responsibility in702

case of violation of rights. The data licenses of the datasets that we use in this paper703

can be found in Appendix E. We are working on making our datasets publicly available.704

We intend to use the CC0 Creative Commons License for the the datasets that we705

generate. This license will be applied to the materials that we created, namely the noisy706

labels and rater features. The original images and labels are under their original dataset707

licenses.708

(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as709

long as you ensure access to the data (possibly through a curated interface) and will710

provide the necessary maintenance.711

Response: We are planning to make the datasets publicly available by August 1, 2021.712

We intend to store the data on Google Cloud Platform (GCP). We mentioned the713

licensing plan in the previous point. The authors of this paper will be responsible for714

the maintenance of the datasets.715

2. To ensure accessibility, the supplementary materials for datasets must include the following:716

(a) Links to access the dataset and its metadata. This can be hidden upon submission if the717

dataset is not yet publicly available but must be added in the camera-ready version. In718

select cases, e.g when the data can only be released at a later date, this can be added719

afterward. Simulation environments should link to (open source) code repositories.720

Response: Here is a link to a folder that the reviewers can access the data: link will be721

shared with reviewers privately. Inside this folder, there is an IPython notebook, named722

“noisy_label_datasets_and_rater_features.ipynb”, which contains detailed documen-723

tation for the datasets, including the dataset size, number of examples, definitions of724

each feature and the rater features. Once we make the data publicly available, there725

will be a GitHub repository for this dataset which contains a link to the GCP bucket for726

the downloadable data.727

(b) The dataset itself should ideally use an open and widely used data format. Provide a728

detailed explanation on how the dataset can be read. For simulation environments, use729

existing frameworks or explain how they can be used.730

Response: Inside this folder linked above, there is an IPython notebook, named731

“noisy_label_datasets_and_rater_features.ipynb”, which contains metadata for the732

datasets and detailed examples for reading the datasets, including the noisy label733

data and the rater features.734

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,735

either by uploading to a data repository or by explaining how the authors themselves736

will ensure this.737
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Response: Yes, we plan to make the datasets available to the general public for a long738

time. Once we make the data publicly available, there will be a GitHub repository for739

this dataset which contains a link to the GCP bucket for the downloadable data. GCP740

bucket is a stable location for data storage. The authors of this paper will be responsible741

for the maintenance of the datasets.742

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an743

open source license for code (e.g. RL environments).744

Response: We intend to use the CC0 Creative Commons License for the the datasets745

that we generate. This license will be applied to the materials that we created, namely746

the noisy labels and rater features. The original images and labels are under their747

original dataset licenses.748

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like749

schema.org and DCAT): This allows it to be discovered and organized by anyone. If750

you use an existing data repository, this is often done automatically.751

Response: The dataset metadata are currently presented in the IPython notebook752

mentioned above. Once the datasets are publicly available,we will add a meta-data753

page using Web standards.754

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by755

a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.756

GitHub, GitLab,...) for code. If this is not possible or useful, please explain why.757

Response: We will have a GitHub repository that provides the link to the datasets and758

example code for loading the data. The GitHub repository will be online at the same759

time when we make the datasets publicly available.760

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-761

ducible. Where possible, use a reproducibility framework such as the ML reproducibility762

checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary763

datasets, code, and evaluation procedures must be accessible and documented.764

Response: The main focus of our paper is a framework for generating synthetic noisy label765

datasets; thus our paper should be considered as a dataset paper rather than benchmarking766

paper. Meanwhile, we made our datasets available to the reviewers through the URL above.767

We are also working on make the data publicly available. We also provide sufficient details768

in Appendix B and Section 4 for reproducing our experimental results.769

4. For papers introducing best practices in creating or curating datasets and benchmarks, the770

above supplementary materials are not required.771

Response: Our paper can be considered as practices for creating datasets. We made our772

datasets available to the reviewers and are working on making them publicly available.773

A Performance of existing noisy label algorithms774

With our instance-dependent synthetic noisy label datasets, a follow-up question is how existing775

techniques for mitigating the impact of label noise perform on our benchmarks. In particular, we are776

interested in the difference of the algorithms’ performance when using our synthetic datasets and777

using noisy label datasets with independent random label noise. In this section, when we mention a778

dataset uses random label noise, we mean with certain probability (rater error rate), the label of each779

data point is flipped to an incorrect label that is uniformly selected. This flipping event is independent780

of other data points and the image itself.781

A.1 Experiment setup782

We compare the following 5 algorithms: vanilla training with cross-entropy loss (Baseline), Boot-783

strap [Reed et al., 2014], Co-Teaching [Han et al., 2018], cross-entropy loss with Monte Carlo784

sampling (MCSoftMax) [Collier et al., 2020], and MentorMix [Jiang et al., 2020]3 on 4 tasks: CI-785

3We also experimented with F-Correction [Patrini et al., 2017] and RoG [Lee et al., 2019] but did not observe
significant improvement over the baseline on our synthetic datasets. Thus, we choose to not report the results of
these two algorithms.
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FAR10, CIFAR100, PatchCamelyon, and Cats vs Dogs.4 For each task, we generate 3 synthetic noisy786

label datasets with different amount of noise using our framework. According to the rater error rate,787

the noisy label datasets are marked as “low”, “medium”, and “high” in Figures 9 and 10. Details for788

these datasets can be found in Appendix B. For each of our synthetic dataset, we generate another789

dataset that uses random label noise and has the same rater error rate. We compare the performance790

of the 5 algorithms on these paired datasets, and aim to measure the difficulty of noisy label datasets791

when the label errors are generated using our framework or independent random flipping. All the792

experiments use the ResNet50 architecture.793

A.2 Results794

Interestingly, we find different behavior for tasks with different number of classes. For tasks with a795

large number of classes such as CIFAR100, we find that most algorithms achieve better test accuracy796

on our synthetic datasets compared to random label noise. On binary classification problems such797

as PatchCamelyon and Cats vs Dogs, however, the trend is opposite, i.e., most algorithms perform798

worse on our synthetic datasets. On CIFAR10, we observe mixed behavior: depending on the amount799

of noise and the algorithm, the test accuracy can be higher either on our synthetic datasets or those800

with random label noise. The results are shown in Figure 9, and exact numbers are provided in801

Appendix D.802

Figure 9: Benchmarking noisy label algorithms using our synthetic dataset and random label noise.
Each pair of adjacent bars shows test accuracy on two datasets: our synthetic dataset (darker color)
and random label noise (lighter color) with the same rater error rate. On CIFAR100, our datasets
are easier than random noise, while on binary classification tasks (PCam and CvD), our datasets are
harder.

This phenomenon can be explained as follows. For binary classification problems, in our synthetic803

framework, the mislabeled data are usually the ambiguous ones that located around the decision804

boundary. This label noise can hurt the models’ performance more since the important information805

around the decision boundary is corrupted. On the contrary, for tasks with a large number of classes,806

especially those with tree-structured classes involving a relatively small number of high level super807

classes and low level fine-grained classes, such as CIFAR100, in our instance-dependent simulation808

framework, the label mistakes are usually among similar classes. For example, an image of a certain809

type of mammal may be mislabeled as another mammal, but it is unlikely to be labeled as a type of810

vehicles. In other words, the corruption of decision boundary only happens to similar fine-grained811

classes in our framework. Thus, given the same fractions of incorrect labels are the same, our812

synthetic label noise hurts the models’ performance less compared to random noise.813

4We also generated synthetic datasets using ImageNet. However, none of the noisy label techniques performs
significantly better than vanilla training with cross entropy loss, thus we do not present the results here.

19



Figure 10: Improvement in test accuracy using noisy label techniques. Each pair of adjacent bars
shows test accuracy improvement compared to the baseline on two datasets: our synthetic dataset
(darker color) and random label noise (lighter color) with the same rater error rate. In most cases, the
accuracy improvement tends to be smaller under our synthetic framework.

Another observation is that on CIFAR10 and CIFAR100, the performance improvement obtained by814

noisy label algorithms when compared with the baseline is usually smaller with our synthetic datasets.815

The performance improvement is presented in Figure 10.816

We emphasize that our results demonstrate the importance of using more realistic synthetic bench-817

marks in the research on label noise: existing algorithms exhibit different behavior on our synthetic818

framework and random label noise, even if the fraction of mislabeled data is kept the same, and the819

performance gain observed using random label noise may not directly translate to a more realistic820

setting that we tested.821

B Details of synthetic datasets822

In this section, we provide more details of the synthetic data generation process. In particular, we823

provide the architectures and hyperparameters of the rater models in these datasets. All the models824

use standard cosine learning rate decay schedule, as well as the standard flipping and cropping data825

augmentation. In the following, for rater models that use the same architecture, they are randomly826

initialized independently.827

For the CIFAR10 dataset in Section 2.3, we use 10 rater models, including 3 Inception-v1 [Szegedy828

et al., 2015], 1 Inception-v3 [Szegedy et al., 2016], 2 Inception-ResNet-v2 [Szegedy et al., 2017], 2829

MobileNet-v1 [Howard et al., 2017], 2 VGG16 [Simonyan and Zisserman, 2014] models. The models830

are trained with batch size 256, 80, 000 steps, and initial learning rate 0.01. For the CIFAR100831

dataset, we use the “low noise” dataset in Section 4 with details given in following paragraphs.832

For the PCam dataset in Section 3.3, we use 20 rater models involving 10 architectures: Inception-v1,833

Inception-v2 [Szegedy et al., 2016], Inception-v3, Inception-v4 [Szegedy et al., 2017], MobileNet-v1,834

MobileNet-v2 [Sandler et al., 2018], ResNet50, ResNet152 [He et al., 2016], VGG16, VGG19. For835

each architecture, we use two different initial learning rates: 0.01 and 0.001 to train two different836

models. All the models are trained with batch size 256 and 10, 000 steps.837

For the CvD dataset in Section 3.3, we use 10 rater models, involving the same 10 architectures in838

the PCam dataset mentioned above. All the models are trained with batch size 128, initial learning839

rate 0.001, and 10, 000 steps.840

For the Easy task based on CIFAR100 in Section 3.3, we use 10 rater models with the follow-841

ing architectures: Inception-v1, Inception-v2, Inception-v3, Inception-v4, Inception-ResNet-v2,842

MobileNet-v1, MobileNet-v2, ResNet50, ResNet101, ResNet152. We use batch size 128, initial843

learning rate 3⇥ 10�5, and 5, 000 training steps. For the Medium task, we use 11 rater models, each844

using its own architecture. The 11 architectures include the 10 architectures for the PCam dataset845

in Section 3.3 with an additional ResNet101. We use batch size 128, initial learning rate 0.003, and846

40, 000 steps. The Hard task uses 11 rater models with the same architectures as the Medium task,847

with batch size 128, initial learning rate 0.01 and 2⇥ 105 steps.848

For the 3 CvD datasets in Section 3.1, we use 10 rater models with the same architectures as the849

PCam dataset in Section 3.3. All models are trained with batch size 128. For the three datasets,850

the (initial learning rate, number of steps) pairs are (1 ⇥ 10�2, 5 ⇥ 104), (1 ⇥ 10�3, 2.5 ⇥ 104),851

(1⇥ 10�3, 1⇥ 105), respectively.852
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For each of the 4 PCam datasets in Section 3.1, we use 20 raters models, which uses the same853

combinations of the 10 architectures and 2 initial learning rates as in the PCam dataset in Section 3.3.854

They all use batch size 256. The 4 datasets are generated by varying the number of training steps855

among {1, 2, 5, 8}⇥ 104.856

In Section 3.2, we use 3 CvD datasets and 3 CIFAR10 datasets. All the CvD datasets use 10 rater857

models with the same set of architectures as the CvD dataset in Section 3.3. All rater models are858

trained with batch size 128. The (initial learning rate, number of steps) pairs are (1⇥ 10�3, 1⇥ 105),859

(1⇥ 10�3, 2.5⇥ 104), (1⇥ 10�2, 1⇥ 104), respectively. The CIFAR10 dataset with rater error rate860

0.11 is the same as the dataset in Section 2.3. The CIFAR10 dataset with rater error rate 0.19 has 10861

rater models, including 2 Inception-v4, 2 MobileNet-v1, 2 MobileNet-v2, 1 NASNetMobile [Zoph862

et al., 2018], 1 ResNet50, 1 ResNet101, 1 VGG16. All models are trained with batch size 256,863

initial learning rate 0.01 and 17, 000 steps. The CIFAR10 dataset with rater error rate 0.33 has 10864

rater models, including 2 Inception-v2, 1 Inception-ResNet-v2, 2 MobileNet-v1, 1 MobileNet-v2, 2865

ResNet50, 1 ResNet101, 1 ResNet152. All models are trained with batch size 256, initial learning866

rate 0.01 and 12, 000 steps.867

In Sections A and 4, we use 3 datasets for each of the 4 tasks. The rater error raters of these datasets868

are provided in the tables in Appendix D. Here, we provide details of the rater models in the synthetic869

datasets.870

CIFAR10 Low noise: the same as the CIFAR10 dataset in Section 2.3; medium noise: the same as871

the CIFAR10 dataset with rater error rate 0.19 in Section 3.2; high noise: the same set of architectures872

as the CIFAR10 dataset with rater error rate 0.33 in Section 3.2, and the batch size is 256, initial873

learning rate is 0.01, and number of steps is 5, 000.874

CIFAR100 For all the 3 CIFAR100 datasets, we use 11 raters, with the same set of architectures as875

the Medium and Hard tasks in Section 3.3. The (batch size, learning rate, number of steps) tuples876

for the low, medium, and high noise datasets are (128, 1⇥ 10�3, 1⇥ 104), (256, 0.01, 2⇥ 105), and877

(256, 0.01, 8⇥ 104), respectively.878

PCam For all the 3 PCam datasets, we use 20 raters models (for the medium noise dataset, one of879

the Inception-v1 models failed due to system error, so we only have 19 noisy labels for this dataset),880

which uses the same combinations of the 10 architectures and 2 initial learning rates as in the PCam881

dataset in Section 3.3. They all use batch size 256 and initial learning rate 0.01. The number of steps882

are 3.5⇥ 104, 1.5⇥ 104, and 1⇥ 104, for the low, medium, and high noise datasets, respectively.883

CvD For all the 3 CvD datasets, we use 10 rater models with the same set of architectures as the884

CvD dataset in Section 3.3. All rater models are trained with batch size 128. The (initial learning885

rate, number of steps) pairs are (1⇥ 10�3, 5⇥ 104), (1⇥ 10�2, 1⇥ 104), (1⇥ 10�3, 1⇥ 104), for886

low, medium, and high noise, respectively.887

C Details for three CIFAR100-based datasets in Section 3.3888

As we know, the CIFAR100 dataset contains 20 super classes, each of which contains 5 fine-grained889

classes. We create the easy, medium, and hard tasks in the following way.890

• For the easy task, we select one fine-grained class from each of the 20 super classes, and form a891

20-way classification task.892

• For the medium task, we select 4 super classes that are semantically similar, i.e., large carnivores,893

large omnivores and herbivores, small mammals, and medium-sized mammals. We use all the894

fine-grained classes from these 4 super classes to form a 20-way classification task.895

• For the hard task, we simply classify the 20 super classes, and we randomly subsample the data896

in order to match the total number of data points in the other two tasks. We note that this task is897

harder since the data in each super class is a mixture of 5 fine-grained classes.898

D Experimental results899

We provide exact numbers for the experimental results in Appendix A (Tables 1, 2, 3, and 4) and900

Section 4 in the main paper (Tables 5, 6, 7, and 8).901
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Table 1: Test accuracy ± std (%) of noisy label algorithms on CIFAR10

noise low (err=0.11) medium (err=0.19) high (err=0.48)
dataset synthetic random synthetic random synthetic random

Baseline 83.6 ± 0.5 78.7 ± 0.3 78.4 ± 0.1 72.9 ± 0.7 60.1 ± 0.2 61.9 ± 0.6
Bootstrap 83.2 ± 0.8 78.8 ± 0.6 77.6 ± 0.1 74.8 ± 0.7 61.5 ± 1.2 63.5 ± 0.7

Co-Teaching 85.9 ± 0.2 87.2 ± 0.6 81.6 ± 0.5 86.2 ± 0.2 63.4 ± 1.6 66.1 ± 0.9
MCSoftMax 85.9 ± 0.1 82.2 ± 0.3 79.8 ± 0.2 75.5 ± 1.1 65.2 ± 0.4 60.4 ± 0.8
MentorMix 85.5 ± 1.9 87.7 ± 0.2 83.4 ± 0.7 86.9 ± 0.3 69.4 ± 1.5 78.9 ± 0.9

Table 2: Test accuracy ± std (%) of noisy label algorithms on CIFAR100

noise low (err=0.25) medium (err=0.38) high (err=0.43)
dataset synthetic random synthetic random synthetic random

Baseline 58.8 ± 0.5 42.3 ± 0.3 51.1 ± 0.5 34.4 ± 1.1 46.7 ± 1.2 29.9 ± 0.6
Bootstrap 58.4 ± 0.6 43.3 ± 0.3 51.5 ± 0.8 35.9 ± 0.9 46.6 ± 0.9 29.6 ± 0.7

Co-Teaching 60.1 ± 0.6 55.2 ± 0.7 52.7 ± 0.5 44.6 ± 1.2 49.2 ± 1.2 39.2 ± 1.4
MCSoftMax 60.7 ± 0.4 47.8 ± 0.5 53.0 ± 0.4 41.2 ± 1.2 48.5 ± 0.3 38.8 ± 0.8
MentorMix 62.2 ± 0.1 59.6 ± 0.6 56.4 ± 0.3 53.9 ± 0.4 50.0 ± 0.8 49.0 ± 0.5

E Data license902

The synthetic datasets that we generate in this paper are based on the following 4 existing public903

datasets: CIFAR10 [Krizhevsky and Hinton, 2009], CIFAR100 [Krizhevsky and Hinton, 2009],904

PatchCamelyon [Veeling et al., 2018, Bejnordi et al., 2017], and Cats vs Dogs [Elson et al., 2007].905

The original CIFAR10 and CIFAR100 datasets do not have licenses. However, given the wide use of906

these two datasets in the research community, we do not believe there are license issues with using907

these datasets for research and publishing noisy label datasets based on them. The PatchCamelyon908

dataset is under the CC0 Creative Commons License, which allows the use of this dataset for research909

purpose, distribution, and modification of the dataset. The Cats vs Dogs dataset has a license that910

permits the use for research purposes; analysing and testing purposes; and publishing (or presenting911

papers/articles) on the results from the dataset. Following the license, when we publish our noisy912

label datasets, we will not include the raw images and labels from the original Cats vs Dogs dataset.913

Instead, we will only publish the noisy labels and rater features.914

In this paper, we also used the CIFAR10-H dataset [Peterson et al., 2019]. This dataset is under the915

Creative Commons BY-NC-SA 4.0 license, which allows the data to be used for non-commercial916

research purposes.917

We plan to publish the synthetic noisy label datasets that we generated. The current plan is to have918

our datasets under the CC0 Creative Commons License. This license will be applied to the materials919

that we created, namely the noisy labels and rater features. The original images and labels are under920

their original dataset licenses.921
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Table 3: Test accuracy ± std (%) of noisy label algorithms on PatchCamelyon

noise low (err=0.10) medium (err=0.18) high (err=0.23)
dataset synthetic random synthetic random synthetic random

Baseline 82.1 ± 1.3 82.6 ± 1.0 78.9 ± 0.2 82.2 ± 1.0 75.7 ± 0.7 81.6 ± 0.6
Bootstrap 82.9 ± 1.4 82.8 ± 1.6 78.6 ± 0.9 81.4 ± 0.5 76.4 ± 0.7 80.3 ± 1.3

Co-Teaching 82.0 ± 0.8 82.7 ± 0.6 80.1 ± 1.4 81.4 ± 1.2 77.5 ± 1.5 80.9 ± 0.8
MCSoftMax 81.9 ± 1.5 83.4 ± 1.6 79.4 ± 1.2 83.7 ± 0.5 72.3 ± 6.7 82.3 ± 1.8
MentorMix 83.2 ± 1.1 81.7 ± 0.6 76.2 ± 1.9 83.0 ± 0.3 73.6 ± 1.6 79.7 ± 1.0

Table 4: Test accuracy ± std (%) of noisy label algorithms on Cats vs Dogs

noise low (err=0.09) medium (err=0.20) high (err=0.29)
dataset synthetic random synthetic random synthetic random

Baseline 92.0 ± 0.4 92.3 ± 0.2 85.4 ± 0.7 88.8 ± 0.5 82.0 ± 0.7 82.7 ± 2.1
Bootstrap 92.1 ± 0.6 93.8 ± 0.6 87.3 ± 1.0 89.0 ± 0.8 82.4 ± 0.6 85.8 ± 0.4

Co-Teaching 93.4 ± 0.2 96.2 ± 0.2 89.7 ± 0.5 92.6 ± 0.2 84.0 ± 0.6 86.7 ± 1.3
MCSoftMax 92.0 ± 0.3 93.7 ± 0.3 87.6 ± 0.5 90.4 ± 0.5 81.2 ± 0.4 85.1 ± 1.2
MentorMix 94.0 ± 0.6 94.2 ± 0.4 90.0 ± 0.7 92.0 ± 0.4 84.8 ± 0.6 89.6 ± 0.8

Table 5: Training with LQM outputs with various techniques. Test accuracy ± std (%) on CIFAR10

algorithm low (err=0.11) medium (err=0.19) high (err=0.48)

Baseline 84.1 ± 0.2 78.8 ± 0.2 62.4 ± 1.1
LQM 85.6 ± 0.4 81.9 ± 0.3 73.4 ± 0.3

LQM + Bootstrap 82.8 ± 0.9 79.8 ± 0.2 73.5 ± 0.3
LQM + Co-Teaching 86.3 ± 0.2 80.9 ± 0.1 74.2 ± 0.4
LQM + MCSoftMax 85.7 ± 0.2 81.6 ± 0.1 74.2 ± 0.2
LQM + MentorMix 86.3 ± 0.1 84.2 ± 0.3 78.4 ± 0.2

Table 6: Training with LQM outputs with various techniques. Test accuracy ± std (%) on CIFAR100

algorithm low (err=0.25) medium (err=0.38) high (err=0.43)

Baseline 59.2 ± 1.2 52.9 ± 0.6 47.3 ± 1.0
LQM 59.4 ± 1.7 53.9 ± 0.6 51.3 ± 0.9

LQM + Bootstrap 59.8 ± 1.1 52.8 ± 0.8 49.8 ± 1.4
LQM + Co-Teaching 61.0 ± 1.3 56.8 ± 0.6 50.4 ± 0.7
LQM + MCSoftMax 63.0 ± 0.2 57.0 ± 0.4 55.2 ± 0.7
LQM + MentorMix 62.4 ± 0.5 58.5 ± 0.2 53.7 ± 0.4

Table 7: Training with LQM outputs with various techniques. Test accuracy ± std (%) on Patch-
Camelyon

algorithm low (err=0.1) medium (err=0.18) high (err=0.23)

Baseline 78.1 ± 1.8 75.1 ± 0.9 72.9 ± 0.3
LQM 80.0 ± 0.1 79.1 ± 0.9 77.6 ± 0.7

LQM + Bootstrap 80.7 ± 0.7 80.7 ± 0.9 78.2 ± 1.1
LQM + Co-Teaching 78.9 ± 0.1 78.2 ± 1.7 76.9 ± 0.3
LQM + MCSoftMax 80.3 ± 0.4 80.0 ± 0.7 78.2 ± 0.9
LQM + MentorMix 79.5 ± 0.5 77.0 ± 0.4 75.8 ± 0.2
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Table 8: Training with LQM outputs with various techniques. Test accuracy ± std (%) on Cats vs
Dogs

algorithm low (err=0.09) medium (err=0.20) high (err=0.29)

Baseline 91.9 ± 0.3 87.6 ± 0.5 82.0 ± 0.5
LQM 94.9 ± 0.4 92.3 ± 0.4 85.8 ± 0.4

LQM + Bootstrap 92.0 ± 0.4 90.5 ± 0.3 89.5 ± 0.8
LQM + Co-Teaching 94.1 ± 0.8 91.5 ± 0.5 90.9 ± 0.5
LQM + MCSoftMax 93.5 ± 0.2 91.3 ± 0.2 89.1 ± 0.1
LQM + MentorMix 94.6 ± 0.6 92.1 ± 0.5 91.1 ± 0.3
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